Blood supply chain location-inventory problem considering incentive programs: comparison and analysis of NSGA-II, NRGA and electromagnetic algorithms
Problem Blood is a rare perishable substance with limited life in the real world and blood supply chain management is a vital subject. Hence, it is trying to design an efficient supply chain network to create a balance between blood supply and demand, particularly in deficient conditions. One effect...
Saved in:
Published in | Neural computing & applications Vol. 36; no. 31; pp. 19469 - 19487 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Problem
Blood is a rare perishable substance with limited life in the real world and blood supply chain management is a vital subject. Hence, it is trying to design an efficient supply chain network to create a balance between blood supply and demand, particularly in deficient conditions. One effective solution for blood deficiency compensation is the use of incentive programs at the right times to encourage people for blood donation. The novel aspect of this study considers a new mathematical model to design a blood supply chain network with the location of temporary centers for collecting donated blood, in addition to incentive programs in the right periods to actualize the goal of creating blood supply-demand equilibrium and minimizing the cost of the network.
Method
In this paper, four methods have been used in different dimensions to solve the proposed model. In this case, augmented epsilon constraint (AEC/EC) was used for small dimensions, while electromagnetic algorithm (EM), Non-dominated ranked genetic algorithm (NRGA), and non-dominated sorting genetic algorithm (NSGA-II) were used for large dimensions due to the inherent complexity of the problem.
Results
The performance of algorithms was analyzed based on the four standard indicators. Then, their outputs were evaluated using statistical assumption tests at the significance level of 0.05. In three considered indicators (SNS, MID, and TIME indicators), the NSGA-II algorithm outperformed the NRGA and EM algorithms. This case indicated the superiority of the NSGA-II algorithm over the NRGA and EM algorithms especially for problem solution time, which is one of the most significant indicators used in metaheuristic algorithms. |
---|---|
AbstractList | Problem Blood is a rare perishable substance with limited life in the real world and blood supply chain management is a vital subject. Hence, it is trying to design an efficient supply chain network to create a balance between blood supply and demand, particularly in deficient conditions. One effective solution for blood deficiency compensation is the use of incentive programs at the right times to encourage people for blood donation. The novel aspect of this study considers a new mathematical model to design a blood supply chain network with the location of temporary centers for collecting donated blood, in addition to incentive programs in the right periods to actualize the goal of creating blood supply-demand equilibrium and minimizing the cost of the network. Method In this paper, four methods have been used in different dimensions to solve the proposed model. In this case, augmented epsilon constraint (AEC/EC) was used for small dimensions, while electromagnetic algorithm (EM), Non-dominated ranked genetic algorithm (NRGA), and non-dominated sorting genetic algorithm (NSGA-II) were used for large dimensions due to the inherent complexity of the problem. Results The performance of algorithms was analyzed based on the four standard indicators. Then, their outputs were evaluated using statistical assumption tests at the significance level of 0.05. In three considered indicators (SNS, MID, and TIME indicators), the NSGA-II algorithm outperformed the NRGA and EM algorithms. This case indicated the superiority of the NSGA-II algorithm over the NRGA and EM algorithms especially for problem solution time, which is one of the most significant indicators used in metaheuristic algorithms. Problem Blood is a rare perishable substance with limited life in the real world and blood supply chain management is a vital subject. Hence, it is trying to design an efficient supply chain network to create a balance between blood supply and demand, particularly in deficient conditions. One effective solution for blood deficiency compensation is the use of incentive programs at the right times to encourage people for blood donation. The novel aspect of this study considers a new mathematical model to design a blood supply chain network with the location of temporary centers for collecting donated blood, in addition to incentive programs in the right periods to actualize the goal of creating blood supply-demand equilibrium and minimizing the cost of the network. Method In this paper, four methods have been used in different dimensions to solve the proposed model. In this case, augmented epsilon constraint (AEC/EC) was used for small dimensions, while electromagnetic algorithm (EM), Non-dominated ranked genetic algorithm (NRGA), and non-dominated sorting genetic algorithm (NSGA-II) were used for large dimensions due to the inherent complexity of the problem. Results The performance of algorithms was analyzed based on the four standard indicators. Then, their outputs were evaluated using statistical assumption tests at the significance level of 0.05. In three considered indicators (SNS, MID, and TIME indicators), the NSGA-II algorithm outperformed the NRGA and EM algorithms. This case indicated the superiority of the NSGA-II algorithm over the NRGA and EM algorithms especially for problem solution time, which is one of the most significant indicators used in metaheuristic algorithms. |
Author | Alikhani, Tayebeh Dezfoulian, Hamidreza Samouei, Parvaneh |
Author_xml | – sequence: 1 givenname: Tayebeh surname: Alikhani fullname: Alikhani, Tayebeh organization: Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University – sequence: 2 givenname: Hamidreza surname: Dezfoulian fullname: Dezfoulian, Hamidreza email: hrdezfoolian@basu.ac.ir organization: Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University – sequence: 3 givenname: Parvaneh surname: Samouei fullname: Samouei, Parvaneh organization: Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University |
BookMark | eNp9kE1LAzEQhoMoWD_-gKeAV6OTTfZDb1W0FkTBj3NIstk2ZTdZk22h_R_-X1MrePMwzOGZd5h5jtC-884gdEbhkgKUVxEgzyiBjBMKGS3IZg-NKGeMMMirfTSCa55wwdkhOopxAQC8qPIR-rptva9xXPZ9u8Z6Lq3DrddysN4R61bGDT6scR-8ak2HtXfR1iZYN8PW6UTtymzpLMgu3iTe9TLY6B2Wrk4l23W0EfsGP79NxmQ6vcDPr5PxDzWt0UPwnZw5M1iNZTvzwQ7zLp6gg0a20Zz-9mP08XD_fvdInl4m07vxE9G0yjeEsmtmVNkowwvK6xIUq_MadMaUqipQJZS6oYw2KlOcZ5qysq5kU2mWU5lVNTtG57u96YPPpYmDWPhlSEdHwSiFnBcFQJrKdlM6-BiDaUQfbCfDWlAQW_1ip18k_eJHv9ikENuFYr-1ZcLf6n9S3wWnjSM |
Cites_doi | 10.1016/j.tre.2017.06.004 10.1016/j.tracli.2023.01.006 10.1109/TII.2022.3220860 10.1016/j.transci.2022.103529 10.1016/j.hsr.2023.100087 10.1016/j.seps.2019.07.001 10.1007/s12652-019-01501-0 10.1109/4235.996017 10.1016/j.cie.2018.05.051 10.1016/j.cie.2023.109260 10.1109/TII.2022.3218645 10.1016/j.health.2023.100180 10.1109/TII.2022.3192881 10.1109/TCYB.2022.3192112 10.1016/j.health.2023.100136 10.1007/s10729-022-09593-5 10.1108/JM2-05-2022-0132 10.1016/j.tre.2014.06.003 10.1016/j.cie.2014.07.017 10.1007/s10479-018-2873-4 10.1016/j.transci.2013.04.044 10.1016/j.engappai.2024.108053 10.1051/ro/2022206 10.1016/j.cor.2005.03.020 10.3390/systems11030124 10.1016/j.orhc.2016.02.001 10.1016/j.tre.2021.102583 10.1016/j.omega.2019.102112 10.1016/j.dss.2021.113629 10.1023/A:1022452626305 10.1016/j.ejor.2022.06.005 10.1016/j.tre.2024.103438 10.1016/j.engappai.2018.03.004 10.1016/j.transci.2017.04.005 10.3390/su15032757 10.1016/j.cie.2018.05.041 10.7232/iems.2022.21.2.355 10.1016/j.cie.2019.03.010 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00521-024-10216-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 19487 |
ExternalDocumentID | 10_1007_s00521_024_10216_z |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ |
ID | FETCH-LOGICAL-c185z-1393eb7fbe4614d70b3d5d0c23bb880b707cf131fb2b442c137d8af8c351a28d3 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Sat Jul 26 01:13:32 EDT 2025 Tue Jul 01 03:04:49 EDT 2025 Fri Feb 21 02:41:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | Supply-demand equilibrium NSGA-II Electromagnetic algorithm NRGA Incentive programs Blood supply chain design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185z-1393eb7fbe4614d70b3d5d0c23bb880b707cf131fb2b442c137d8af8c351a28d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3110546600 |
PQPubID | 2043988 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3110546600 crossref_primary_10_1007_s00521_024_10216_z springer_journals_10_1007_s00521_024_10216_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241100 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Agac, Baki, Ar (CR4) 2024; 19 Hosseini-Motlagh, Samani, Cheraghi (CR20) 2020; 70 Şahin, Süral, Meral (CR33) 2007; 34 Chaiwuttisak, Smith, Wu, Potts, Sakuldamrongpanich, Pathomsiri (CR11) 2016; 9 CR39 Mahjoon Nia, Dabiri, Bozorgi-Amiri (CR26) 2017; 5 Jabbarzadeh, Fahimnia, Seuring (CR22) 2014; 70 CR31 CR30 Bakmohammadi, Karimi, Vahdani (CR9) 2023; 62 Ala, Simic, Bacanin, Tirkolaee (CR6) 2024; 133 Asadpour, Olsen, Boyer (CR8) 2022; 158 Mavrotas (CR28) 2009; 213 Meneses, Santos, Barbosa-Póvoa (CR29) 2023; 307 Zhao, Xu, Wang, Zhu, Xu (CR42) 2022; 19 Khojasteh Eghbali, Mousavi, Salimian (CR24) 2023; 182 Li, Ding, Guo, Zhang (CR25) 2023; 30 Xu, Szmerekovsky (CR37) 2022; 25 Diglio, Mancuso, Masone, Sterle (CR14) 2024; 183 Zhao, Jiang, Wang (CR41) 2023; 19 Zhao, Zhang, Wang (CR44) 2023; 19 Zhao, Di, Wang (CR43) 2023; 53 CR2 Vasconcelos, Faddy, Merollini, Flower, Dean, Viennet (CR36) 2023; 7 Abdulwahab, Wahab (CR1) 2014; 78 Birbil, Fang (CR10) 2003; 25 Matin, Azadi, Saen (CR27) 2022; 161 Samani, Hosseini-Motlagh (CR34) 2019; 283 CR7 Karacan, Seval, Aktan, Ayli, Palabiyikoglu (CR23) 2013; 49 Eskandari-Khanghahi, Tavakkoli-Moghaddam, Taleizadeh, Amin (CR15) 2018; 71 Dehghani, Abbasi, Oliveira (CR13) 2021; 98 Ramezanian, Behboodi (CR32) 2017; 104 Hosseini, Behroozi, Sana (CR18) 2023; 57 Gopalakrishnan, Mohan (CR16) 2022; 41 CR40 Imamoglu, Topcu, Aydin (CR21) 2023; 11 Deb, Pratap, Agarwal, Meyarivan (CR12) 2002; 6 Cheraghi, Hosseini-Motlagh, Samani (CR19) 2016; 27 Yaghoubi, Hosseini-Motlagh, Cheraghi, Gilani Larimi (CR38) 2020; 11 Aghsami, Abazari, Bakhshi, Yazdani, Jolai, Jolai (CR5) 2023; 3 Abid, Yadav (CR3) 2024; 6 Heidari-Fathian, Pasandideh (CR17) 2018; 122 Shih, Kasaie, Rajendran (CR35) 2023; 3 A Ala (10216_CR6) 2024; 133 E Karacan (10216_CR23) 2013; 49 N Bakmohammadi (10216_CR9) 2023; 62 M Abid (10216_CR3) 2024; 6 A Aghsami (10216_CR5) 2023; 3 10216_CR7 G Mavrotas (10216_CR28) 2009; 213 G Şahin (10216_CR33) 2007; 34 F Zhao (10216_CR43) 2023; 53 A Jabbarzadeh (10216_CR22) 2014; 70 M Mahjoon Nia (10216_CR26) 2017; 5 U Abdulwahab (10216_CR1) 2014; 78 SK Khojasteh Eghbali (10216_CR24) 2023; 182 M Meneses (10216_CR29) 2023; 307 X Li (10216_CR25) 2023; 30 M Dehghani (10216_CR13) 2021; 98 SMH Hosseini (10216_CR18) 2023; 57 P Chaiwuttisak (10216_CR11) 2016; 9 A Diglio (10216_CR14) 2024; 183 M Gopalakrishnan (10216_CR16) 2022; 41 H Heidari-Fathian (10216_CR17) 2018; 122 MRG Samani (10216_CR34) 2019; 283 F Zhao (10216_CR42) 2022; 19 10216_CR40 G Imamoglu (10216_CR21) 2023; 11 M Eskandari-Khanghahi (10216_CR15) 2018; 71 M Asadpour (10216_CR8) 2022; 158 Şİ Birbil (10216_CR10) 2003; 25 H Shih (10216_CR35) 2023; 3 F Zhao (10216_CR41) 2023; 19 FT Vasconcelos (10216_CR36) 2023; 7 F Zhao (10216_CR44) 2023; 19 10216_CR39 RK Matin (10216_CR27) 2022; 161 Y Xu (10216_CR37) 2022; 25 R Ramezanian (10216_CR32) 2017; 104 10216_CR2 G Agac (10216_CR4) 2024; 19 K Deb (10216_CR12) 2002; 6 SM Hosseini-Motlagh (10216_CR20) 2020; 70 S Yaghoubi (10216_CR38) 2020; 11 10216_CR31 S Cheraghi (10216_CR19) 2016; 27 10216_CR30 |
References_xml | – volume: 6 start-page: 1 issue: 1 year: 2024 end-page: 26 ident: CR3 article-title: Enhancing efficiency in blood supply chain inventory management using Bee colony optimization and genetic algorithms publication-title: J Res Adm – volume: 104 start-page: 69 year: 2017 end-page: 82 ident: CR32 article-title: Blood supply chain network design under uncertainties in supply and demand considering social aspects publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2017.06.004 – volume: 30 start-page: 249 issue: 2 year: 2023 end-page: 255 ident: CR25 article-title: Improved neural network for predicting blood donations based on two emergent factors publication-title: Transfus Clin Biol doi: 10.1016/j.tracli.2023.01.006 – ident: CR39 – ident: CR2 – ident: CR30 – volume: 19 start-page: 8588 issue: 8 year: 2023 end-page: 8599 ident: CR44 article-title: A Pareto-based discrete Jaya algorithm for multiobjective carbon-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans Indust Inform doi: 10.1109/TII.2022.3220860 – volume: 62 start-page: 103529 issue: 2 year: 2023 ident: CR9 article-title: Optimal policy of ordering blood units in the hospital according to compatibility and priority transfers between blood groups under uncertainty conditions: a case study publication-title: Transfus Apheres Sci doi: 10.1016/j.transci.2022.103529 – volume: 5 start-page: 99 issue: 10 year: 2017 end-page: 115 ident: CR26 article-title: A new model for green location-routing-inventory problem under uncertainty publication-title: J Ind Eng Res Prod Syst – volume: 7 start-page: 100087 year: 2023 ident: CR36 article-title: Impact of natural disasters and pandemics on blood supply: a systematic review publication-title: Health Sci Rev doi: 10.1016/j.hsr.2023.100087 – volume: 70 start-page: 100725 year: 2020 ident: CR20 article-title: Robust and stable flexible blood supply chain network design under motivational initiatives publication-title: Soc Eco Plan Sci doi: 10.1016/j.seps.2019.07.001 – volume: 11 start-page: 3231 issue: 8 year: 2020 end-page: 3258 ident: CR38 article-title: Designing a Robust demand-differentiated platelet supply chain network under disruption and uncertainty publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-019-01501-0 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR12 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE trans evol comput doi: 10.1109/4235.996017 – volume: 122 start-page: 95 year: 2018 end-page: 105 ident: CR17 article-title: Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.05.051 – ident: CR40 – volume: 182 start-page: 109260 year: 2023 ident: CR24 article-title: Designing blood supply chain networks with disruption considerations by a new interval-valued fuzzy mathematical model: M/M/C queueing approach publication-title: Comput Ind Eng doi: 10.1016/j.cie.2023.109260 – volume: 19 start-page: 8427 issue: 7 year: 2023 end-page: 8440 ident: CR41 article-title: a reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2022.3218645 – volume: 3 start-page: 100180 year: 2023 ident: CR35 article-title: A multiple criteria decision-making model for minimizing platelet shortage and outdating in blood supply chains under demand uncertainty publication-title: Healthcare Analyt doi: 10.1016/j.health.2023.100180 – volume: 213 start-page: 455 issue: 2 year: 2009 end-page: 465 ident: CR28 article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems publication-title: Appl Math Comput – volume: 19 start-page: 6692 year: 2022 ident: CR42 article-title: A population-based iterated greedy algorithm for distributed assembly no-wait flow-shop scheduling problem publication-title: IEEE Trans Indust Inform doi: 10.1109/TII.2022.3192881 – volume: 53 start-page: 3337 issue: 5 year: 2023 end-page: 3350 ident: CR43 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans Cybernetics doi: 10.1109/TCYB.2022.3192112 – volume: 3 start-page: 100136 year: 2023 ident: CR5 article-title: A meta-heuristic optimization for a novel mathematical model for minimizing costs and maximizing donor satisfaction in blood supply chains with finite capacity queueing systems publication-title: Healthcare Anal doi: 10.1016/j.health.2023.100136 – volume: 25 start-page: 1 year: 2022 end-page: 19 ident: CR37 article-title: A multi-product multi-period stochastic model for a blood supply chain considering blood substitution and demand uncertainty publication-title: Health Care Manag Sci doi: 10.1007/s10729-022-09593-5 – volume: 19 start-page: 68 issue: 1 year: 2024 end-page: 118 ident: CR4 article-title: Blood supply chain network design: a systematic review of literature and implications for future research publication-title: J Model Manag doi: 10.1108/JM2-05-2022-0132 – volume: 70 start-page: 225 year: 2014 end-page: 244 ident: CR22 article-title: Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2014.06.003 – volume: 78 start-page: 259 year: 2014 end-page: 270 ident: CR1 article-title: Approximate dynamic programming modeling for a typical blood platelet bank publication-title: Comput Ind Eng doi: 10.1016/j.cie.2014.07.017 – volume: 283 start-page: 1413 issue: 1 year: 2019 end-page: 1462 ident: CR34 article-title: An enhanced procedure for managing blood supply chain under disruptions and uncertainties publication-title: Ann Oper Res doi: 10.1007/s10479-018-2873-4 – ident: CR31 – volume: 49 start-page: 468 issue: 3 year: 2013 end-page: 473 ident: CR23 article-title: Blood donors and factors impacting the blood donation decision: motives for donating blood in Turkish sample publication-title: Transfus Apheres Sci doi: 10.1016/j.transci.2013.04.044 – volume: 133 start-page: 108053 year: 2024 ident: CR6 article-title: Blood supply chain network design with lateral freight: a robust possibilistic optimization model publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2024.108053 – volume: 57 start-page: 59 issue: 1 year: 2023 end-page: 85 ident: CR18 article-title: Multi-objective optimization model for blood supply chain network design considering cost of shortage and substitution in disaster publication-title: RAIRO Oper Res doi: 10.1051/ro/2022206 – volume: 34 start-page: 692 issue: 3 year: 2007 end-page: 704 ident: CR33 article-title: Locational analysis for regionalization of Turkish red crescent blood services publication-title: Comput Oper Res doi: 10.1016/j.cor.2005.03.020 – volume: 11 start-page: 1 issue: 3 year: 2023 end-page: 33 ident: CR21 article-title: A systematic literature review of the blood supply chain through bibliometric analysis and taxonomy publication-title: Systems doi: 10.3390/systems11030124 – volume: 9 start-page: 7 year: 2016 end-page: 15 ident: CR11 article-title: Location of low-cost blood collection and distribution centres in Thailand publication-title: Oper Res Health Care doi: 10.1016/j.orhc.2016.02.001 – volume: 41 start-page: 324 issue: 3 year: 2022 end-page: 342 ident: CR16 article-title: Blood supply chain: the impact of facility location and inventory allocation decisions for non-blood inventories-analytical case study publication-title: Int J Serv Oper Manag – volume: 158 start-page: 102583 year: 2022 ident: CR8 article-title: An updated review on blood supply chain quantitative models: a disaster perspective publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2021.102583 – ident: CR7 – volume: 98 start-page: 102112 year: 2021 ident: CR13 article-title: Proactive transshipment in the blood supply chain: a stochastic programming approach publication-title: Omega doi: 10.1016/j.omega.2019.102112 – volume: 161 start-page: 113629 year: 2022 ident: CR27 article-title: Measuring the sustainability and resilience of blood supply chains publication-title: Decis Support Syst doi: 10.1016/j.dss.2021.113629 – volume: 27 start-page: 425 issue: 4 year: 2016 end-page: 444 ident: CR19 article-title: A Robust optimization model for blood supply chain network design publication-title: Int J Ind Eng Prod Res – volume: 25 start-page: 263 issue: 3 year: 2003 end-page: 282 ident: CR10 article-title: An electromagnetism-like mechanism for global optimization publication-title: J Global Optim doi: 10.1023/A:1022452626305 – volume: 307 start-page: 499 issue: 2 year: 2023 end-page: 518 ident: CR29 article-title: Modelling the Blood Supply Chain publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2022.06.005 – volume: 183 start-page: 103438 year: 2024 ident: CR14 article-title: Multi-echelon facility location models for the reorganization of the blood supply chain at regional scale publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2024.103438 – volume: 71 start-page: 236 year: 2018 end-page: 250 ident: CR15 article-title: Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.03.004 – volume: 182 start-page: 109260 year: 2023 ident: 10216_CR24 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2023.109260 – volume: 19 start-page: 8588 issue: 8 year: 2023 ident: 10216_CR44 publication-title: IEEE Trans Indust Inform doi: 10.1109/TII.2022.3220860 – volume: 70 start-page: 225 year: 2014 ident: 10216_CR22 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2014.06.003 – volume: 283 start-page: 1413 issue: 1 year: 2019 ident: 10216_CR34 publication-title: Ann Oper Res doi: 10.1007/s10479-018-2873-4 – volume: 19 start-page: 68 issue: 1 year: 2024 ident: 10216_CR4 publication-title: J Model Manag doi: 10.1108/JM2-05-2022-0132 – volume: 183 start-page: 103438 year: 2024 ident: 10216_CR14 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2024.103438 – volume: 27 start-page: 425 issue: 4 year: 2016 ident: 10216_CR19 publication-title: Int J Ind Eng Prod Res – volume: 25 start-page: 1 year: 2022 ident: 10216_CR37 publication-title: Health Care Manag Sci doi: 10.1007/s10729-022-09593-5 – volume: 41 start-page: 324 issue: 3 year: 2022 ident: 10216_CR16 publication-title: Int J Serv Oper Manag – volume: 53 start-page: 3337 issue: 5 year: 2023 ident: 10216_CR43 publication-title: IEEE Trans Cybernetics doi: 10.1109/TCYB.2022.3192112 – ident: 10216_CR2 doi: 10.1016/j.transci.2017.04.005 – ident: 10216_CR7 doi: 10.3390/su15032757 – volume: 9 start-page: 7 year: 2016 ident: 10216_CR11 publication-title: Oper Res Health Care doi: 10.1016/j.orhc.2016.02.001 – volume: 70 start-page: 100725 year: 2020 ident: 10216_CR20 publication-title: Soc Eco Plan Sci doi: 10.1016/j.seps.2019.07.001 – volume: 11 start-page: 1 issue: 3 year: 2023 ident: 10216_CR21 publication-title: Systems doi: 10.3390/systems11030124 – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 10216_CR28 publication-title: Appl Math Comput – volume: 307 start-page: 499 issue: 2 year: 2023 ident: 10216_CR29 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2022.06.005 – volume: 3 start-page: 100180 year: 2023 ident: 10216_CR35 publication-title: Healthcare Analyt doi: 10.1016/j.health.2023.100180 – volume: 19 start-page: 6692 year: 2022 ident: 10216_CR42 publication-title: IEEE Trans Indust Inform doi: 10.1109/TII.2022.3192881 – volume: 34 start-page: 692 issue: 3 year: 2007 ident: 10216_CR33 publication-title: Comput Oper Res doi: 10.1016/j.cor.2005.03.020 – volume: 7 start-page: 100087 year: 2023 ident: 10216_CR36 publication-title: Health Sci Rev doi: 10.1016/j.hsr.2023.100087 – volume: 3 start-page: 100136 year: 2023 ident: 10216_CR5 publication-title: Healthcare Anal doi: 10.1016/j.health.2023.100136 – volume: 158 start-page: 102583 year: 2022 ident: 10216_CR8 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2021.102583 – volume: 78 start-page: 259 year: 2014 ident: 10216_CR1 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2014.07.017 – volume: 25 start-page: 263 issue: 3 year: 2003 ident: 10216_CR10 publication-title: J Global Optim doi: 10.1023/A:1022452626305 – volume: 11 start-page: 3231 issue: 8 year: 2020 ident: 10216_CR38 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-019-01501-0 – volume: 98 start-page: 102112 year: 2021 ident: 10216_CR13 publication-title: Omega doi: 10.1016/j.omega.2019.102112 – volume: 161 start-page: 113629 year: 2022 ident: 10216_CR27 publication-title: Decis Support Syst doi: 10.1016/j.dss.2021.113629 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10216_CR12 publication-title: IEEE trans evol comput doi: 10.1109/4235.996017 – volume: 5 start-page: 99 issue: 10 year: 2017 ident: 10216_CR26 publication-title: J Ind Eng Res Prod Syst – volume: 133 start-page: 108053 year: 2024 ident: 10216_CR6 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2024.108053 – volume: 6 start-page: 1 issue: 1 year: 2024 ident: 10216_CR3 publication-title: J Res Adm – volume: 57 start-page: 59 issue: 1 year: 2023 ident: 10216_CR18 publication-title: RAIRO Oper Res doi: 10.1051/ro/2022206 – volume: 49 start-page: 468 issue: 3 year: 2013 ident: 10216_CR23 publication-title: Transfus Apheres Sci doi: 10.1016/j.transci.2013.04.044 – volume: 62 start-page: 103529 issue: 2 year: 2023 ident: 10216_CR9 publication-title: Transfus Apheres Sci doi: 10.1016/j.transci.2022.103529 – ident: 10216_CR40 doi: 10.1016/j.cie.2018.05.041 – ident: 10216_CR39 doi: 10.7232/iems.2022.21.2.355 – volume: 122 start-page: 95 year: 2018 ident: 10216_CR17 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.05.051 – ident: 10216_CR30 – volume: 30 start-page: 249 issue: 2 year: 2023 ident: 10216_CR25 publication-title: Transfus Clin Biol doi: 10.1016/j.tracli.2023.01.006 – volume: 104 start-page: 69 year: 2017 ident: 10216_CR32 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2017.06.004 – volume: 19 start-page: 8427 issue: 7 year: 2023 ident: 10216_CR41 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2022.3218645 – ident: 10216_CR31 doi: 10.1016/j.cie.2019.03.010 – volume: 71 start-page: 236 year: 2018 ident: 10216_CR15 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.03.004 |
SSID | ssj0004685 |
Score | 2.3625443 |
Snippet | Problem
Blood is a rare perishable substance with limited life in the real world and blood supply chain management is a vital subject. Hence, it is trying to... Problem Blood is a rare perishable substance with limited life in the real world and blood supply chain management is a vital subject. Hence, it is trying to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 19469 |
SubjectTerms | Artificial Intelligence Blood Blood & organ donations Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Cost analysis Data Mining and Knowledge Discovery Genetic algorithms Heuristic methods Image Processing and Computer Vision Indicators Original Article Probability and Statistics in Computer Science Sorting algorithms Supply chains |
Title | Blood supply chain location-inventory problem considering incentive programs: comparison and analysis of NSGA-II, NRGA and electromagnetic algorithms |
URI | https://link.springer.com/article/10.1007/s00521-024-10216-z https://www.proquest.com/docview/3110546600 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXVj4RhRK5YGNWmpix0nZAuoXiA5ApTJFsZO0lWiCmjK0_4P_y9l1WkAwoCiTI0fy2b539rt7CF0mHGYGk5wIllDCuCNIGEchEVSKOOHck7ra_kOfdwfsbugMTVJYXrDdiytJvVOvk93UCSaEvjYjSo6ak-U2KjsQuysi18D2v2RDaiFOiFsUp4dRkyrzex_f3dEGY_64FtXepr2Pdg1MxP7KrgdoK04P0V4hwYDNijxCHzeKeI5zpc25wHIMcT5W7kkNN5loQnk2W2AjG4OlkeeEf-JJqoiZsNlhw9HKr7FcqxLiMI3gXVUswVmC-08dn_R6ddx_7Pi61SjoTMNRqjIhcfg6ymaT-XiaH6NBu_V82yVGaYFI8NdLAjCQxsJNRMzAXUduQ9DIiRrSpkLAAhduw5WJRa1E2IIxW1rUjbww8SR1rND2InqCSmmWxqcIW00Be6hFGTQD1PIEhaCFSrfZkBQeq4KuigEP3lYFNYJ16WRtngDME2jzBMsKqhY2CcziygMKkMVhHKBaBdULO22a_-7t7H-fn6MdW08VdeBSRaX57D2-AAgyFzVU9jsv962annmfunfW_Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGCjlprYeZQtIPqANgO0UrcodpK2Ek1QU4b2f_B_ObtOCwgGFGVy5Ei-O9939t19CF0nNmgGEzbhLKGE2RYnYRyFhFPB48S2XaG67Xd9u9VnjwNroIvC8iLbvbiSVDv1qthNnmBC6GsyIumobbLYRFsABlypy33T-1INqYg4IW6ROT2M6lKZ3-f47o7WGPPHtajyNo19tKthIvaWcj1AG3F6iPYKCgasLfIIfdzJxHOcS27OORYjiPOxdE9yuclYJZRn0znWtDFYaHpO-CcepzIxEzY7rHO08lssVqyEOEwjeJcdS3CWYP-l6ZF2u4r956anRjWDziQcprISEoevw2w6no0m-THqNx569y2imRaIAH-9IAADacydhMcM3HXk1DiNrKgmTMo5GDh3ao5IDGok3OSMmcKgTuSGiSuoZYSmG9ETVEqzND5F2Khz2EMNymAYoJbLKQQtVDj1mqDwGGV0Uyx48LZsqBGsWicr8QQgnkCJJ1iUUaWQSaCNKw8oQBaL2QDVyqhayGk9_PdsZ__7_Aptt3rdTtBp-0_naMdUaiMPXyqoNJu-xxcAR2b8UmnfJ0GF2Fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE-PFtxFF7cGbNLDb7gNv-EDwQYxKwm2z7W6BRBYC6wH-h__XaekCGj2YzZ666Sadmc437cx8CJ1LFzSDCZdwJilhrsNJGEch4VTwWLquL3S3_aemW2-x-7bTXqri19nu2ZXkrKZBdWlK0tIwkqV54Zs6zYQw2GZEUVO7ZLqK1piqBgaNbtnVpcpITcoJMYzK72HUlM38Psd317TAmz-uSLXnqW2jTQMZcXUm4x20Eie7aCujY8DGOvfQ55VKQsdjxdM5waILMT9WrkotPenp5PLBaIINhQwWhqoT_ol7iUrShI0Pm3yt8SUWc4ZCHCYRvLPuJXggcfP1rkoajSJuvtxV9ahh0-mHnURVReLwvTMY9dJuf7yPWrXbt-s6MawLRIDvnhKAhDTmnuQxA9cdeWVOIycqC5tyDsbOvbInpEUtyW3OmC0s6kV-KH1BHSu0_YgeoFwySOJDhK0Kh_3UogyGAXb5nEIAQ4VXKQsKj5VHF9mCB8NZc41g3kZZiycA8QRaPME0jwqZTAJjaOOAAnxxmAuwLY-KmZwWw3_PdvS_z8_Q-vNNLXhsNB-O0YattUadwxRQLh19xCeATFJ-qpXvC6hk3I8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+supply+chain+location-inventory+problem+considering+incentive+programs%3A+comparison+and+analysis+of+NSGA-II%2C+NRGA+and+electromagnetic+algorithms&rft.jtitle=Neural+computing+%26+applications&rft.au=Alikhani%2C+Tayebeh&rft.au=Dezfoulian%2C+Hamidreza&rft.au=Samouei%2C+Parvaneh&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=31&rft.spage=19469&rft.epage=19487&rft_id=info:doi/10.1007%2Fs00521-024-10216-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |