Convexity Conditions for Optimizing a Single Server Discrete-time Queueing System under a Randomized Cutoff Policy

This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback ( disaster ). The system operates under a randomized threshold policy p , N , where the server activates with probability p when queue length reaches threshold N , or remains idle wi...

Full description

Saved in:
Bibliographic Details
Published inMethodology and computing in applied probability Vol. 27; no. 3; p. 67
Main Authors Upadhyaya, Shweta, Agarwal, Divya, Vaishnawi, Shree
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback ( disaster ). The system operates under a randomized threshold policy p , N , where the server activates with probability p when queue length reaches threshold N , or remains idle with probability 1 - p , providing flexible control over system congestion and resource utilization. This policy is particularly important in systems prone to sudden disruptions, as it helps optimize service efficiency while managing system recovery after setbacks. First, we perform the convexity analysis analytically for the discrete parameter N . Then the optimal queue length for the best value of N is determined. Also, as the optimization problem for finding the optimal value of continuous parameter p is a linear fractional programming problem thus Charnes and Cooper method is used to get the best value of p . Furthermore, by constructing a cost function and using the direct search method and firefly algorithm, the minimum cost is estimated. The goal of this work is to show how convexity in a discrete-time work frame can provide fresh perspectives on existing problems and lead to significantly simpler analyses and algorithm modifications. Also we compare analytical results with that of ANFIS (Adaptive Neuro-Fuzzy Inference System) results which validate our findings.
AbstractList This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback (disaster). The system operates under a randomized threshold policy p,N, where the server activates with probability p when queue length reaches threshold N, or remains idle with probability 1-p, providing flexible control over system congestion and resource utilization. This policy is particularly important in systems prone to sudden disruptions, as it helps optimize service efficiency while managing system recovery after setbacks. First, we perform the convexity analysis analytically for the discrete parameter N. Then the optimal queue length for the best value of N is determined. Also, as the optimization problem for finding the optimal value of continuous parameter p is a linear fractional programming problem thus Charnes and Cooper method is used to get the best value of p. Furthermore, by constructing a cost function and using the direct search method and firefly algorithm, the minimum cost is estimated. The goal of this work is to show how convexity in a discrete-time work frame can provide fresh perspectives on existing problems and lead to significantly simpler analyses and algorithm modifications. Also we compare analytical results with that of ANFIS (Adaptive Neuro-Fuzzy Inference System) results which validate our findings.
This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback ( disaster ). The system operates under a randomized threshold policy p , N , where the server activates with probability p when queue length reaches threshold N , or remains idle with probability 1 - p , providing flexible control over system congestion and resource utilization. This policy is particularly important in systems prone to sudden disruptions, as it helps optimize service efficiency while managing system recovery after setbacks. First, we perform the convexity analysis analytically for the discrete parameter N . Then the optimal queue length for the best value of N is determined. Also, as the optimization problem for finding the optimal value of continuous parameter p is a linear fractional programming problem thus Charnes and Cooper method is used to get the best value of p . Furthermore, by constructing a cost function and using the direct search method and firefly algorithm, the minimum cost is estimated. The goal of this work is to show how convexity in a discrete-time work frame can provide fresh perspectives on existing problems and lead to significantly simpler analyses and algorithm modifications. Also we compare analytical results with that of ANFIS (Adaptive Neuro-Fuzzy Inference System) results which validate our findings.
ArticleNumber 67
Author Upadhyaya, Shweta
Agarwal, Divya
Vaishnawi, Shree
Author_xml – sequence: 1
  givenname: Shweta
  surname: Upadhyaya
  fullname: Upadhyaya, Shweta
  organization: Department of Mathematics, School of Computer Science Engineering and Technology, Bennett University
– sequence: 2
  givenname: Divya
  surname: Agarwal
  fullname: Agarwal, Divya
  email: dagarwal1@amity.edu
  organization: Amity Institute of Applied Sciences, Amity University
– sequence: 3
  givenname: Shree
  surname: Vaishnawi
  fullname: Vaishnawi, Shree
  organization: Amity Institute of Applied Sciences, Amity University
BookMark eNp9kMlOwzAURS1UJNrCD7CyxNrgIW7iJQqjVImhsLaS-KVy1drFTirC1-NSJHas7lucey2fCRo57wChc0YvGaX5VWQpFKFcEkZZIYg8QmMmc0HynIlRukWRE1lk7ARNYlxRypkU2RiF0rsdfNpuwOkytrPeRdz6gJ-2nd3YL-uWuMKLFGvACwg7CPjGxiZAByQRgF966GGPLYbYwQb3ziSmwq-VMz4tgMFl3_m2xc9-bZvhFB231TrC2W9O0fvd7Vv5QOZP94_l9Zw0rMglUdSkL2UKWiqFVIzWszqTnNW0aWje8swYXs2U4UpJ4ILPRJZCtIbXuTKyEFN0cdjdBv_RQ-z0yvfBpSe14KIokiaRJYofqCb4GAO0ehvspgqDZlTv3eqDW53c6h-3WqaSOJRigt0Swt_0P61v_Ot-Eg
Cites_doi 10.1080/03610918.2023.2232959
10.1007/s40819-022-01445-8
10.1080/03610926.2021.1923747
10.1002/nav.3800090303
10.1080/03610918.2022.2158340
10.1051/ro/2018057
10.1057/jors.1963.63
10.1201/9781420010008
10.1016/j.mcm.2008.08.012
10.1080/00207720701353405
10.1504/IJMOR.2022.126049
10.1016/j.asej.2020.11.012
10.1007/s13198-023-01972-7
10.1016/j.swevo.2013.06.001
10.1016/0377-2217(83)90153-4
10.1002/dac.6136
10.1016/j.apm.2021.07.003
10.1145/321062.321069
10.3390/math9243283
10.1016/j.apm.2013.05.012
10.1016/j.jmaa.2019.02.038
10.3390/fractalfract7010018
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11009-025-10183-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1573-7713
ExternalDocumentID 10_1007_s11009_025_10183_5
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EBU
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9R
PF0
PT4
PT5
QOS
QWB
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
-Y2
1SB
2P1
2VQ
88I
8AO
8FE
8FG
8FW
AARHV
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHQJS
AHSBF
AJBLW
AMVHM
AZQEC
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EBO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
H13
HZ~
IHE
K1G
K6V
K7-
L6V
M0C
M2P
M7S
N2Q
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
RIG
RNI
RZC
RZE
RZK
TEORI
TH9
~8M
JQ2
ID FETCH-LOGICAL-c1875-90d00949ef0535910b6b4521b0cc07f24dd2a69d2995e232634e233fd2b79d583
IEDL.DBID U2A
ISSN 1387-5841
IngestDate Sat Aug 16 21:34:19 EDT 2025
Thu Aug 14 00:08:28 EDT 2025
Wed Aug 13 01:20:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cutoff policy
ANFIS
Geo/G/1 queueing model
Cost optimization via Firefly algorithm
Setback
Convexity analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1875-90d00949ef0535910b6b4521b0cc07f24dd2a69d2995e232634e233fd2b79d583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3238818334
PQPubID 26119
ParticipantIDs proquest_journals_3238818334
crossref_primary_10_1007_s11009_025_10183_5
springer_journals_10_1007_s11009_025_10183_5
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Methodology and computing in applied probability
PublicationTitleAbbrev Methodol Comput Appl Probab
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References S Upadhyaya (10183_CR25) 2023; 14
10183_CR20
A Economou (10183_CR7) 2023; 37
R Agarwal (10183_CR1) 2023; 44
AD Corella (10183_CR5) 2019; 475
S Schaible (10183_CR21) 1983; 12
SF Jia (10183_CR12) 2013; 2
SJ Kim (10183_CR16) 2013; 2013
P Kharbanda (10183_CR14) 2019; 31
S Upadhyaya (10183_CR24) 2022; 23
A Charnes (10183_CR3) 1962; 9
I Atencia (10183_CR2) 2023; 51
S Kharvi (10183_CR15) 2022
DH Lee (10183_CR17) 2013; 37
G Comert (10183_CR4) 2021; 99
M Vaishnawi (10183_CR27) 2022
Y Tang (10183_CR23) 2023; 36
G Malik (10183_CR18) 2021; 12
M Demircioglu (10183_CR6) 2021; 9
S Upadhyaya (10183_CR26) 2025
AG Hernández-Díaz (10183_CR10) 2009; 49
R Hooke (10183_CR11) 1961; 8
M Yadin (10183_CR29) 1963; 14
10183_CR8
10183_CR22
JC Ke (10183_CR13) 2023
P Moreno (10183_CR19) 2007; 38
Z Wang (10183_CR28) 2021; 52
S Gao (10183_CR9) 2019; 53
References_xml – year: 2023
  ident: 10183_CR13
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2023.2232959
– volume: 37
  start-page: 112
  issue: 1
  year: 2023
  ident: 10183_CR7
  publication-title: Probab Eng Inf Sci
– year: 2022
  ident: 10183_CR27
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-022-01445-8
– volume: 52
  start-page: 1076
  issue: 4
  year: 2021
  ident: 10183_CR28
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2021.1923747
– volume: 9
  start-page: 181
  year: 1962
  ident: 10183_CR3
  publication-title: Nav Res Logist Q
  doi: 10.1002/nav.3800090303
– volume: 31
  start-page: 835
  issue: 5–6
  year: 2019
  ident: 10183_CR14
  publication-title: J Appl Math Inform
– volume: 51
  start-page: 324
  issue: 3
  year: 2023
  ident: 10183_CR2
  publication-title: Oper Res Lett
– year: 2022
  ident: 10183_CR15
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2022.2158340
– volume: 53
  start-page: 1197
  year: 2019
  ident: 10183_CR9
  publication-title: RAIRO-Oper Res
  doi: 10.1051/ro/2018057
– volume: 14
  start-page: 393
  year: 1963
  ident: 10183_CR29
  publication-title: Oper Res Q
  doi: 10.1057/jors.1963.63
– ident: 10183_CR22
  doi: 10.1201/9781420010008
– volume: 36
  start-page: 243
  issue: 1
  year: 2023
  ident: 10183_CR23
  publication-title: J Syst Sci Complex
– volume: 49
  start-page: 977
  year: 2009
  ident: 10183_CR10
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2008.08.012
– volume: 38
  start-page: 483
  issue: 6
  year: 2007
  ident: 10183_CR19
  publication-title: Int J Syst Sci
  doi: 10.1080/00207720701353405
– volume: 23
  start-page: 119
  issue: 1
  year: 2022
  ident: 10183_CR24
  publication-title: Int J Math Oper Res
  doi: 10.1504/IJMOR.2022.126049
– volume: 44
  start-page: 1
  issue: 1
  year: 2023
  ident: 10183_CR1
  publication-title: Int J Ind Syst Eng
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10183_CR16
  publication-title: J Appl Math
– volume: 12
  start-page: 2241
  issue: 2
  year: 2021
  ident: 10183_CR18
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2020.11.012
– volume: 14
  start-page: 1671
  issue: 5
  year: 2023
  ident: 10183_CR25
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-023-01972-7
– ident: 10183_CR8
  doi: 10.1016/j.swevo.2013.06.001
– volume: 12
  start-page: 325
  year: 1983
  ident: 10183_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(83)90153-4
– year: 2025
  ident: 10183_CR26
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.6136
– volume: 99
  start-page: 418
  year: 2021
  ident: 10183_CR4
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2021.07.003
– volume: 8
  start-page: 212
  issue: 2
  year: 1961
  ident: 10183_CR11
  publication-title: J ACM
  doi: 10.1145/321062.321069
– volume: 9
  start-page: 3283
  issue: 24
  year: 2021
  ident: 10183_CR6
  publication-title: Mathematics
  doi: 10.3390/math9243283
– volume: 2
  start-page: 991
  issue: 10
  year: 2013
  ident: 10183_CR12
  publication-title: Int J Sci Eng Technol
– volume: 37
  start-page: 9722
  year: 2013
  ident: 10183_CR17
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.05.012
– volume: 475
  start-page: 253
  issue: 1
  year: 2019
  ident: 10183_CR5
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2019.02.038
– ident: 10183_CR20
  doi: 10.3390/fractalfract7010018
SSID ssj0021534
Score 2.3496473
Snippet This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback ( disaster ). The system operates under a...
This research aims to investigate convexity conditions for a single server discrete-time queueing system with setback (disaster). The system operates under a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 67
SubjectTerms Adaptive systems
Algorithms
Automation
Business and Management
Cloud computing
Convexity
Cost function
Customer services
Discrete time systems
Economics
Electrical Engineering
Emergency medical care
Heuristic methods
Life Sciences
Manufacturing
Mathematical programming
Mathematics and Statistics
Optimization
Parameters
Queuing theory
Resource utilization
Sensors
Servers
Statistics
Vacations
Title Convexity Conditions for Optimizing a Single Server Discrete-time Queueing System under a Randomized Cutoff Policy
URI https://link.springer.com/article/10.1007/s11009-025-10183-5
https://www.proquest.com/docview/3238818334
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROIgHo6gRRdKDN22ytd3YjgRBokHjBwmelnVtExIFAywx_PW-7gOi0YOnblnXLnvte7_XvvcrwIXRXsgCw6gbByEVyktozB1NE-4axzdC82xpYHjvD0biduyNi6SwRRntXm5JZpp6k-zmZgv5zDJn4kCk3jZUPfTdbSDXiHXWbhbO4fwoW5w-aF7dIlXm9za-m6MNxvyxLZpZm_4-7BUwkXRyuR7Alp7WYafMIl7UYXe45lvFu5rFjDnl8iHMuzaS_BPhNcErlcdkEQSn5AH1w_tkhT2SmDxj8aaJVRZ6Tq4nqD8QQFN72Dx5THWqbbWc0JzYTLM5vvMUTxV-wEor0k2XM2NIzit8BKN-76U7oMXRCjRx0UOhoaNsTGGojeV3QcggfSnQkksnSZy2YUIpFvuhQmPlaQRdPhdYcKOYbIfKC_gxVKazqT4BgngoMSK0ObZGKOnHCXO51KxtVCCMbDfgsvzD0UfOoBFtuJKtPCKUR5TJI_Ia0CyFEBWzaRFxxBUILDgXDbgqBbN5_Hdrp_-rfgY1ZsdGFkLWhMpynupzxBxL2YJq5-b1rtfKhtoXRMLOJA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oPGweRKfidGoO3jTQJunXcUzH1G2ibrBbaZsEBrrJPkD21_vSjxVFD57S0jQpfS_v_ZK89wvAlVZOwHzNqB35ARXSSWjELUUTbmvL1ULxdGmgP3C7I_EwdsZ5UtiiiHYvtiRTS10mu9npQj4zzJmoiNTZhh0EA77R5RFrbaZZOIazo2xx-KB7tfNUmd_b-O6OSoz5Y1s09TadfdjLYSJpZXI9gC01rUO1yCJe1GG3v-FbxbuawYwZ5fIhzNsmkvwT4TXBK5nFZBEEp-QJ7cP7ZI09koi8YvGmiDEWak5uJ2g_EEBTc9g8eV6plTLVMkJzYjLN5vjOSzSV-AFrJUl7tZxpTTJe4SMYde6G7S7Nj1agiY0zFBpY0sQUBkobfheEDLEbC_TksZUklqeZkJJFbiDRWTkKQZfLBRZcSxZ7gXR8fgyV6WyqToAgHkq0CEyOrRYydqOE2TxWzNPSFzr2GnBd_OHwI2PQCEuuZCOPEOURpvIInQY0CyGE-WhahByljMCCc9GAm0Iw5eO_Wzv9X_VLqHaH_V7Yux88nkGNGT1Jw8maUFnOV-oc8ccyvkjV7Qunds-D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5RTBQfjKJGFLUPvmnD1naDPRKQ4AW8kvC2bGubkOggMBLDr_d0Y6BGH3zqlnWX7Jz2fG3P9xXgQivHY3XNqB3UPSqkE9GAW4pG3NaWq4Xi6dRAt-d2-uJ24Ay-sPjTbPd8STLjNBiVpjipjqWurohvdjqpz4yKJjolddZhQxg2MHp0nzWWQy5sz9m2ttiUMNTaC9rM78_4HppWePPHEmkaedq7sLOAjKSR2XgP1lRcgq2cUTwtwXZ3qb2KZ0WDHzP55X2YNE1W-QdCbYJHMsvPIghUyQP2Fe_DOb6RBOQFizdFTMehJqQ1xL4EwTQ1G8-Tp5maKVMtEzcnhnU2wXueg1jiB8yVJM1ZMtKaZBrDB9BvX782O3SxzQKNbBytUM-SJr_QU9povSB8CN1QYFQPrSiyapoJKVngehIDl6MQgLlcYMG1ZGHNk06dH0IhHsXqCAhio0gLz_BttZChG0TM5qFiNS3rQoe1Mlzmf9gfZ2oa_ko32djDR3v4qT18pwyV3Aj-omVNfY4YA0EG56IMV7lhVpf_ftrx_6qfw-Zjq-3f3_TuTqDIjJukmWUVKCSTmTpFKJKEZ6m3fQLMUdO2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convexity+Conditions+for+Optimizing+a+Single+Server+Discrete-time+Queueing+System+under+a+Randomized+Cutoff+Policy&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Upadhyaya%2C+Shweta&rft.au=Agarwal%2C+Divya&rft.au=Vaishnawi%2C+Shree&rft.date=2025-09-01&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs11009-025-10183-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11009_025_10183_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon