A vision-based hybrid ensemble learning approach for classification of gait disorders

Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radi...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 17; pp. 17597 - 17644
Main Authors Kour, Navleen, Gupta, Sunanda, Arora, Sakshi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-19673-z

Cover

Loading…
Abstract Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radiations, wearing discomfort, a requirement of background, etc. Further, some aspects are lacking in the previous studies including the exploration of the marker-based (MB) approach, experimentation on disease severity levels using enhanced learning techniques, comparison of abnormal and normal (NM) gait, etc. Therefore, this research aims to predict the pathological and NM gait based on the marker-based (MB) VB platform. In this paper, first, a VB gait dataset is used namely “KOA-PD-NM” which includes three stages: KOA i.e. Early (EL), Moderate (MD), Severe (SV); PD i.e. Mild (ML), MD, SV, and NM subjects, thus, forming a total of seven labels. Then, an improved technique namely Color Segmentation based Fractional Order Darwinian Particle Swarm Optimization (CS-FODPSO) is employed to segment the region of interest (ROI). Next, a hybrid ensemble using k-nearest neighbor (KNN), Decision tree (DT), and Naive Bayes (NB) is proposed to predict the gait patterns of the considered groups. The efficiency of the proposed methodology is evaluated based on performance metrics. The evaluation results achieved provided the highest results using the presented segmentation and hybrid ensemble approaches within less time in comparison to other techniques as well as state-of-the-art. Graphical abstract
AbstractList Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radiations, wearing discomfort, a requirement of background, etc. Further, some aspects are lacking in the previous studies including the exploration of the marker-based (MB) approach, experimentation on disease severity levels using enhanced learning techniques, comparison of abnormal and normal (NM) gait, etc. Therefore, this research aims to predict the pathological and NM gait based on the marker-based (MB) VB platform. In this paper, first, a VB gait dataset is used namely “KOA-PD-NM” which includes three stages: KOA i.e. Early (EL), Moderate (MD), Severe (SV); PD i.e. Mild (ML), MD, SV, and NM subjects, thus, forming a total of seven labels. Then, an improved technique namely Color Segmentation based Fractional Order Darwinian Particle Swarm Optimization (CS-FODPSO) is employed to segment the region of interest (ROI). Next, a hybrid ensemble using k-nearest neighbor (KNN), Decision tree (DT), and Naive Bayes (NB) is proposed to predict the gait patterns of the considered groups. The efficiency of the proposed methodology is evaluated based on performance metrics. The evaluation results achieved provided the highest results using the presented segmentation and hybrid ensemble approaches within less time in comparison to other techniques as well as state-of-the-art. Graphical abstract
Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radiations, wearing discomfort, a requirement of background, etc. Further, some aspects are lacking in the previous studies including the exploration of the marker-based (MB) approach, experimentation on disease severity levels using enhanced learning techniques, comparison of abnormal and normal (NM) gait, etc. Therefore, this research aims to predict the pathological and NM gait based on the marker-based (MB) VB platform. In this paper, first, a VB gait dataset is used namely “KOA-PD-NM” which includes three stages: KOA i.e. Early (EL), Moderate (MD), Severe (SV); PD i.e. Mild (ML), MD, SV, and NM subjects, thus, forming a total of seven labels. Then, an improved technique namely Color Segmentation based Fractional Order Darwinian Particle Swarm Optimization (CS-FODPSO) is employed to segment the region of interest (ROI). Next, a hybrid ensemble using k-nearest neighbor (KNN), Decision tree (DT), and Naive Bayes (NB) is proposed to predict the gait patterns of the considered groups. The efficiency of the proposed methodology is evaluated based on performance metrics. The evaluation results achieved provided the highest results using the presented segmentation and hybrid ensemble approaches within less time in comparison to other techniques as well as state-of-the-art.
Author Gupta, Sunanda
Kour, Navleen
Arora, Sakshi
Author_xml – sequence: 1
  givenname: Navleen
  surname: Kour
  fullname: Kour, Navleen
  email: navleenkour01@gmail.com
  organization: School of Computer Science and Engineering, Shri Mata Vaishno Devi University
– sequence: 2
  givenname: Sunanda
  surname: Gupta
  fullname: Gupta, Sunanda
  organization: School of Computer Science and Engineering, Shri Mata Vaishno Devi University
– sequence: 3
  givenname: Sakshi
  surname: Arora
  fullname: Arora, Sakshi
  organization: School of Computer Science and Engineering, Shri Mata Vaishno Devi University
BookMark eNp9kM1KAzEURoNUsK2-gKuA69H8Z2ZZilqh4MauQyaTtCnTpCat0D690RF05erexXe-ezkTMAoxWABuMbrHCMmHjDFipEKEVbgRklbnCzDGvCxSEjz6s1-BSc5bhLDghI3BagY_fPYxVK3OtoObU5t8B23Idtf2FvZWp-DDGur9PkVtNtDFBE2vc_bOG30oKIwOrrU_wM7nmDqb8jW4dLrP9uZnTsHq6fFtvqiWr88v89myMrjm56puOWem4VjgFrdMCikMNs4I2xLkaocoY4ZwLYTkVqKmbihuLOmM4URQ1tEpuBt6y2_vR5sPahuPKZSTihLUIMEob0qKDCmTYs7JOrVPfqfTSWGkvvSpQZ8q-tS3PnUuEB2gXMJhbdNv9T_UJ6n1dOE
Cites_doi 10.1016/j.imu.2021.100584
10.1016/j.eswa.2019.113075
10.1007/s11999-016-4732-4
10.1080/01691864.2016.1229217
10.1109/ACCESS.2017.2712789
10.33093/jiwe.2024.3.1.9
10.1016/S0140-6736(12)61729-2
10.1136/annrheumdis-2013-204763
10.1371/journal.pone.0244396
10.1007/s11042-023-15149-8
10.3390/s21186202
10.1126/sciadv.aat0497
10.3390/s22207960
10.1016/j.eswa.2008.08.076
10.1109/ACCESS.2019.2891632
10.1007/978-981-10-9035-6_53
10.1186/s12891-016-1013-z
10.1111/exsy.12955
10.1109/ACCESS.2019.2891673
10.3390/s21165437
10.1147/JRD.2017.2768739
10.1109/TGRS.2013.2260552
10.1109/JBHI.2022.3208077
10.1109/TGRS.2023.3334492
10.1007/s13042-016-0588-x
10.1186/s12859-018-2488-4
10.1371/journal.pone.0054856
10.1155/2020/8854124
10.1049/iet-ipr.2017.1149
10.1016/j.imavis.2023.104717
10.1007/s10462-016-9514-6
10.1016/j.jbi.2021.103935
10.1109/JBHI.2015.2450232
10.1016/j.npbr.2017.12.005
10.17632/44pfnysy89
10.1016/j.knee.2009.05.003
10.1080/20476965.2022.2125838
10.3233/JPD-212922
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00045
10.1109/ACCESS.2019.2949744
10.1109/MMSP59012.2023.10337688
10.1001/archneur.63.8.1100
10.1016/j.swevo.2018.02.018
10.1186/s12911-019-0987-5
10.3390/a15120474
10.1007/s11760-012-0316-2
10.1016/j.parkreldis.2016.05.021
10.3389/fmedt.2022.782756
10.3390/s22124463
10.1016/j.dsp.2015.05.011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-19673-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 17644
ExternalDocumentID 10_1007_s11042_024_19673_z
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c185z-8b554c95161b1b47676c1cfc6eb20f8f0344c25a6675e70989319e2dcc52634d3
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:38:55 EDT 2025
Tue Aug 05 12:08:05 EDT 2025
Sun May 25 01:35:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Vision-based
Knee osteoarthritis
Segmentation
Ensemble learning
Gait analysis
Parkinson’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185z-8b554c95161b1b47676c1cfc6eb20f8f0344c25a6675e70989319e2dcc52634d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3209064359
PQPubID 54626
PageCount 48
ParticipantIDs proquest_journals_3209064359
crossref_primary_10_1007_s11042_024_19673_z
springer_journals_10_1007_s11042_024_19673_z
PublicationCentury 2000
PublicationDate 20250500
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References T Varrecchia (19673_CR12) 2021; 16
19673_CR20
D Napoleon (19673_CR40) 2013; 975
A Srivastava (19673_CR2) 2018; 27
H Ulbricht (19673_CR14) 2020; 2020
CW Cho (19673_CR32) 2009; 36
T Connie (19673_CR33) 2022; 15
L Dranca (19673_CR34) 2018; 19
R Kaur (19673_CR35) 2022; 27
MS Couceiro (19673_CR46) 2012; 6
S Jain (19673_CR10) 2006; 63
19673_CR27
MP Pereira (19673_CR51) 2016; 29
19673_CR26
Y Li (19673_CR47) 2017; 5
Y Liu (19673_CR57) 2021; 60
D Buongiorno (19673_CR55) 2019; 19
JM Chavez (19673_CR23) 2022; 22
H Liang (19673_CR62) 2019; 7
KK Singh (19673_CR16) 2010; 7
B Chen (19673_CR24) 2022; 22
E Ehsaeyan (19673_CR41) 2023; 82
CP YasiraBeevi (19673_CR17) 2009; 2
B Sathya Bama (19673_CR21) 2024; 13
A Mohammadi (19673_CR61) 2018; 9
JN Kerkman (19673_CR1) 2018; 4
L Shaw (19673_CR22) 2014; 2
S Rupprechter (19673_CR36) 2021; 21
BR De Miranda (19673_CR3) 2022; 12
N Kour (19673_CR37) 2019; 7
MG Melchiorre (19673_CR52) 2013; 8
C Prakash (19673_CR18) 2018; 49
MD Kohn (19673_CR38) 2016; 474
T Vos (19673_CR5) 2012; 380
T Iqbal (19673_CR19) 2022; 4
VWS Tan (19673_CR11) 2024; 3
P Ghamisi (19673_CR45) 2013; 52
S Kumari (19673_CR50) 2021; 2
A Ahilan (19673_CR43) 2019; 7
EK Pissadaki (19673_CR13) 2018; 62
F Wahid (19673_CR29) 2015; 19
A Procházka (19673_CR28) 2015; 47
Y Liu (19673_CR59) 2023; 61
19673_CR39
F Guo (19673_CR53) 2018; 12
Y Pu (19673_CR42) 2023; 135
MN Uddin (19673_CR49) 2021; 24
LC Guayacán (19673_CR25) 2021; 123
A Phinyomark (19673_CR48) 2016; 17
P Albuquerque (19673_CR30) 2021; 21
19673_CR6
E Rashedi (19673_CR60) 2018; 41
19673_CR7
N Kour (19673_CR56) 2022; 39
H Lee (19673_CR31) 2008; 2008
SP Kumar (19673_CR44) 2017; 28
I El Maachi (19673_CR8) 2020; 143
Y Ishikawa (19673_CR54) 2017; 31
19673_CR9
Q Wang (19673_CR58) 2022; 60
M Cross (19673_CR4) 2014; 73
M Branco (19673_CR15) 2014; 2014
References_xml – volume: 24
  start-page: 100584
  year: 2021
  ident: 19673_CR49
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2021.100584
– ident: 19673_CR6
– volume: 143
  start-page: 113075
  year: 2020
  ident: 19673_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113075
– volume: 2
  start-page: 13
  issue: 4
  year: 2009
  ident: 19673_CR17
  publication-title: Int J Signal Process Image Process Pattern Recognit
– volume: 474
  start-page: 1886
  issue: 8
  year: 2016
  ident: 19673_CR38
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-016-4732-4
– volume: 2014
  start-page: 527940
  issue: 1
  year: 2014
  ident: 19673_CR15
  publication-title: The Scientific World Journal
– volume: 31
  start-page: 68
  issue: 1–2
  year: 2017
  ident: 19673_CR54
  publication-title: Adv Robot
  doi: 10.1080/01691864.2016.1229217
– volume: 5
  start-page: 10323
  year: 2017
  ident: 19673_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2712789
– volume: 3
  start-page: 136
  issue: 1
  year: 2024
  ident: 19673_CR11
  publication-title: J Inform Web Eng
  doi: 10.33093/jiwe.2024.3.1.9
– volume: 380
  start-page: 2163
  issue: 9859
  year: 2012
  ident: 19673_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61729-2
– volume: 73
  start-page: 1323
  issue: 7
  year: 2014
  ident: 19673_CR4
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2013-204763
– volume: 16
  start-page: e0244396
  issue: 2
  year: 2021
  ident: 19673_CR12
  publication-title: Plos One
  doi: 10.1371/journal.pone.0244396
– volume: 82
  start-page: 40625
  issue: 26
  year: 2023
  ident: 19673_CR41
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15149-8
– ident: 19673_CR7
– volume: 21
  start-page: 6202
  issue: 18
  year: 2021
  ident: 19673_CR30
  publication-title: Sensors
  doi: 10.3390/s21186202
– volume: 4
  start-page: eaat0497
  issue: 6
  year: 2018
  ident: 19673_CR1
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aat0497
– volume: 22
  start-page: 7960
  issue: 20
  year: 2022
  ident: 19673_CR24
  publication-title: Sensors
  doi: 10.3390/s22207960
– volume: 36
  start-page: 7033
  issue: 3
  year: 2009
  ident: 19673_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.08.076
– volume: 7
  start-page: 89570
  year: 2019
  ident: 19673_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891632
– ident: 19673_CR26
  doi: 10.1007/978-981-10-9035-6_53
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 19673_CR48
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-016-1013-z
– volume: 39
  start-page: e12955
  issue: 6
  year: 2022
  ident: 19673_CR56
  publication-title: Expert Syst
  doi: 10.1111/exsy.12955
– volume: 7
  start-page: 11258
  year: 2019
  ident: 19673_CR62
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891673
– volume: 21
  start-page: 5437
  issue: 16
  year: 2021
  ident: 19673_CR36
  publication-title: Sensors
  doi: 10.3390/s21165437
– volume: 62
  start-page: 5
  issue: 1
  year: 2018
  ident: 19673_CR13
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2017.2768739
– volume: 2
  start-page: 211
  issue: 4
  year: 2014
  ident: 19673_CR22
  publication-title: Int J Tech Res Appl
– volume: 52
  start-page: 2382
  issue: 5
  year: 2013
  ident: 19673_CR45
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2013.2260552
– volume: 27
  start-page: 190
  issue: 1
  year: 2022
  ident: 19673_CR35
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3208077
– volume: 61
  start-page: 1
  year: 2023
  ident: 19673_CR59
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2023.3334492
– volume: 9
  start-page: 541
  year: 2018
  ident: 19673_CR61
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0588-x
– volume: 2008
  start-page: 1
  year: 2008
  ident: 19673_CR31
  publication-title: EURASIP J Image Video Process
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 19673_CR34
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-018-2488-4
– volume: 8
  start-page: e54856
  issue: 1
  year: 2013
  ident: 19673_CR52
  publication-title: PloS One
  doi: 10.1371/journal.pone.0054856
– volume: 2020
  start-page: 1
  year: 2020
  ident: 19673_CR14
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2020/8854124
– volume: 12
  start-page: 1303
  issue: 8
  year: 2018
  ident: 19673_CR53
  publication-title: IET Image Proc
  doi: 10.1049/iet-ipr.2017.1149
– volume: 28
  start-page: 721
  issue: 5
  year: 2017
  ident: 19673_CR44
  publication-title: J Intell Syst
– volume: 135
  start-page: 104717
  year: 2023
  ident: 19673_CR42
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2023.104717
– volume: 49
  start-page: 1
  issue: 1
  year: 2018
  ident: 19673_CR18
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-016-9514-6
– volume: 975
  start-page: 8887
  year: 2013
  ident: 19673_CR40
  publication-title: Int J Comput Appl
– volume: 123
  start-page: 103935
  year: 2021
  ident: 19673_CR25
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2021.103935
– volume: 19
  start-page: 1794
  issue: 6
  year: 2015
  ident: 19673_CR29
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2450232
– volume: 27
  start-page: 17
  year: 2018
  ident: 19673_CR2
  publication-title: Neurol Psychiatry Brain Res
  doi: 10.1016/j.npbr.2017.12.005
– ident: 19673_CR39
  doi: 10.17632/44pfnysy89
– ident: 19673_CR9
  doi: 10.1016/j.knee.2009.05.003
– volume: 13
  start-page: 62
  issue: 1
  year: 2024
  ident: 19673_CR21
  publication-title: Health Syst
  doi: 10.1080/20476965.2022.2125838
– volume: 12
  start-page: 45
  issue: 1
  year: 2022
  ident: 19673_CR3
  publication-title: J Parkinsons Dis
  doi: 10.3233/JPD-212922
– ident: 19673_CR20
  doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00045
– volume: 60
  start-page: 1
  year: 2021
  ident: 19673_CR57
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 7
  start-page: 156620
  year: 2019
  ident: 19673_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949744
– ident: 19673_CR27
  doi: 10.1109/MMSP59012.2023.10337688
– volume: 63
  start-page: 1100
  issue: 8
  year: 2006
  ident: 19673_CR10
  publication-title: Arch Neurol
  doi: 10.1001/archneur.63.8.1100
– volume: 41
  start-page: 141
  year: 2018
  ident: 19673_CR60
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.018
– volume: 19
  start-page: 1
  issue: 9
  year: 2019
  ident: 19673_CR55
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-0987-5
– volume: 7
  start-page: 414
  issue: 5
  year: 2010
  ident: 19673_CR16
  publication-title: Int J Comput Sci Issues (IJCSI)
– volume: 15
  start-page: 474
  issue: 12
  year: 2022
  ident: 19673_CR33
  publication-title: Algorithms
  doi: 10.3390/a15120474
– volume: 6
  start-page: 343
  issue: 3
  year: 2012
  ident: 19673_CR46
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-012-0316-2
– volume: 2
  start-page: 40
  year: 2021
  ident: 19673_CR50
  publication-title: Int J Cogn Comput Eng
– volume: 29
  start-page: 78
  year: 2016
  ident: 19673_CR51
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2016.05.021
– volume: 4
  start-page: 782756
  year: 2022
  ident: 19673_CR19
  publication-title: Front Med Technol
  doi: 10.3389/fmedt.2022.782756
– volume: 22
  start-page: 4463
  issue: 12
  year: 2022
  ident: 19673_CR23
  publication-title: Sensors
  doi: 10.3390/s22124463
– volume: 47
  start-page: 169
  year: 2015
  ident: 19673_CR28
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2015.05.011
– volume: 60
  start-page: 1
  year: 2022
  ident: 19673_CR58
  publication-title: IEEE Trans Geosci Remote Sens
SSID ssj0016524
Score 2.392105
Snippet Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 17597
SubjectTerms Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Decision trees
Ensemble learning
Gait
Multimedia Information Systems
Parkinson's disease
Particle swarm optimization
Performance evaluation
Performance measurement
Segmentation
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
Title A vision-based hybrid ensemble learning approach for classification of gait disorders
URI https://link.springer.com/article/10.1007/s11042-024-19673-z
https://www.proquest.com/docview/3209064359
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG1jKy04zpqgFgehEpDJZ8SMFCVpEy0B_PefUIYBgYMqQxMP5zvedzt93AKf2xNNaFdSoQlMr0EXz0EQUc6WXe5HRLLRs5NsRv8qi6zEbO1LYvLrtXrUky5O6Jrv5lkqCOYWi18QhXa5Dk9naHb04C9LP3gFnQeToMb__9z0F1bjyRyu0zDDDHdhy0JCkq73chTUzbcF2NXaBuChsweYXDcE9yFKy4odTm5A0eXi3HCyC1al5lk-GuLEQE1KphxOEqURZ0GxvCZUbQ2YFmeSPC6KdFud8H7Lh4O7iirpZCVRhxl3SnkRcoBAucV_6Mop5zJWvCsWxcvaKXmGV_VTAco4Fgom9BGGKn5hAK8UCHkY6PIDGdDY1h0BwUxEFxMYLc6yb_bgnea6kZBi5GNx50oazynziZSWJIWrxY2tsgcYWpbHFsg2dysLChcdchIGXWCzEcLHzyur1679XO_rf58ewEdh5veUFxQ40Fq9v5gRBxEJ2oZkO-_2RfV7e3wy6pQ99ALVsw2g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hKnMRJxgpRFWg7NVI3K_4IIEGLaBnor-ecOgQQDMxxPJx9vne6e-8Azu2Lp7UqqFGFplagi-aBCSnGSi_3QqOjwLKRB0Pey8LbcTR2pLBZ1e1elSTLl7omu_mWSoIxheKtiQO6WIU1BAOJbeTKWOezdsAjFjp6zO__fQ9BNa78UQotI0x3B7YcNCSd5VnuwoqZNGG7GrtAnBc2YfOLhuAeZB2y5IdTG5A0eXi3HCyC2al5lk-GuLEQ96RSDycIU4myoNl2CZUHQ6YFuc8f50Q7Lc7ZPmTd69FVj7pZCVRhxF3QRCIuUAiXuC99GcY85spXheKYOXtFUlhlP8WinGOCYGIvRZjip4ZppSLGg1AHB9CYTCfmEAgeKqKA2HhBjnmzHyeS50rKCD0XnTtPW3BRmU-8LCUxRC1-bI0t0NiiNLZYtKBdWVg495iJgHmpxUIRbnZZWb3-_PduR_9bfgbrvdGgL_o3w7tj2GB2dm_ZrNiGxvz1zZwgoJjL0_L-fADQLMNL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGA1T6cZK6Aqr4qBSN2s-JGCBGlFw0B_Pec8SEEwMMfxcOfzfafz9x3AqbnxlJIJ1TJR1Ah00djVHsVcacWWp5XvGjby_ZANIu9m5I8WWPz5a_eqJVlwGoxKU5p1pirp1MQ329BKML9QPEGBS-fLsILXsW3OdeT0vvoIzHe8kirz-3_f01GNMX-0RfNs09-CjRImkl7h121Y0mkTNqsRDKSMyCasL-gJ7kDUIwVXnJrkpMjTh-FjEaxU9at40aQcETEmlZI4QchKpAHQ5sVQ7iQyScg4fs6IKnU5Z7sQ9a8eLwa0nJtAJWbfOe0KxAgSoROzhS28gAVM2jKRDKtoK-kmRuVPOn7MsFjQgRUiZLFD7SgpfYe5nnL3oJFOUr0PBB2MiCDQlhtjDW0HXcFiKYSPUYyBHoctOKvMx6eFPAavhZCNsTkam-fG5vMWtCsL8zJUZtx1rNDgIh83O6-sXn_-e7eD_y0_gdWHyz6_ux7eHsKaY8b45u8W29DI3t71EWKLTBznx-cTQ7_Hhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vision-based+hybrid+ensemble+learning+approach+for+classification+of+gait+disorders&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kour%2C+Navleen&rft.au=Gupta%2C+Sunanda&rft.au=Arora%2C+Sakshi&rft.date=2025-05-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=17&rft.spage=17597&rft.epage=17644&rft_id=info:doi/10.1007%2Fs11042-024-19673-z&rft.externalDocID=10_1007_s11042_024_19673_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon