A vision-based hybrid ensemble learning approach for classification of gait disorders
Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radi...
Saved in:
Published in | Multimedia tools and applications Vol. 84; no. 17; pp. 17597 - 17644 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-7721 1380-7501 1573-7721 |
DOI | 10.1007/s11042-024-19673-z |
Cover
Loading…
Abstract | Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radiations, wearing discomfort, a requirement of background, etc. Further, some aspects are lacking in the previous studies including the exploration of the marker-based (MB) approach, experimentation on disease severity levels using enhanced learning techniques, comparison of abnormal and normal (NM) gait, etc. Therefore, this research aims to predict the pathological and NM gait based on the marker-based (MB) VB platform. In this paper, first, a VB gait dataset is used namely “KOA-PD-NM” which includes three stages: KOA i.e. Early (EL), Moderate (MD), Severe (SV); PD i.e. Mild (ML), MD, SV, and NM subjects, thus, forming a total of seven labels. Then, an improved technique namely Color Segmentation based Fractional Order Darwinian Particle Swarm Optimization (CS-FODPSO) is employed to segment the region of interest (ROI). Next, a hybrid ensemble using k-nearest neighbor (KNN), Decision tree (DT), and Naive Bayes (NB) is proposed to predict the gait patterns of the considered groups. The efficiency of the proposed methodology is evaluated based on performance metrics. The evaluation results achieved provided the highest results using the presented segmentation and hybrid ensemble approaches within less time in comparison to other techniques as well as state-of-the-art.
Graphical abstract |
---|---|
AbstractList | Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radiations, wearing discomfort, a requirement of background, etc. Further, some aspects are lacking in the previous studies including the exploration of the marker-based (MB) approach, experimentation on disease severity levels using enhanced learning techniques, comparison of abnormal and normal (NM) gait, etc. Therefore, this research aims to predict the pathological and NM gait based on the marker-based (MB) VB platform. In this paper, first, a VB gait dataset is used namely “KOA-PD-NM” which includes three stages: KOA i.e. Early (EL), Moderate (MD), Severe (SV); PD i.e. Mild (ML), MD, SV, and NM subjects, thus, forming a total of seven labels. Then, an improved technique namely Color Segmentation based Fractional Order Darwinian Particle Swarm Optimization (CS-FODPSO) is employed to segment the region of interest (ROI). Next, a hybrid ensemble using k-nearest neighbor (KNN), Decision tree (DT), and Naive Bayes (NB) is proposed to predict the gait patterns of the considered groups. The efficiency of the proposed methodology is evaluated based on performance metrics. The evaluation results achieved provided the highest results using the presented segmentation and hybrid ensemble approaches within less time in comparison to other techniques as well as state-of-the-art.
Graphical abstract Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The scrutinization of the literature revealed the heavy usage of sensor and markerless platforms but involved certain issues such as exposure to harmful radiations, wearing discomfort, a requirement of background, etc. Further, some aspects are lacking in the previous studies including the exploration of the marker-based (MB) approach, experimentation on disease severity levels using enhanced learning techniques, comparison of abnormal and normal (NM) gait, etc. Therefore, this research aims to predict the pathological and NM gait based on the marker-based (MB) VB platform. In this paper, first, a VB gait dataset is used namely “KOA-PD-NM” which includes three stages: KOA i.e. Early (EL), Moderate (MD), Severe (SV); PD i.e. Mild (ML), MD, SV, and NM subjects, thus, forming a total of seven labels. Then, an improved technique namely Color Segmentation based Fractional Order Darwinian Particle Swarm Optimization (CS-FODPSO) is employed to segment the region of interest (ROI). Next, a hybrid ensemble using k-nearest neighbor (KNN), Decision tree (DT), and Naive Bayes (NB) is proposed to predict the gait patterns of the considered groups. The efficiency of the proposed methodology is evaluated based on performance metrics. The evaluation results achieved provided the highest results using the presented segmentation and hybrid ensemble approaches within less time in comparison to other techniques as well as state-of-the-art. |
Author | Gupta, Sunanda Kour, Navleen Arora, Sakshi |
Author_xml | – sequence: 1 givenname: Navleen surname: Kour fullname: Kour, Navleen email: navleenkour01@gmail.com organization: School of Computer Science and Engineering, Shri Mata Vaishno Devi University – sequence: 2 givenname: Sunanda surname: Gupta fullname: Gupta, Sunanda organization: School of Computer Science and Engineering, Shri Mata Vaishno Devi University – sequence: 3 givenname: Sakshi surname: Arora fullname: Arora, Sakshi organization: School of Computer Science and Engineering, Shri Mata Vaishno Devi University |
BookMark | eNp9kM1KAzEURoNUsK2-gKuA69H8Z2ZZilqh4MauQyaTtCnTpCat0D690RF05erexXe-ezkTMAoxWABuMbrHCMmHjDFipEKEVbgRklbnCzDGvCxSEjz6s1-BSc5bhLDghI3BagY_fPYxVK3OtoObU5t8B23Idtf2FvZWp-DDGur9PkVtNtDFBE2vc_bOG30oKIwOrrU_wM7nmDqb8jW4dLrP9uZnTsHq6fFtvqiWr88v89myMrjm56puOWem4VjgFrdMCikMNs4I2xLkaocoY4ZwLYTkVqKmbihuLOmM4URQ1tEpuBt6y2_vR5sPahuPKZSTihLUIMEob0qKDCmTYs7JOrVPfqfTSWGkvvSpQZ8q-tS3PnUuEB2gXMJhbdNv9T_UJ6n1dOE |
Cites_doi | 10.1016/j.imu.2021.100584 10.1016/j.eswa.2019.113075 10.1007/s11999-016-4732-4 10.1080/01691864.2016.1229217 10.1109/ACCESS.2017.2712789 10.33093/jiwe.2024.3.1.9 10.1016/S0140-6736(12)61729-2 10.1136/annrheumdis-2013-204763 10.1371/journal.pone.0244396 10.1007/s11042-023-15149-8 10.3390/s21186202 10.1126/sciadv.aat0497 10.3390/s22207960 10.1016/j.eswa.2008.08.076 10.1109/ACCESS.2019.2891632 10.1007/978-981-10-9035-6_53 10.1186/s12891-016-1013-z 10.1111/exsy.12955 10.1109/ACCESS.2019.2891673 10.3390/s21165437 10.1147/JRD.2017.2768739 10.1109/TGRS.2013.2260552 10.1109/JBHI.2022.3208077 10.1109/TGRS.2023.3334492 10.1007/s13042-016-0588-x 10.1186/s12859-018-2488-4 10.1371/journal.pone.0054856 10.1155/2020/8854124 10.1049/iet-ipr.2017.1149 10.1016/j.imavis.2023.104717 10.1007/s10462-016-9514-6 10.1016/j.jbi.2021.103935 10.1109/JBHI.2015.2450232 10.1016/j.npbr.2017.12.005 10.17632/44pfnysy89 10.1016/j.knee.2009.05.003 10.1080/20476965.2022.2125838 10.3233/JPD-212922 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00045 10.1109/ACCESS.2019.2949744 10.1109/MMSP59012.2023.10337688 10.1001/archneur.63.8.1100 10.1016/j.swevo.2018.02.018 10.1186/s12911-019-0987-5 10.3390/a15120474 10.1007/s11760-012-0316-2 10.1016/j.parkreldis.2016.05.021 10.3389/fmedt.2022.782756 10.3390/s22124463 10.1016/j.dsp.2015.05.011 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-19673-z |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 17644 |
ExternalDocumentID | 10_1007_s11042_024_19673_z |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c185z-8b554c95161b1b47676c1cfc6eb20f8f0344c25a6675e70989319e2dcc52634d3 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 09:38:55 EDT 2025 Tue Aug 05 12:08:05 EDT 2025 Sun May 25 01:35:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Vision-based Knee osteoarthritis Segmentation Ensemble learning Gait analysis Parkinson’s disease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185z-8b554c95161b1b47676c1cfc6eb20f8f0344c25a6675e70989319e2dcc52634d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3209064359 |
PQPubID | 54626 |
PageCount | 48 |
ParticipantIDs | proquest_journals_3209064359 crossref_primary_10_1007_s11042_024_19673_z springer_journals_10_1007_s11042_024_19673_z |
PublicationCentury | 2000 |
PublicationDate | 20250500 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | T Varrecchia (19673_CR12) 2021; 16 19673_CR20 D Napoleon (19673_CR40) 2013; 975 A Srivastava (19673_CR2) 2018; 27 H Ulbricht (19673_CR14) 2020; 2020 CW Cho (19673_CR32) 2009; 36 T Connie (19673_CR33) 2022; 15 L Dranca (19673_CR34) 2018; 19 R Kaur (19673_CR35) 2022; 27 MS Couceiro (19673_CR46) 2012; 6 S Jain (19673_CR10) 2006; 63 19673_CR27 MP Pereira (19673_CR51) 2016; 29 19673_CR26 Y Li (19673_CR47) 2017; 5 Y Liu (19673_CR57) 2021; 60 D Buongiorno (19673_CR55) 2019; 19 JM Chavez (19673_CR23) 2022; 22 H Liang (19673_CR62) 2019; 7 KK Singh (19673_CR16) 2010; 7 B Chen (19673_CR24) 2022; 22 E Ehsaeyan (19673_CR41) 2023; 82 CP YasiraBeevi (19673_CR17) 2009; 2 B Sathya Bama (19673_CR21) 2024; 13 A Mohammadi (19673_CR61) 2018; 9 JN Kerkman (19673_CR1) 2018; 4 L Shaw (19673_CR22) 2014; 2 S Rupprechter (19673_CR36) 2021; 21 BR De Miranda (19673_CR3) 2022; 12 N Kour (19673_CR37) 2019; 7 MG Melchiorre (19673_CR52) 2013; 8 C Prakash (19673_CR18) 2018; 49 MD Kohn (19673_CR38) 2016; 474 T Vos (19673_CR5) 2012; 380 T Iqbal (19673_CR19) 2022; 4 VWS Tan (19673_CR11) 2024; 3 P Ghamisi (19673_CR45) 2013; 52 S Kumari (19673_CR50) 2021; 2 A Ahilan (19673_CR43) 2019; 7 EK Pissadaki (19673_CR13) 2018; 62 F Wahid (19673_CR29) 2015; 19 A Procházka (19673_CR28) 2015; 47 Y Liu (19673_CR59) 2023; 61 19673_CR39 F Guo (19673_CR53) 2018; 12 Y Pu (19673_CR42) 2023; 135 MN Uddin (19673_CR49) 2021; 24 LC Guayacán (19673_CR25) 2021; 123 A Phinyomark (19673_CR48) 2016; 17 P Albuquerque (19673_CR30) 2021; 21 19673_CR6 E Rashedi (19673_CR60) 2018; 41 19673_CR7 N Kour (19673_CR56) 2022; 39 H Lee (19673_CR31) 2008; 2008 SP Kumar (19673_CR44) 2017; 28 I El Maachi (19673_CR8) 2020; 143 Y Ishikawa (19673_CR54) 2017; 31 19673_CR9 Q Wang (19673_CR58) 2022; 60 M Cross (19673_CR4) 2014; 73 M Branco (19673_CR15) 2014; 2014 |
References_xml | – volume: 24 start-page: 100584 year: 2021 ident: 19673_CR49 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2021.100584 – ident: 19673_CR6 – volume: 143 start-page: 113075 year: 2020 ident: 19673_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113075 – volume: 2 start-page: 13 issue: 4 year: 2009 ident: 19673_CR17 publication-title: Int J Signal Process Image Process Pattern Recognit – volume: 474 start-page: 1886 issue: 8 year: 2016 ident: 19673_CR38 publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-016-4732-4 – volume: 2014 start-page: 527940 issue: 1 year: 2014 ident: 19673_CR15 publication-title: The Scientific World Journal – volume: 31 start-page: 68 issue: 1–2 year: 2017 ident: 19673_CR54 publication-title: Adv Robot doi: 10.1080/01691864.2016.1229217 – volume: 5 start-page: 10323 year: 2017 ident: 19673_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2712789 – volume: 3 start-page: 136 issue: 1 year: 2024 ident: 19673_CR11 publication-title: J Inform Web Eng doi: 10.33093/jiwe.2024.3.1.9 – volume: 380 start-page: 2163 issue: 9859 year: 2012 ident: 19673_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(12)61729-2 – volume: 73 start-page: 1323 issue: 7 year: 2014 ident: 19673_CR4 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2013-204763 – volume: 16 start-page: e0244396 issue: 2 year: 2021 ident: 19673_CR12 publication-title: Plos One doi: 10.1371/journal.pone.0244396 – volume: 82 start-page: 40625 issue: 26 year: 2023 ident: 19673_CR41 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15149-8 – ident: 19673_CR7 – volume: 21 start-page: 6202 issue: 18 year: 2021 ident: 19673_CR30 publication-title: Sensors doi: 10.3390/s21186202 – volume: 4 start-page: eaat0497 issue: 6 year: 2018 ident: 19673_CR1 publication-title: Sci Adv doi: 10.1126/sciadv.aat0497 – volume: 22 start-page: 7960 issue: 20 year: 2022 ident: 19673_CR24 publication-title: Sensors doi: 10.3390/s22207960 – volume: 36 start-page: 7033 issue: 3 year: 2009 ident: 19673_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.08.076 – volume: 7 start-page: 89570 year: 2019 ident: 19673_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891632 – ident: 19673_CR26 doi: 10.1007/978-981-10-9035-6_53 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 19673_CR48 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-016-1013-z – volume: 39 start-page: e12955 issue: 6 year: 2022 ident: 19673_CR56 publication-title: Expert Syst doi: 10.1111/exsy.12955 – volume: 7 start-page: 11258 year: 2019 ident: 19673_CR62 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891673 – volume: 21 start-page: 5437 issue: 16 year: 2021 ident: 19673_CR36 publication-title: Sensors doi: 10.3390/s21165437 – volume: 62 start-page: 5 issue: 1 year: 2018 ident: 19673_CR13 publication-title: IBM J Res Dev doi: 10.1147/JRD.2017.2768739 – volume: 2 start-page: 211 issue: 4 year: 2014 ident: 19673_CR22 publication-title: Int J Tech Res Appl – volume: 52 start-page: 2382 issue: 5 year: 2013 ident: 19673_CR45 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2013.2260552 – volume: 27 start-page: 190 issue: 1 year: 2022 ident: 19673_CR35 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3208077 – volume: 61 start-page: 1 year: 2023 ident: 19673_CR59 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2023.3334492 – volume: 9 start-page: 541 year: 2018 ident: 19673_CR61 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0588-x – volume: 2008 start-page: 1 year: 2008 ident: 19673_CR31 publication-title: EURASIP J Image Video Process – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 19673_CR34 publication-title: BMC Bioinforma doi: 10.1186/s12859-018-2488-4 – volume: 8 start-page: e54856 issue: 1 year: 2013 ident: 19673_CR52 publication-title: PloS One doi: 10.1371/journal.pone.0054856 – volume: 2020 start-page: 1 year: 2020 ident: 19673_CR14 publication-title: Appl Bionics Biomech doi: 10.1155/2020/8854124 – volume: 12 start-page: 1303 issue: 8 year: 2018 ident: 19673_CR53 publication-title: IET Image Proc doi: 10.1049/iet-ipr.2017.1149 – volume: 28 start-page: 721 issue: 5 year: 2017 ident: 19673_CR44 publication-title: J Intell Syst – volume: 135 start-page: 104717 year: 2023 ident: 19673_CR42 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2023.104717 – volume: 49 start-page: 1 issue: 1 year: 2018 ident: 19673_CR18 publication-title: Artif Intell Rev doi: 10.1007/s10462-016-9514-6 – volume: 975 start-page: 8887 year: 2013 ident: 19673_CR40 publication-title: Int J Comput Appl – volume: 123 start-page: 103935 year: 2021 ident: 19673_CR25 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2021.103935 – volume: 19 start-page: 1794 issue: 6 year: 2015 ident: 19673_CR29 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2450232 – volume: 27 start-page: 17 year: 2018 ident: 19673_CR2 publication-title: Neurol Psychiatry Brain Res doi: 10.1016/j.npbr.2017.12.005 – ident: 19673_CR39 doi: 10.17632/44pfnysy89 – ident: 19673_CR9 doi: 10.1016/j.knee.2009.05.003 – volume: 13 start-page: 62 issue: 1 year: 2024 ident: 19673_CR21 publication-title: Health Syst doi: 10.1080/20476965.2022.2125838 – volume: 12 start-page: 45 issue: 1 year: 2022 ident: 19673_CR3 publication-title: J Parkinsons Dis doi: 10.3233/JPD-212922 – ident: 19673_CR20 doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00045 – volume: 60 start-page: 1 year: 2021 ident: 19673_CR57 publication-title: IEEE Trans Geosci Remote Sens – volume: 7 start-page: 156620 year: 2019 ident: 19673_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949744 – ident: 19673_CR27 doi: 10.1109/MMSP59012.2023.10337688 – volume: 63 start-page: 1100 issue: 8 year: 2006 ident: 19673_CR10 publication-title: Arch Neurol doi: 10.1001/archneur.63.8.1100 – volume: 41 start-page: 141 year: 2018 ident: 19673_CR60 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.018 – volume: 19 start-page: 1 issue: 9 year: 2019 ident: 19673_CR55 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0987-5 – volume: 7 start-page: 414 issue: 5 year: 2010 ident: 19673_CR16 publication-title: Int J Comput Sci Issues (IJCSI) – volume: 15 start-page: 474 issue: 12 year: 2022 ident: 19673_CR33 publication-title: Algorithms doi: 10.3390/a15120474 – volume: 6 start-page: 343 issue: 3 year: 2012 ident: 19673_CR46 publication-title: Signal Image Video Process doi: 10.1007/s11760-012-0316-2 – volume: 2 start-page: 40 year: 2021 ident: 19673_CR50 publication-title: Int J Cogn Comput Eng – volume: 29 start-page: 78 year: 2016 ident: 19673_CR51 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2016.05.021 – volume: 4 start-page: 782756 year: 2022 ident: 19673_CR19 publication-title: Front Med Technol doi: 10.3389/fmedt.2022.782756 – volume: 22 start-page: 4463 issue: 12 year: 2022 ident: 19673_CR23 publication-title: Sensors doi: 10.3390/s22124463 – volume: 47 start-page: 169 year: 2015 ident: 19673_CR28 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2015.05.011 – volume: 60 start-page: 1 year: 2022 ident: 19673_CR58 publication-title: IEEE Trans Geosci Remote Sens |
SSID | ssj0016524 |
Score | 2.392105 |
Snippet | Computer vision-based (VB) gait analysis has become the popular platform for detecting Knee Osteoarthritis (KOA) and Parkinson’s disease (PD). The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 17597 |
SubjectTerms | Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Decision trees Ensemble learning Gait Multimedia Information Systems Parkinson's disease Particle swarm optimization Performance evaluation Performance measurement Segmentation Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia |
Title | A vision-based hybrid ensemble learning approach for classification of gait disorders |
URI | https://link.springer.com/article/10.1007/s11042-024-19673-z https://www.proquest.com/docview/3209064359 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG1jKy04zpqgFgehEpDJZ8SMFCVpEy0B_PefUIYBgYMqQxMP5zvedzt93AKf2xNNaFdSoQlMr0EXz0EQUc6WXe5HRLLRs5NsRv8qi6zEbO1LYvLrtXrUky5O6Jrv5lkqCOYWi18QhXa5Dk9naHb04C9LP3gFnQeToMb__9z0F1bjyRyu0zDDDHdhy0JCkq73chTUzbcF2NXaBuChsweYXDcE9yFKy4odTm5A0eXi3HCyC1al5lk-GuLEQE1KphxOEqURZ0GxvCZUbQ2YFmeSPC6KdFud8H7Lh4O7iirpZCVRhxl3SnkRcoBAucV_6Mop5zJWvCsWxcvaKXmGV_VTAco4Fgom9BGGKn5hAK8UCHkY6PIDGdDY1h0BwUxEFxMYLc6yb_bgnea6kZBi5GNx50oazynziZSWJIWrxY2tsgcYWpbHFsg2dysLChcdchIGXWCzEcLHzyur1679XO_rf58ewEdh5veUFxQ40Fq9v5gRBxEJ2oZkO-_2RfV7e3wy6pQ99ALVsw2g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hKnMRJxgpRFWg7NVI3K_4IIEGLaBnor-ecOgQQDMxxPJx9vne6e-8Azu2Lp7UqqFGFplagi-aBCSnGSi_3QqOjwLKRB0Pey8LbcTR2pLBZ1e1elSTLl7omu_mWSoIxheKtiQO6WIU1BAOJbeTKWOezdsAjFjp6zO__fQ9BNa78UQotI0x3B7YcNCSd5VnuwoqZNGG7GrtAnBc2YfOLhuAeZB2y5IdTG5A0eXi3HCyC2al5lk-GuLEQ96RSDycIU4myoNl2CZUHQ6YFuc8f50Q7Lc7ZPmTd69FVj7pZCVRhxF3QRCIuUAiXuC99GcY85spXheKYOXtFUlhlP8WinGOCYGIvRZjip4ZppSLGg1AHB9CYTCfmEAgeKqKA2HhBjnmzHyeS50rKCD0XnTtPW3BRmU-8LCUxRC1-bI0t0NiiNLZYtKBdWVg495iJgHmpxUIRbnZZWb3-_PduR_9bfgbrvdGgL_o3w7tj2GB2dm_ZrNiGxvz1zZwgoJjL0_L-fADQLMNL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGA1T6cZK6Aqr4qBSN2s-JGCBGlFw0B_Pec8SEEwMMfxcOfzfafz9x3AqbnxlJIJ1TJR1Ah00djVHsVcacWWp5XvGjby_ZANIu9m5I8WWPz5a_eqJVlwGoxKU5p1pirp1MQ329BKML9QPEGBS-fLsILXsW3OdeT0vvoIzHe8kirz-3_f01GNMX-0RfNs09-CjRImkl7h121Y0mkTNqsRDKSMyCasL-gJ7kDUIwVXnJrkpMjTh-FjEaxU9at40aQcETEmlZI4QchKpAHQ5sVQ7iQyScg4fs6IKnU5Z7sQ9a8eLwa0nJtAJWbfOe0KxAgSoROzhS28gAVM2jKRDKtoK-kmRuVPOn7MsFjQgRUiZLFD7SgpfYe5nnL3oJFOUr0PBB2MiCDQlhtjDW0HXcFiKYSPUYyBHoctOKvMx6eFPAavhZCNsTkam-fG5vMWtCsL8zJUZtx1rNDgIh83O6-sXn_-e7eD_y0_gdWHyz6_ux7eHsKaY8b45u8W29DI3t71EWKLTBznx-cTQ7_Hhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vision-based+hybrid+ensemble+learning+approach+for+classification+of+gait+disorders&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kour%2C+Navleen&rft.au=Gupta%2C+Sunanda&rft.au=Arora%2C+Sakshi&rft.date=2025-05-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=17&rft.spage=17597&rft.epage=17644&rft_id=info:doi/10.1007%2Fs11042-024-19673-z&rft.externalDocID=10_1007_s11042_024_19673_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |