Deep Learning Models for Early Identification of Learning Disorders in Children with Autism Spectrum Disorder
Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly affect a child’s ability to process and retain information. And as a result, it hinders their academic and social progress. Early diagnosis of c...
Saved in:
Published in | SN computer science Vol. 6; no. 7; p. 761 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.10.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly affect a child’s ability to process and retain information. And as a result, it hinders their academic and social progress. Early diagnosis of children who may have chances of developing learning disorder often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict the learning disorder in children with ASD traits aged from 1 to 18 years old. In this work, the dataset has been obtained from Kaggle, which consisted primarily of 1985 different set of values. After data preprocessing, we obtained our final dataset with 1937 values. In total, nine machine learning algorithms were employed to predict whether a child with ASD traits has a probability of developing learning disorder or not. Two hyperparameter optimizers were employed to improve the predictability. Accuracies of 99.48% were obtained by both decision tree and random tree classifier. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models. |
---|---|
AbstractList | Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly affect a child’s ability to process and retain information. And as a result, it hinders their academic and social progress. Early diagnosis of children who may have chances of developing learning disorder often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict the learning disorder in children with ASD traits aged from 1 to 18 years old. In this work, the dataset has been obtained from Kaggle, which consisted primarily of 1985 different set of values. After data preprocessing, we obtained our final dataset with 1937 values. In total, nine machine learning algorithms were employed to predict whether a child with ASD traits has a probability of developing learning disorder or not. Two hyperparameter optimizers were employed to improve the predictability. Accuracies of 99.48% were obtained by both decision tree and random tree classifier. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models. |
ArticleNumber | 761 |
Author | Yathiraj, G. R. Fathima, Nasreen Yuvaraj, B. K. Bharath, K. N. Kumar, K. L. Santhosh Preethi, S. Kumar, H. S. Ranjan |
Author_xml | – sequence: 1 givenname: H. S. Ranjan surname: Kumar fullname: Kumar, H. S. Ranjan organization: Department of Artificial Intelligence and Data Science Shri Madhwa, Vadiraja Institute of Technology and Management – sequence: 2 givenname: S. surname: Preethi fullname: Preethi, S. organization: Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education – sequence: 3 givenname: Nasreen surname: Fathima fullname: Fathima, Nasreen organization: Department of Computer Science and Design, ATME College of Engineering – sequence: 4 givenname: B. K. surname: Yuvaraj fullname: Yuvaraj, B. K. organization: Department of Mathematics, BGS Institute of Technology – sequence: 5 givenname: K. L. Santhosh surname: Kumar fullname: Kumar, K. L. Santhosh organization: School of Computer Science & Engineering, Presidency University – sequence: 6 givenname: K. N. surname: Bharath fullname: Bharath, K. N. organization: Department of ECE, Dayananda Sagar Academy of Technology and Management (DSATM) – sequence: 7 givenname: G. R. surname: Yathiraj fullname: Yathiraj, G. R. email: yathirajcit@gmail.com organization: Department of CSE in Cyber Security, Coorg Institute of Technology |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz6v52GR3j6WtWqh4UM8h3UzalG2yJluk_97VivXkaYbhed-B5xINfPCA0DUlt5SQ4i7lrCqqjDCRkZyTMuNnaMikpFlZkWLwZ79A45S2hPQoyXMphmg3A2jxEnT0zq_xUzDQJGxDxHMdmwNeGPCds67WnQseB3tiZy6FaCAm7DyeblxjInj84boNnuw7l3b4pYW6i_vdL3qFzq1uEox_5gi93c9fp4_Z8vlhMZ0ss5qWBc_qihsqZcGAClNBbldSWl6tilJIJizXshDA-5vONcmpKWsmtC2FEFoSY4CP0M2xt43hfQ-pU9uwj75_qTjLGasIpWVPsSNVx5BSBKva6HY6HhQl6susOppVvS71bVbxPsSPodTDfg3xVP1P6hMdtn1l |
Cites_doi | 10.1201/9781003433309-10 10.1007/s42979-025-03933-2 10.1542/peds.2014-1500 10.1371/journal.pone.0207286 10.3390/children11111311 10.1109/ACCESS.2022.3232490 10.1542/peds.2019-2528 10.1109/ICCIA62557.2024.10719279 10.15585/mmwr.ss6904a1 10.36347/sjams.2024.v12i11.004 10.1109/NMITCON62075.2024.10699108 10.1109/ICOSEC61587.2024.10722383 10.1109/IMSA61967.2024.10652779 10.51200/sapj.v7i1.5163 10.9790/0661-2605013744 10.1109/ICEECT61758.2024.10739042 10.1111/jcpp.12620 10.1111/jjns.12420 10.1542/peds.108.4.1033 10.13005/bpj/3171 10.1016/j.engappai.2025.110430 10.26717/bjstr.2024.56.008878 10.1176/ajp.2007.164.6.942 10.1001/jamapediatrics.2018.4208 10.1080/15374416.2017.1417860 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s42979-025-04308-3 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2661-8907 |
ExternalDocumentID | 10_1007_s42979_025_04308_3 |
GroupedDBID | 0R~ 2JN 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABHQN ABJNI ABMQK ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKFA ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BAPOH BSONS DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c1873-c93d16672e15d9e4fb66f39b785625f3a675e366fa4a041d8c25af8555a60dde3 |
ISSN | 2661-8907 2662-995X |
IngestDate | Wed Sep 03 04:26:05 EDT 2025 Wed Sep 03 16:30:54 EDT 2025 Tue Sep 02 01:13:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Children’s Accuracy Machine learning models Autism spectrum disorder (ASD) |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1873-c93d16672e15d9e4fb66f39b785625f3a675e366fa4a041d8c25af8555a60dde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3242290118 |
PQPubID | 6623307 |
ParticipantIDs | proquest_journals_3242290118 crossref_primary_10_1007_s42979_025_04308_3 springer_journals_10_1007_s42979_025_04308_3 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | ABB Kassim (4308_CR27) 2019; 7 ML Wolraich (4308_CR18) 2019; 144 S Dr (4308_CR25) 2024 Mami Yamamoto (4308_CR2) 2021; 18 I Kadi (4308_CR10) 2024; 5 SM Hasan (4308_CR22) 2022; 11 C Belen Rosello (4308_CR1) 2018; 13 4308_CR11 4308_CR32 4308_CR30 N Narayanan (4308_CR31) 2025; 21 4308_CR15 4308_CR14 4308_CR13 4308_CR12 X Li (4308_CR29) 2025; 148 V Kiran, Puttegowda (4308_CR4) 2025; 6 S Devesh (4308_CR7) 2024 4308_CR3 4308_CR5 4308_CR6 ML Danielson (4308_CR17) 2018; 47 4308_CR21 4308_CR20 4308_CR8 4308_CR9 4308_CR28 G Polanczyk (4308_CR16) 2007; 164 4308_CR26 J Perrin (4308_CR19) 2001; 108 4308_CR24 4308_CR23 |
References_xml | – ident: 4308_CR11 doi: 10.1201/9781003433309-10 – volume: 6 start-page: 384 issue: 4 year: 2025 ident: 4308_CR4 publication-title: SN Comput Sci doi: 10.1007/s42979-025-03933-2 – ident: 4308_CR20 doi: 10.1542/peds.2014-1500 – volume: 13 start-page: e0207286 issue: 11 year: 2018 ident: 4308_CR1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0207286 – ident: 4308_CR24 doi: 10.3390/children11111311 – volume: 11 start-page: 15038 year: 2022 ident: 4308_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232490 – volume: 144 start-page: e20192528 year: 2019 ident: 4308_CR18 publication-title: Pediatrics doi: 10.1542/peds.2019-2528 – ident: 4308_CR12 doi: 10.1109/ICCIA62557.2024.10719279 – ident: 4308_CR14 doi: 10.15585/mmwr.ss6904a1 – year: 2024 ident: 4308_CR25 publication-title: Scholars J Appl Med Sci doi: 10.36347/sjams.2024.v12i11.004 – ident: 4308_CR5 doi: 10.1109/NMITCON62075.2024.10699108 – ident: 4308_CR21 doi: 10.1109/ICOSEC61587.2024.10722383 – ident: 4308_CR3 – ident: 4308_CR13 doi: 10.1109/IMSA61967.2024.10652779 – volume: 7 start-page: 20 issue: 1 year: 2019 ident: 4308_CR27 publication-title: J Southeast Asia Psychol (SAPJ) doi: 10.51200/sapj.v7i1.5163 – year: 2024 ident: 4308_CR7 publication-title: IOSR J Comput Eng doi: 10.9790/0661-2605013744 – ident: 4308_CR30 doi: 10.1109/ICEECT61758.2024.10739042 – ident: 4308_CR15 doi: 10.1111/jcpp.12620 – volume: 18 start-page: e12420 issue: 4 year: 2021 ident: 4308_CR2 publication-title: Japan J Nurs Sci doi: 10.1111/jjns.12420 – volume: 108 start-page: e44 year: 2001 ident: 4308_CR19 publication-title: Pediatrics doi: 10.1542/peds.108.4.1033 – ident: 4308_CR32 – volume: 5 start-page: e8464 issue: 2 year: 2024 ident: 4308_CR10 publication-title: Stud Eng Exact Sci – ident: 4308_CR6 doi: 10.13005/bpj/3171 – volume: 21 start-page: 148 issue: 2 year: 2025 ident: 4308_CR31 publication-title: Int J Hybrid Intell Syst – ident: 4308_CR9 doi: 10.1016/j.engappai.2025.110430 – ident: 4308_CR23 – ident: 4308_CR8 doi: 10.1109/ICEECT61758.2024.10739042 – ident: 4308_CR28 doi: 10.26717/bjstr.2024.56.008878 – volume: 148 start-page: 110430 year: 2025 ident: 4308_CR29 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2025.110430 – volume: 164 start-page: 942 year: 2007 ident: 4308_CR16 publication-title: Ame J Psychiatry doi: 10.1176/ajp.2007.164.6.942 – ident: 4308_CR26 doi: 10.1001/jamapediatrics.2018.4208 – volume: 47 start-page: 199 year: 2018 ident: 4308_CR17 publication-title: J Clin Child Adolesc Psychol doi: 10.1080/15374416.2017.1417860 |
SSID | ssj0002504465 |
Score | 2.3048196 |
Snippet | Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 761 |
SubjectTerms | Accuracy Algorithms Attention deficit hyperactivity disorder Autism Children Children & youth Citrus fruits Communication Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Decision trees Deep learning Disorders Dyslexia Explainable artificial intelligence Identification Information Systems and Communication Service Intervention Machine learning Neural networks Original Research Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Toddlers Vision |
Title | Deep Learning Models for Early Identification of Learning Disorders in Children with Autism Spectrum Disorder |
URI | https://link.springer.com/article/10.1007/s42979-025-04308-3 https://www.proquest.com/docview/3242290118 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-HCN6IwkA_cgqPFH3FybAdTBaJCdJN2i-zUQSCaTWu3w8Qfz7MdOylsEuMSVc5TEvn9-vy-H0JvJWVCZaogspGacK4o0bUpie0uprUqeeYc-p8X-fyEfzwVp6PRr2F1yVan9fWNdSX_w1VYA77aKtk7cDY-FBbgN_AXrsBhuP4Tj98bcx46pH5zY81-uvYKiW9b7Itwm84r56IBgTY03XTZsIfDgu5kCh-8WbvB9NuLy3UkHaqxy4XLRbfjIJLuDO1jQl3O9jxNlmnyVbU_egB-sSFwN0YY7kXo2ATItfKyfmPzgKIourxSF8rFl2Zp8ikduiioiMluuy5Km39toyJLO-wbrAv_ZcYJO6snkKL0E3CDZM4HAJQ3ynuf4rGBQ1WWxL7ZtjArCOtPt5hzGPszO-IKiCtHXLF7aI-CkUHHaG96NJstoo_OtnfjuehqrVzF5V9v2tVneiPlj7i6U1eOH6EHnZ2Bpx40j9HItE_QwzDDA3ci_SlaWwzhgAvsMYQBQ9hhCO9iCJ81PW3EEP7e4oAhbDGEPYZwwFAkfYZOjj4cH85JN4KD1FkhGalLtsryXFKTiVVpeKPzvGGlloU1nBumwN40DNYUVwc8WxU1FaophBAqP4CTkz1H4_asNS8QlrnKmJ2ekOkCiEvFa0obLTQDldwU5QQlYSOrc99ppbqdZxO0H_a66v6Rm8oaB9TVUk_Qu7D__e3bn_bybuSv0P0e5vtoDDtpXoNuutVvOgj9Bi2NjM8 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Models+for+Early+Identification+of+Learning+Disorders+in+Children+with+Autism+Spectrum+Disorder&rft.jtitle=SN+computer+science&rft.au=Kumar%2C+H.+S.+Ranjan&rft.au=Preethi%2C+S.&rft.au=Fathima%2C+Nasreen&rft.au=Yuvaraj%2C+B.+K.&rft.date=2025-10-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=6&rft.issue=7&rft_id=info:doi/10.1007%2Fs42979-025-04308-3&rft.externalDocID=10_1007_s42979_025_04308_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |