Convexity Conditions for Optimizing a Single Server Discrete-time Queueing System under a Randomized Cutoff Policy
This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback ( disaster ). The system operates under a randomized threshold policy p , N , where the server activates with probability p when queue length reaches threshold N , or remains idle wi...
Saved in:
Published in | Methodology and computing in applied probability Vol. 27; no. 3; p. 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback (
disaster
). The system operates under a randomized threshold policy
p
,
N
, where the server activates with probability
p
when queue length reaches threshold
N
, or remains idle with probability
1
-
p
, providing flexible control over system congestion and resource utilization. This policy is particularly important in systems prone to sudden disruptions, as it helps optimize service efficiency while managing system recovery after setbacks. First, we perform the convexity analysis analytically for the discrete parameter
N
. Then the optimal queue length for the best value of
N
is determined. Also, as the optimization problem for finding the optimal value of continuous parameter
p
is a linear fractional programming problem thus Charnes and Cooper method is used to get the best value of
p
. Furthermore, by constructing a cost function and using the direct search method and firefly algorithm, the minimum cost is estimated. The goal of this work is to show how convexity in a discrete-time work frame can provide fresh perspectives on existing problems and lead to significantly simpler analyses and algorithm modifications. Also we compare analytical results with that of ANFIS (Adaptive Neuro-Fuzzy Inference System) results which validate our findings. |
---|---|
AbstractList | This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback (disaster). The system operates under a randomized threshold policy p,N, where the server activates with probability p when queue length reaches threshold N, or remains idle with probability 1-p, providing flexible control over system congestion and resource utilization. This policy is particularly important in systems prone to sudden disruptions, as it helps optimize service efficiency while managing system recovery after setbacks. First, we perform the convexity analysis analytically for the discrete parameter N. Then the optimal queue length for the best value of N is determined. Also, as the optimization problem for finding the optimal value of continuous parameter p is a linear fractional programming problem thus Charnes and Cooper method is used to get the best value of p. Furthermore, by constructing a cost function and using the direct search method and firefly algorithm, the minimum cost is estimated. The goal of this work is to show how convexity in a discrete-time work frame can provide fresh perspectives on existing problems and lead to significantly simpler analyses and algorithm modifications. Also we compare analytical results with that of ANFIS (Adaptive Neuro-Fuzzy Inference System) results which validate our findings. This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback ( disaster ). The system operates under a randomized threshold policy p , N , where the server activates with probability p when queue length reaches threshold N , or remains idle with probability 1 - p , providing flexible control over system congestion and resource utilization. This policy is particularly important in systems prone to sudden disruptions, as it helps optimize service efficiency while managing system recovery after setbacks. First, we perform the convexity analysis analytically for the discrete parameter N . Then the optimal queue length for the best value of N is determined. Also, as the optimization problem for finding the optimal value of continuous parameter p is a linear fractional programming problem thus Charnes and Cooper method is used to get the best value of p . Furthermore, by constructing a cost function and using the direct search method and firefly algorithm, the minimum cost is estimated. The goal of this work is to show how convexity in a discrete-time work frame can provide fresh perspectives on existing problems and lead to significantly simpler analyses and algorithm modifications. Also we compare analytical results with that of ANFIS (Adaptive Neuro-Fuzzy Inference System) results which validate our findings. |
ArticleNumber | 67 |
Author | Upadhyaya, Shweta Agarwal, Divya Vaishnawi, Shree |
Author_xml | – sequence: 1 givenname: Shweta surname: Upadhyaya fullname: Upadhyaya, Shweta organization: Department of Mathematics, School of Computer Science Engineering and Technology, Bennett University – sequence: 2 givenname: Divya surname: Agarwal fullname: Agarwal, Divya email: dagarwal1@amity.edu organization: Amity Institute of Applied Sciences, Amity University – sequence: 3 givenname: Shree surname: Vaishnawi fullname: Vaishnawi, Shree organization: Amity Institute of Applied Sciences, Amity University |
BookMark | eNp9kMlOwzAURS1UJNrCD7CyxNrgIW7iJQqjVImhsLaS-KVy1drFTirC1-NSJHas7lucey2fCRo57wChc0YvGaX5VWQpFKFcEkZZIYg8QmMmc0HynIlRukWRE1lk7ARNYlxRypkU2RiF0rsdfNpuwOkytrPeRdz6gJ-2nd3YL-uWuMKLFGvACwg7CPjGxiZAByQRgF966GGPLYbYwQb3ziSmwq-VMz4tgMFl3_m2xc9-bZvhFB231TrC2W9O0fvd7Vv5QOZP94_l9Zw0rMglUdSkL2UKWiqFVIzWszqTnNW0aWje8swYXs2U4UpJ4ILPRJZCtIbXuTKyEFN0cdjdBv_RQ-z0yvfBpSe14KIokiaRJYofqCb4GAO0ehvspgqDZlTv3eqDW53c6h-3WqaSOJRigt0Swt_0P61v_Ot-Eg |
Cites_doi | 10.1080/03610918.2023.2232959 10.1007/s40819-022-01445-8 10.1080/03610926.2021.1923747 10.1002/nav.3800090303 10.1080/03610918.2022.2158340 10.1051/ro/2018057 10.1057/jors.1963.63 10.1201/9781420010008 10.1016/j.mcm.2008.08.012 10.1080/00207720701353405 10.1504/IJMOR.2022.126049 10.1016/j.asej.2020.11.012 10.1007/s13198-023-01972-7 10.1016/j.swevo.2013.06.001 10.1016/0377-2217(83)90153-4 10.1002/dac.6136 10.1016/j.apm.2021.07.003 10.1145/321062.321069 10.3390/math9243283 10.1016/j.apm.2013.05.012 10.1016/j.jmaa.2019.02.038 10.3390/fractalfract7010018 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s11009-025-10183-5 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1573-7713 |
ExternalDocumentID | 10_1007_s11009_025_10183_5 |
GroupedDBID | -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EBU EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9R PF0 PT4 PT5 QOS QWB R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR -Y2 1SB 2P1 2VQ 88I 8AO 8FE 8FG 8FW AARHV AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGGDS AGQPQ AHQJS AHSBF AJBLW AMVHM AZQEC BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EBO EJD FINBP FRNLG FSGXE GNUQQ GROUPED_ABI_INFORM_RESEARCH H13 HZ~ IHE K1G K6V K7- L6V M0C M2P M7S N2Q O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS Q2X RIG RNI RZC RZE RZK TEORI TH9 ~8M JQ2 |
ID | FETCH-LOGICAL-c1875-90d00949ef0535910b6b4521b0cc07f24dd2a69d2995e232634e233fd2b79d583 |
IEDL.DBID | U2A |
ISSN | 1387-5841 |
IngestDate | Sat Aug 16 21:34:19 EDT 2025 Thu Aug 14 00:08:28 EDT 2025 Wed Aug 13 01:20:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Cutoff policy ANFIS Geo/G/1 queueing model Cost optimization via Firefly algorithm Setback Convexity analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1875-90d00949ef0535910b6b4521b0cc07f24dd2a69d2995e232634e233fd2b79d583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3238818334 |
PQPubID | 26119 |
ParticipantIDs | proquest_journals_3238818334 crossref_primary_10_1007_s11009_025_10183_5 springer_journals_10_1007_s11009_025_10183_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Methodology and computing in applied probability |
PublicationTitleAbbrev | Methodol Comput Appl Probab |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | S Upadhyaya (10183_CR25) 2023; 14 10183_CR20 A Economou (10183_CR7) 2023; 37 R Agarwal (10183_CR1) 2023; 44 AD Corella (10183_CR5) 2019; 475 S Schaible (10183_CR21) 1983; 12 SF Jia (10183_CR12) 2013; 2 SJ Kim (10183_CR16) 2013; 2013 P Kharbanda (10183_CR14) 2019; 31 S Upadhyaya (10183_CR24) 2022; 23 A Charnes (10183_CR3) 1962; 9 I Atencia (10183_CR2) 2023; 51 S Kharvi (10183_CR15) 2022 DH Lee (10183_CR17) 2013; 37 G Comert (10183_CR4) 2021; 99 M Vaishnawi (10183_CR27) 2022 Y Tang (10183_CR23) 2023; 36 G Malik (10183_CR18) 2021; 12 M Demircioglu (10183_CR6) 2021; 9 S Upadhyaya (10183_CR26) 2025 AG Hernández-Díaz (10183_CR10) 2009; 49 R Hooke (10183_CR11) 1961; 8 M Yadin (10183_CR29) 1963; 14 10183_CR8 10183_CR22 JC Ke (10183_CR13) 2023 P Moreno (10183_CR19) 2007; 38 Z Wang (10183_CR28) 2021; 52 S Gao (10183_CR9) 2019; 53 |
References_xml | – year: 2023 ident: 10183_CR13 publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2023.2232959 – volume: 37 start-page: 112 issue: 1 year: 2023 ident: 10183_CR7 publication-title: Probab Eng Inf Sci – year: 2022 ident: 10183_CR27 publication-title: Int J Appl Comput Math doi: 10.1007/s40819-022-01445-8 – volume: 52 start-page: 1076 issue: 4 year: 2021 ident: 10183_CR28 publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2021.1923747 – volume: 9 start-page: 181 year: 1962 ident: 10183_CR3 publication-title: Nav Res Logist Q doi: 10.1002/nav.3800090303 – volume: 31 start-page: 835 issue: 5–6 year: 2019 ident: 10183_CR14 publication-title: J Appl Math Inform – volume: 51 start-page: 324 issue: 3 year: 2023 ident: 10183_CR2 publication-title: Oper Res Lett – year: 2022 ident: 10183_CR15 publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2022.2158340 – volume: 53 start-page: 1197 year: 2019 ident: 10183_CR9 publication-title: RAIRO-Oper Res doi: 10.1051/ro/2018057 – volume: 14 start-page: 393 year: 1963 ident: 10183_CR29 publication-title: Oper Res Q doi: 10.1057/jors.1963.63 – ident: 10183_CR22 doi: 10.1201/9781420010008 – volume: 36 start-page: 243 issue: 1 year: 2023 ident: 10183_CR23 publication-title: J Syst Sci Complex – volume: 49 start-page: 977 year: 2009 ident: 10183_CR10 publication-title: Math Comput Model doi: 10.1016/j.mcm.2008.08.012 – volume: 38 start-page: 483 issue: 6 year: 2007 ident: 10183_CR19 publication-title: Int J Syst Sci doi: 10.1080/00207720701353405 – volume: 23 start-page: 119 issue: 1 year: 2022 ident: 10183_CR24 publication-title: Int J Math Oper Res doi: 10.1504/IJMOR.2022.126049 – volume: 44 start-page: 1 issue: 1 year: 2023 ident: 10183_CR1 publication-title: Int J Ind Syst Eng – volume: 2013 start-page: 1 year: 2013 ident: 10183_CR16 publication-title: J Appl Math – volume: 12 start-page: 2241 issue: 2 year: 2021 ident: 10183_CR18 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2020.11.012 – volume: 14 start-page: 1671 issue: 5 year: 2023 ident: 10183_CR25 publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-023-01972-7 – ident: 10183_CR8 doi: 10.1016/j.swevo.2013.06.001 – volume: 12 start-page: 325 year: 1983 ident: 10183_CR21 publication-title: Eur J Oper Res doi: 10.1016/0377-2217(83)90153-4 – year: 2025 ident: 10183_CR26 publication-title: Int J Commun Syst doi: 10.1002/dac.6136 – volume: 99 start-page: 418 year: 2021 ident: 10183_CR4 publication-title: Appl Math Model doi: 10.1016/j.apm.2021.07.003 – volume: 8 start-page: 212 issue: 2 year: 1961 ident: 10183_CR11 publication-title: J ACM doi: 10.1145/321062.321069 – volume: 9 start-page: 3283 issue: 24 year: 2021 ident: 10183_CR6 publication-title: Mathematics doi: 10.3390/math9243283 – volume: 2 start-page: 991 issue: 10 year: 2013 ident: 10183_CR12 publication-title: Int J Sci Eng Technol – volume: 37 start-page: 9722 year: 2013 ident: 10183_CR17 publication-title: Appl Math Model doi: 10.1016/j.apm.2013.05.012 – volume: 475 start-page: 253 issue: 1 year: 2019 ident: 10183_CR5 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2019.02.038 – ident: 10183_CR20 doi: 10.3390/fractalfract7010018 |
SSID | ssj0021534 |
Score | 2.3496473 |
Snippet | This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback (
disaster
). The system operates under a... This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback (disaster). The system operates under a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 67 |
SubjectTerms | Adaptive systems Algorithms Automation Business and Management Cloud computing Convexity Cost function Customer services Discrete time systems Economics Electrical Engineering Emergency medical care Heuristic methods Life Sciences Manufacturing Mathematical programming Mathematics and Statistics Optimization Parameters Queuing theory Resource utilization Sensors Servers Statistics Vacations |
Title | Convexity Conditions for Optimizing a Single Server Discrete-time Queueing System under a Randomized Cutoff Policy |
URI | https://link.springer.com/article/10.1007/s11009-025-10183-5 https://www.proquest.com/docview/3238818334 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROIgHo6gRRdKDN22ytd3YjgRBokHjBwmelnVtExIFAywx_PW-7gOi0YOnblnXLnvte7_XvvcrwIXRXsgCw6gbByEVyktozB1NE-4axzdC82xpYHjvD0biduyNi6SwRRntXm5JZpp6k-zmZgv5zDJn4kCk3jZUPfTdbSDXiHXWbhbO4fwoW5w-aF7dIlXm9za-m6MNxvyxLZpZm_4-7BUwkXRyuR7Alp7WYafMIl7UYXe45lvFu5rFjDnl8iHMuzaS_BPhNcErlcdkEQSn5AH1w_tkhT2SmDxj8aaJVRZ6Tq4nqD8QQFN72Dx5THWqbbWc0JzYTLM5vvMUTxV-wEor0k2XM2NIzit8BKN-76U7oMXRCjRx0UOhoaNsTGGojeV3QcggfSnQkksnSZy2YUIpFvuhQmPlaQRdPhdYcKOYbIfKC_gxVKazqT4BgngoMSK0ObZGKOnHCXO51KxtVCCMbDfgsvzD0UfOoBFtuJKtPCKUR5TJI_Ia0CyFEBWzaRFxxBUILDgXDbgqBbN5_Hdrp_-rfgY1ZsdGFkLWhMpynupzxBxL2YJq5-b1rtfKhtoXRMLOJA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oPGweRKfidGoO3jTQJunXcUzH1G2ibrBbaZsEBrrJPkD21_vSjxVFD57S0jQpfS_v_ZK89wvAlVZOwHzNqB35ARXSSWjELUUTbmvL1ULxdGmgP3C7I_EwdsZ5UtiiiHYvtiRTS10mu9npQj4zzJmoiNTZhh0EA77R5RFrbaZZOIazo2xx-KB7tfNUmd_b-O6OSoz5Y1s09TadfdjLYSJpZXI9gC01rUO1yCJe1GG3v-FbxbuawYwZ5fIhzNsmkvwT4TXBK5nFZBEEp-QJ7cP7ZI09koi8YvGmiDEWak5uJ2g_EEBTc9g8eV6plTLVMkJzYjLN5vjOSzSV-AFrJUl7tZxpTTJe4SMYde6G7S7Nj1agiY0zFBpY0sQUBkobfheEDLEbC_TksZUklqeZkJJFbiDRWTkKQZfLBRZcSxZ7gXR8fgyV6WyqToAgHkq0CEyOrRYydqOE2TxWzNPSFzr2GnBd_OHwI2PQCEuuZCOPEOURpvIInQY0CyGE-WhahByljMCCc9GAm0Iw5eO_Wzv9X_VLqHaH_V7Yux88nkGNGT1Jw8maUFnOV-oc8ccyvkjV7Qunds-D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5RTBQfjKJGFLUPvmnD1naDPRKQ4AW8kvC2bGubkOggMBLDr_d0Y6BGH3zqlnWX7Jz2fG3P9xXgQivHY3XNqB3UPSqkE9GAW4pG3NaWq4Xi6dRAt-d2-uJ24Ay-sPjTbPd8STLjNBiVpjipjqWurohvdjqpz4yKJjolddZhQxg2MHp0nzWWQy5sz9m2ttiUMNTaC9rM78_4HppWePPHEmkaedq7sLOAjKSR2XgP1lRcgq2cUTwtwXZ3qb2KZ0WDHzP55X2YNE1W-QdCbYJHMsvPIghUyQP2Fe_DOb6RBOQFizdFTMehJqQ1xL4EwTQ1G8-Tp5maKVMtEzcnhnU2wXueg1jiB8yVJM1ZMtKaZBrDB9BvX782O3SxzQKNbBytUM-SJr_QU9povSB8CN1QYFQPrSiyapoJKVngehIDl6MQgLlcYMG1ZGHNk06dH0IhHsXqCAhio0gLz_BttZChG0TM5qFiNS3rQoe1Mlzmf9gfZ2oa_ko32djDR3v4qT18pwyV3Aj-omVNfY4YA0EG56IMV7lhVpf_ftrx_6qfw-Zjq-3f3_TuTqDIjJukmWUVKCSTmTpFKJKEZ6m3fQLMUdO2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convexity+Conditions+for+Optimizing+a+Single+Server+Discrete-time+Queueing+System+under+a+Randomized+Cutoff+Policy&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Upadhyaya%2C+Shweta&rft.au=Agarwal%2C+Divya&rft.au=Vaishnawi%2C+Shree&rft.date=2025-09-01&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs11009-025-10183-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11009_025_10183_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon |