Deep Learning Models for Early Identification of Learning Disorders in Children with Autism Spectrum Disorder

Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly affect a child’s ability to process and retain information. And as a result, it hinders their academic and social progress. Early diagnosis of c...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 6; no. 7; p. 761
Main Authors Kumar, H. S. Ranjan, Preethi, S., Fathima, Nasreen, Yuvaraj, B. K., Kumar, K. L. Santhosh, Bharath, K. N., Yathiraj, G. R.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly affect a child’s ability to process and retain information. And as a result, it hinders their academic and social progress. Early diagnosis of children who may have chances of developing learning disorder often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict the learning disorder in children with ASD traits aged from 1 to 18 years old. In this work, the dataset has been obtained from Kaggle, which consisted primarily of 1985 different set of values. After data preprocessing, we obtained our final dataset with 1937 values. In total, nine machine learning algorithms were employed to predict whether a child with ASD traits has a probability of developing learning disorder or not. Two hyperparameter optimizers were employed to improve the predictability. Accuracies of 99.48% were obtained by both decision tree and random tree classifier. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models.
AbstractList Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly affect a child’s ability to process and retain information. And as a result, it hinders their academic and social progress. Early diagnosis of children who may have chances of developing learning disorder often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict the learning disorder in children with ASD traits aged from 1 to 18 years old. In this work, the dataset has been obtained from Kaggle, which consisted primarily of 1985 different set of values. After data preprocessing, we obtained our final dataset with 1937 values. In total, nine machine learning algorithms were employed to predict whether a child with ASD traits has a probability of developing learning disorder or not. Two hyperparameter optimizers were employed to improve the predictability. Accuracies of 99.48% were obtained by both decision tree and random tree classifier. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models.
ArticleNumber 761
Author Yathiraj, G. R.
Fathima, Nasreen
Yuvaraj, B. K.
Bharath, K. N.
Kumar, K. L. Santhosh
Preethi, S.
Kumar, H. S. Ranjan
Author_xml – sequence: 1
  givenname: H. S. Ranjan
  surname: Kumar
  fullname: Kumar, H. S. Ranjan
  organization: Department of Artificial Intelligence and Data Science Shri Madhwa, Vadiraja Institute of Technology and Management
– sequence: 2
  givenname: S.
  surname: Preethi
  fullname: Preethi, S.
  organization: Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education
– sequence: 3
  givenname: Nasreen
  surname: Fathima
  fullname: Fathima, Nasreen
  organization: Department of Computer Science and Design, ATME College of Engineering
– sequence: 4
  givenname: B. K.
  surname: Yuvaraj
  fullname: Yuvaraj, B. K.
  organization: Department of Mathematics, BGS Institute of Technology
– sequence: 5
  givenname: K. L. Santhosh
  surname: Kumar
  fullname: Kumar, K. L. Santhosh
  organization: School of Computer Science & Engineering, Presidency University
– sequence: 6
  givenname: K. N.
  surname: Bharath
  fullname: Bharath, K. N.
  organization: Department of ECE, Dayananda Sagar Academy of Technology and Management (DSATM)
– sequence: 7
  givenname: G. R.
  surname: Yathiraj
  fullname: Yathiraj, G. R.
  email: yathirajcit@gmail.com
  organization: Department of CSE in Cyber Security, Coorg Institute of Technology
BookMark eNp9kE1LAzEQhoNUsNb-AU8Bz6v52GR3j6WtWqh4UM8h3UzalG2yJluk_97VivXkaYbhed-B5xINfPCA0DUlt5SQ4i7lrCqqjDCRkZyTMuNnaMikpFlZkWLwZ79A45S2hPQoyXMphmg3A2jxEnT0zq_xUzDQJGxDxHMdmwNeGPCds67WnQseB3tiZy6FaCAm7DyeblxjInj84boNnuw7l3b4pYW6i_vdL3qFzq1uEox_5gi93c9fp4_Z8vlhMZ0ss5qWBc_qihsqZcGAClNBbldSWl6tilJIJizXshDA-5vONcmpKWsmtC2FEFoSY4CP0M2xt43hfQ-pU9uwj75_qTjLGasIpWVPsSNVx5BSBKva6HY6HhQl6susOppVvS71bVbxPsSPodTDfg3xVP1P6hMdtn1l
Cites_doi 10.1201/9781003433309-10
10.1007/s42979-025-03933-2
10.1542/peds.2014-1500
10.1371/journal.pone.0207286
10.3390/children11111311
10.1109/ACCESS.2022.3232490
10.1542/peds.2019-2528
10.1109/ICCIA62557.2024.10719279
10.15585/mmwr.ss6904a1
10.36347/sjams.2024.v12i11.004
10.1109/NMITCON62075.2024.10699108
10.1109/ICOSEC61587.2024.10722383
10.1109/IMSA61967.2024.10652779
10.51200/sapj.v7i1.5163
10.9790/0661-2605013744
10.1109/ICEECT61758.2024.10739042
10.1111/jcpp.12620
10.1111/jjns.12420
10.1542/peds.108.4.1033
10.13005/bpj/3171
10.1016/j.engappai.2025.110430
10.26717/bjstr.2024.56.008878
10.1176/ajp.2007.164.6.942
10.1001/jamapediatrics.2018.4208
10.1080/15374416.2017.1417860
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s42979-025-04308-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_025_04308_3
GroupedDBID 0R~
2JN
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABHQN
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKFA
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c1873-c93d16672e15d9e4fb66f39b785625f3a675e366fa4a041d8c25af8555a60dde3
ISSN 2661-8907
2662-995X
IngestDate Wed Sep 03 04:26:05 EDT 2025
Wed Sep 03 16:30:54 EDT 2025
Tue Sep 02 01:13:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Children’s
Accuracy
Machine learning models
Autism spectrum disorder (ASD)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1873-c93d16672e15d9e4fb66f39b785625f3a675e366fa4a041d8c25af8555a60dde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3242290118
PQPubID 6623307
ParticipantIDs proquest_journals_3242290118
crossref_primary_10_1007_s42979_025_04308_3
springer_journals_10_1007_s42979_025_04308_3
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References ABB Kassim (4308_CR27) 2019; 7
ML Wolraich (4308_CR18) 2019; 144
S Dr (4308_CR25) 2024
Mami Yamamoto (4308_CR2) 2021; 18
I Kadi (4308_CR10) 2024; 5
SM Hasan (4308_CR22) 2022; 11
C Belen Rosello (4308_CR1) 2018; 13
4308_CR11
4308_CR32
4308_CR30
N Narayanan (4308_CR31) 2025; 21
4308_CR15
4308_CR14
4308_CR13
4308_CR12
X Li (4308_CR29) 2025; 148
V Kiran, Puttegowda (4308_CR4) 2025; 6
S Devesh (4308_CR7) 2024
4308_CR3
4308_CR5
4308_CR6
ML Danielson (4308_CR17) 2018; 47
4308_CR21
4308_CR20
4308_CR8
4308_CR9
4308_CR28
G Polanczyk (4308_CR16) 2007; 164
4308_CR26
J Perrin (4308_CR19) 2001; 108
4308_CR24
4308_CR23
References_xml – ident: 4308_CR11
  doi: 10.1201/9781003433309-10
– volume: 6
  start-page: 384
  issue: 4
  year: 2025
  ident: 4308_CR4
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-025-03933-2
– ident: 4308_CR20
  doi: 10.1542/peds.2014-1500
– volume: 13
  start-page: e0207286
  issue: 11
  year: 2018
  ident: 4308_CR1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207286
– ident: 4308_CR24
  doi: 10.3390/children11111311
– volume: 11
  start-page: 15038
  year: 2022
  ident: 4308_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232490
– volume: 144
  start-page: e20192528
  year: 2019
  ident: 4308_CR18
  publication-title: Pediatrics
  doi: 10.1542/peds.2019-2528
– ident: 4308_CR12
  doi: 10.1109/ICCIA62557.2024.10719279
– ident: 4308_CR14
  doi: 10.15585/mmwr.ss6904a1
– year: 2024
  ident: 4308_CR25
  publication-title: Scholars J Appl Med Sci
  doi: 10.36347/sjams.2024.v12i11.004
– ident: 4308_CR5
  doi: 10.1109/NMITCON62075.2024.10699108
– ident: 4308_CR21
  doi: 10.1109/ICOSEC61587.2024.10722383
– ident: 4308_CR3
– ident: 4308_CR13
  doi: 10.1109/IMSA61967.2024.10652779
– volume: 7
  start-page: 20
  issue: 1
  year: 2019
  ident: 4308_CR27
  publication-title: J Southeast Asia Psychol (SAPJ)
  doi: 10.51200/sapj.v7i1.5163
– year: 2024
  ident: 4308_CR7
  publication-title: IOSR J Comput Eng
  doi: 10.9790/0661-2605013744
– ident: 4308_CR30
  doi: 10.1109/ICEECT61758.2024.10739042
– ident: 4308_CR15
  doi: 10.1111/jcpp.12620
– volume: 18
  start-page: e12420
  issue: 4
  year: 2021
  ident: 4308_CR2
  publication-title: Japan J Nurs Sci
  doi: 10.1111/jjns.12420
– volume: 108
  start-page: e44
  year: 2001
  ident: 4308_CR19
  publication-title: Pediatrics
  doi: 10.1542/peds.108.4.1033
– ident: 4308_CR32
– volume: 5
  start-page: e8464
  issue: 2
  year: 2024
  ident: 4308_CR10
  publication-title: Stud Eng Exact Sci
– ident: 4308_CR6
  doi: 10.13005/bpj/3171
– volume: 21
  start-page: 148
  issue: 2
  year: 2025
  ident: 4308_CR31
  publication-title: Int J Hybrid Intell Syst
– ident: 4308_CR9
  doi: 10.1016/j.engappai.2025.110430
– ident: 4308_CR23
– ident: 4308_CR8
  doi: 10.1109/ICEECT61758.2024.10739042
– ident: 4308_CR28
  doi: 10.26717/bjstr.2024.56.008878
– volume: 148
  start-page: 110430
  year: 2025
  ident: 4308_CR29
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2025.110430
– volume: 164
  start-page: 942
  year: 2007
  ident: 4308_CR16
  publication-title: Ame J Psychiatry
  doi: 10.1176/ajp.2007.164.6.942
– ident: 4308_CR26
  doi: 10.1001/jamapediatrics.2018.4208
– volume: 47
  start-page: 199
  year: 2018
  ident: 4308_CR17
  publication-title: J Clin Child Adolesc Psychol
  doi: 10.1080/15374416.2017.1417860
SSID ssj0002504465
Score 2.3048196
Snippet Learning disorders are common among children with Autism spectrum disorder (ASD). Although autism itself is not a learning disability, it can significantly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 761
SubjectTerms Accuracy
Algorithms
Attention deficit hyperactivity disorder
Autism
Children
Children & youth
Citrus fruits
Communication
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Datasets
Decision trees
Deep learning
Disorders
Dyslexia
Explainable artificial intelligence
Identification
Information Systems and Communication Service
Intervention
Machine learning
Neural networks
Original Research
Pattern Recognition and Graphics
Software Engineering/Programming and Operating Systems
Toddlers
Vision
Title Deep Learning Models for Early Identification of Learning Disorders in Children with Autism Spectrum Disorder
URI https://link.springer.com/article/10.1007/s42979-025-04308-3
https://www.proquest.com/docview/3242290118
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-HCN6IwkA_cgqPFH3FybAdTBaJCdJN2i-zUQSCaTWu3w8Qfz7MdOylsEuMSVc5TEvn9-vy-H0JvJWVCZaogspGacK4o0bUpie0uprUqeeYc-p8X-fyEfzwVp6PRr2F1yVan9fWNdSX_w1VYA77aKtk7cDY-FBbgN_AXrsBhuP4Tj98bcx46pH5zY81-uvYKiW9b7Itwm84r56IBgTY03XTZsIfDgu5kCh-8WbvB9NuLy3UkHaqxy4XLRbfjIJLuDO1jQl3O9jxNlmnyVbU_egB-sSFwN0YY7kXo2ATItfKyfmPzgKIourxSF8rFl2Zp8ikduiioiMluuy5Km39toyJLO-wbrAv_ZcYJO6snkKL0E3CDZM4HAJQ3ynuf4rGBQ1WWxL7ZtjArCOtPt5hzGPszO-IKiCtHXLF7aI-CkUHHaG96NJstoo_OtnfjuehqrVzF5V9v2tVneiPlj7i6U1eOH6EHnZ2Bpx40j9HItE_QwzDDA3ci_SlaWwzhgAvsMYQBQ9hhCO9iCJ81PW3EEP7e4oAhbDGEPYZwwFAkfYZOjj4cH85JN4KD1FkhGalLtsryXFKTiVVpeKPzvGGlloU1nBumwN40DNYUVwc8WxU1FaophBAqP4CTkz1H4_asNS8QlrnKmJ2ekOkCiEvFa0obLTQDldwU5QQlYSOrc99ppbqdZxO0H_a66v6Rm8oaB9TVUk_Qu7D__e3bn_bybuSv0P0e5vtoDDtpXoNuutVvOgj9Bi2NjM8
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Models+for+Early+Identification+of+Learning+Disorders+in+Children+with+Autism+Spectrum+Disorder&rft.jtitle=SN+computer+science&rft.au=Kumar%2C+H.+S.+Ranjan&rft.au=Preethi%2C+S.&rft.au=Fathima%2C+Nasreen&rft.au=Yuvaraj%2C+B.+K.&rft.date=2025-10-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=6&rft.issue=7&rft_id=info:doi/10.1007%2Fs42979-025-04308-3&rft.externalDocID=10_1007_s42979_025_04308_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon