Surface engineering of perovskite oxides as a promotional approach for water-oxidation
One of the most important subjects in heterogeneous water oxidation catalysis is the sensible design of inexpensive catalysts with high catalytic activity. Herein, the stoichiometric LaXO3 (X=Mn, Fe) perovskite catalysts were made using the citric sol-gel process. The surface of perovskite is select...
Saved in:
Published in | Surfaces and interfaces Vol. 62; p. 106161 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most important subjects in heterogeneous water oxidation catalysis is the sensible design of inexpensive catalysts with high catalytic activity. Herein, the stoichiometric LaXO3 (X=Mn, Fe) perovskite catalysts were made using the citric sol-gel process. The surface of perovskite is selectively etched with acetic acid for improved photochemical and electrochemical water-oxidation activities. In comparison to pristine materials, these surface-modified nanomaterials exhibit twice catalytic activity with lower overpotentials in electrochemical water oxidation. The turnover frequency (TOF) of pristine LMO and LFO is 1.18 × 10–3 and 1.22 × 10–3 s-1, respectively, whereas the values are 2.60 × 10–3 s-1 for LMO-1M, and 2.79 × 10–3 s-1 for LFO-1M. The lower Tafel slope values compared to pristine samples show faster kinetics in the acid-treated samples. The improvement in the oxygen evolution activity is due to the enhanced hydrophilicity, oxygen vacancies, and mixed oxidation states brought about by the partial removal of surface ʻLaʼ ions from pristine perovskites. This study emphasizes how crucial it is to introduce A-site cation shortage in perovskites as a quick and effective way to encourage OER activity.
[Display omitted] |
---|---|
AbstractList | One of the most important subjects in heterogeneous water oxidation catalysis is the sensible design of inexpensive catalysts with high catalytic activity. Herein, the stoichiometric LaXO3 (X=Mn, Fe) perovskite catalysts were made using the citric sol-gel process. The surface of perovskite is selectively etched with acetic acid for improved photochemical and electrochemical water-oxidation activities. In comparison to pristine materials, these surface-modified nanomaterials exhibit twice catalytic activity with lower overpotentials in electrochemical water oxidation. The turnover frequency (TOF) of pristine LMO and LFO is 1.18 × 10–3 and 1.22 × 10–3 s-1, respectively, whereas the values are 2.60 × 10–3 s-1 for LMO-1M, and 2.79 × 10–3 s-1 for LFO-1M. The lower Tafel slope values compared to pristine samples show faster kinetics in the acid-treated samples. The improvement in the oxygen evolution activity is due to the enhanced hydrophilicity, oxygen vacancies, and mixed oxidation states brought about by the partial removal of surface ʻLaʼ ions from pristine perovskites. This study emphasizes how crucial it is to introduce A-site cation shortage in perovskites as a quick and effective way to encourage OER activity.
[Display omitted] |
ArticleNumber | 106161 |
Author | Bhatt, Dipti Kunchala, Ravi K. Naidu, Boddu S. |
Author_xml | – sequence: 1 givenname: Dipti surname: Bhatt fullname: Bhatt, Dipti – sequence: 2 givenname: Ravi K. surname: Kunchala fullname: Kunchala, Ravi K. – sequence: 3 givenname: Boddu S. surname: Naidu fullname: Naidu, Boddu S. email: sanyasinaidu@inst.ac.in, naidu245@gmail.com |
BookMark | eNp9kN1KAzEQhXNRwVr7Bl7kBbbmZ7ObvRGk-FMoeGHxNmSTSU1tkyVZq769u6zXwsAwZ-Ychu8KzUIMgNANJStKaHV7WOXP5HxYMcLEIFW0ojM0Z2UlC8I4uUTLnA-EECrrRlAxR2-vg0EbwBD2PgAkH_Y4OtxBiuf84XvA8dtbyFgPhbsUT7H3Megj1t0wafOOXUz4S_eQivFUj-trdOH0McPyry_Q7vFht34uti9Pm_X9tjBUir5wtXTCWAMlJVBbKxvrBG-YaWVbMkuYdZw0bclrIWTbUkYp5cRK15a1Y5wvUDnFmhRzTuBUl_xJpx9FiRqJqIOaiKiRiJqIDLa7yQbDa2cPSWXjIRiwPoHplY3-_4BfSwVxJQ |
Cites_doi | 10.1016/j.cplett.2013.10.089 10.1039/C6RA23704E 10.3390/molecules27217438 10.1039/C5TC02043C 10.1149/1.2129276 10.1021/acs.energyfuels.1c03869 10.1021/acs.est.6b00110 10.1016/j.ijhydene.2010.08.029 10.1021/ja510442p 10.1016/j.ijhydene.2024.05.350 10.1016/j.ijhydene.2022.10.167 10.1021/acsami.1c24223 10.1126/science.1212858 10.1021/jp3126768 10.1021/acsami.0c03983 10.1039/C6CY02489K 10.1039/C8NJ04590A 10.1016/j.electacta.2017.10.172 10.1016/j.apcatb.2014.08.044 10.1016/j.apsusc.2019.02.104 10.1021/ja2024965 10.1039/C4DT02732A 10.1039/D1SE01080H 10.1002/aenm.201601275 10.1039/b926757c 10.1016/j.apsusc.2020.147165 10.1021/acsaem.3c02468 10.1002/anie.201210057 10.1002/anie.201612635 10.1016/j.apsusc.2017.03.179 10.1016/j.jeurceramsoc.2024.116878 10.1016/j.ceramint.2018.11.175 10.1073/pnas.0603395103 10.1039/C5MH00096C 10.1038/nmat4481 10.1002/advs.201801898 10.1073/pnas.1310703110 10.1016/j.ijhydene.2021.10.264 10.1002/admi.201801173 10.1021/acsanm.0c02747 10.1039/C5TA09322H 10.1021/acscatal.8b01046 10.1038/nature11475 10.1016/j.apcatb.2020.119046 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.surfin.2025.106161 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_surfin_2025_106161 S2468023025004201 |
GroupedDBID | --M 0R~ AABXZ AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABNEU ACDAQ ACGFS ACRLP ADBBV AEBSH AEIPS AEZYN AFJKZ AFRZQ AFTJW AFXIZ AGUBO AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BNPGV EBS EFJIC FDB FIRID FYGXN KOM O9- ROL SPC SPCBC SSG SSH SSM SSQ SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP CITATION EJD |
ID | FETCH-LOGICAL-c185t-f78f5cdce410e7dd89df5392cb8b42d02df309b437558bb1211130d8fb47f233 |
IEDL.DBID | AIKHN |
ISSN | 2468-0230 |
IngestDate | Tue Jul 01 05:14:01 EDT 2025 Sat Apr 12 15:21:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acid-etching Water-oxidation Perovskite oxides Surface engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185t-f78f5cdce410e7dd89df5392cb8b42d02df309b437558bb1211130d8fb47f233 |
ParticipantIDs | crossref_primary_10_1016_j_surfin_2025_106161 elsevier_sciencedirect_doi_10_1016_j_surfin_2025_106161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 2025-04-00 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Surfaces and interfaces |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Murakami, Hong, Suenobu, Yamaguchi, Ogura, Fukuzumi (bib0008) 2011; 133 Naidu, Gupta, Maitra, Rao (bib0018) 2014; 591 Wiranwetchayan, Promnopas, Phadungdhitidhada, Phuruangrat, Thongtem, Singjai (bib0046) 2019; 45 Zhang, Li, Hou, Yang, Dong, Liu (bib0044) 2017; 411 Luo, Wang, Zuo, Qian, Xu, Liu (bib0036) 2017; 7 Zheng, Zhang, Wang, Zhang, Guo (bib0042) 2022; 36 Lewis, Nocera (bib0002) 2006; 103 Zhou, Zhao, Liang, Smith, Zhu (bib0015) 2015; 2 EIA. Annual energy outlook. U S EIA Annu Energy Outlook 2020 with Projected to 2050, 2020. He, Yu, Lou (bib0011) 2017; 56 Maitra, Naidu, Govindaraj, Rao (bib0022) 2013; 110 Fan, Dou, Zhang (bib0038) 2016; 6 Hong, Díez, Adeyemi, Sousa, Salonen, Lebedev (bib0017) 2022; 14 Li, Shi, Jiang, Zheng, Wang (bib0047) 2022; 27 Gupta, Naidu, Rao (bib0024) 2015; 44 Ma (bib0037) 2019; 43 Kunchala, Bhatt, Kalia, Naidu (bib0028) 2023; 48 Jasem, Tseung (bib0009) 1979; 126 Parida, Reddy, Martha, Das, Biswal (bib0045) 2010; 35 Suntivich, May, Gasteiger, Goodenough, Shao-Horn (bib0012) 2011; 334 Staszak-Jirkovský, Malliakas, Lopes, Danilovic, Kota, Chang (bib0005) 2016; 15 Peng, Si, Luo, Su, Chang, Li (bib0021) 2016; 50 Xu, Xu, Wang, Wang, Zhang, Zhang (bib0041) 2013; 52 Bai, Li, Hao (bib0043) 2015; 164 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0007) 2015; 137 Ao, Ma, Dai, Guo, Liu, Li (bib0025) 2022; 47 Liu, Zhang, Zheng, Guo, Zhu, Chen (bib0030) 2019; 6 Risch, Grimaud, May, Stoerzinger, Chen, Mansour (bib0014) 2013; 117 Liu, Ding, Wang, Ding, Zhang, Yuan (bib0029) 2018; 259 Sun, Guo, Shao, Huang, Li, He (bib0053) 2018; 8 Tang, Yao, Ren, Shao, Cai, Gao (bib0051) 2024; 33 Li, Jiang, Fu, Wang, Xu, Chen (bib0048) 2025; 35 Zhang, Zhang, Pan, Shen, Mahmood, Ma (bib0010) 2018; 8 Sun, Du, Sun, Han, Ma, Wang (bib0033) 2020; 12 Deng, Zhang, Xie, Tumlin, Giri, Karna (bib0004) 2016; 4 Krishankant, Aashi, Jain, Sharma, Rani, Bera (bib0052) 2023; 7 Lin, Shao, Tang, Li, Wang, Chen, Yuan, Cen (bib0034) 2019; 479 Chen, Sun, Lu, Li, Liu, Zhou (bib0050) 2024; 497 Kunchala, Pushpendra, Naidu (bib0026) 2022; 6 Zhu, Zhang, Zhao, Chen, Liu, Zhao (bib0023) 2019; 29 Caddeo, Marongiu, Meloni, Filippetti, Quochi, Saba (bib0039) 2019; 6 Yu, Chen, Saccoccio, Lam, Ciucci (bib0013) 2018; 5 Kunchala, Pushpendra, Naidu (bib0027) 2021; 4 King, Woodward (bib0016) 2010; 20 Yu, Xu, Zhang, Ma, Luo (bib0040) 2024; 72 Guo, Cui, Xu, Gong (bib0020) 2020; 529 Reier, Nong, Teschner, Schlögl, Strasser (bib0006) 2017; 7 Du, Ai, Chen, Liu, Chen, Wang (bib0049) 2020; 272 Chu, Majumdar (bib0003) 2012; 488 Paquin, Rivnay, Salleo, Stingelin, Silva (bib0035) 2015; 3 Gao, Zhu, Ye, Li, Wang, He (bib0019) 2025; 45 Zhang (10.1016/j.surfin.2025.106161_bib0010) 2018; 8 Tang (10.1016/j.surfin.2025.106161_bib0051) 2024; 33 10.1016/j.surfin.2025.106161_bib0001 Kunchala (10.1016/j.surfin.2025.106161_bib0027) 2021; 4 McCrory (10.1016/j.surfin.2025.106161_bib0007) 2015; 137 Suntivich (10.1016/j.surfin.2025.106161_bib0012) 2011; 334 Gao (10.1016/j.surfin.2025.106161_bib0019) 2025; 45 Kunchala (10.1016/j.surfin.2025.106161_bib0026) 2022; 6 Guo (10.1016/j.surfin.2025.106161_bib0020) 2020; 529 Staszak-Jirkovský (10.1016/j.surfin.2025.106161_bib0005) 2016; 15 Maitra (10.1016/j.surfin.2025.106161_bib0022) 2013; 110 Bai (10.1016/j.surfin.2025.106161_bib0043) 2015; 164 Gupta (10.1016/j.surfin.2025.106161_bib0024) 2015; 44 Zhou (10.1016/j.surfin.2025.106161_bib0015) 2015; 2 Li (10.1016/j.surfin.2025.106161_bib0048) 2025; 35 Caddeo (10.1016/j.surfin.2025.106161_bib0039) 2019; 6 He (10.1016/j.surfin.2025.106161_bib0011) 2017; 56 Yu (10.1016/j.surfin.2025.106161_bib0040) 2024; 72 Hong (10.1016/j.surfin.2025.106161_bib0017) 2022; 14 Risch (10.1016/j.surfin.2025.106161_bib0014) 2013; 117 Krishankant (10.1016/j.surfin.2025.106161_bib0052) 2023; 7 Liu (10.1016/j.surfin.2025.106161_bib0029) 2018; 259 Luo (10.1016/j.surfin.2025.106161_bib0036) 2017; 7 Lewis (10.1016/j.surfin.2025.106161_bib0002) 2006; 103 Sun (10.1016/j.surfin.2025.106161_bib0033) 2020; 12 Jasem (10.1016/j.surfin.2025.106161_bib0009) 1979; 126 Kunchala (10.1016/j.surfin.2025.106161_bib0028) 2023; 48 Deng (10.1016/j.surfin.2025.106161_bib0004) 2016; 4 Ao (10.1016/j.surfin.2025.106161_bib0025) 2022; 47 Ma (10.1016/j.surfin.2025.106161_bib0037) 2019; 43 Reier (10.1016/j.surfin.2025.106161_bib0006) 2017; 7 Naidu (10.1016/j.surfin.2025.106161_bib0018) 2014; 591 Yu (10.1016/j.surfin.2025.106161_bib0013) 2018; 5 King (10.1016/j.surfin.2025.106161_bib0016) 2010; 20 Parida (10.1016/j.surfin.2025.106161_bib0045) 2010; 35 Li (10.1016/j.surfin.2025.106161_bib0047) 2022; 27 Zheng (10.1016/j.surfin.2025.106161_bib0042) 2022; 36 Murakami (10.1016/j.surfin.2025.106161_bib0008) 2011; 133 Paquin (10.1016/j.surfin.2025.106161_bib0035) 2015; 3 Wiranwetchayan (10.1016/j.surfin.2025.106161_bib0046) 2019; 45 Peng (10.1016/j.surfin.2025.106161_bib0021) 2016; 50 Zhu (10.1016/j.surfin.2025.106161_bib0023) 2019; 29 Xu (10.1016/j.surfin.2025.106161_bib0041) 2013; 52 Chen (10.1016/j.surfin.2025.106161_bib0050) 2024; 497 Sun (10.1016/j.surfin.2025.106161_bib0053) 2018; 8 Chu (10.1016/j.surfin.2025.106161_bib0003) 2012; 488 Lin (10.1016/j.surfin.2025.106161_bib0034) 2019; 479 Liu (10.1016/j.surfin.2025.106161_bib0030) 2019; 6 Du (10.1016/j.surfin.2025.106161_bib0049) 2020; 272 Fan (10.1016/j.surfin.2025.106161_bib0038) 2016; 6 Zhang (10.1016/j.surfin.2025.106161_bib0044) 2017; 411 |
References_xml | – volume: 6 start-page: 766 year: 2022 end-page: 777 ident: bib0026 article-title: High surface area MnO publication-title: Sustain. Energy Fuels – volume: 110 start-page: 11704 year: 2013 end-page: 11707 ident: bib0022 article-title: Importance of trivalency and the e publication-title: Proc. Natl. Acad. Sci. USA. – volume: 44 start-page: 472 year: 2015 end-page: 474 ident: bib0024 article-title: Remarkable effect of Pt nanoparticles on visible light-induced oxygen generation from water catalysed by perovskite oxides publication-title: Dalt. Trans. – volume: 33 year: 2024 ident: bib0051 article-title: Regulating oxygen vacancies in Co publication-title: Chem. Eng. J. – volume: 4 start-page: 396 year: 2021 end-page: 405 ident: bib0027 article-title: Irregularly shaped Mn publication-title: ACS Appl. Nano. Mater. – volume: 591 start-page: 277 year: 2014 end-page: 281 ident: bib0018 article-title: Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides publication-title: Chem. Phys. Lett. – volume: 133 start-page: 11605 year: 2011 end-page: 11613 ident: bib0008 article-title: Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3803 year: 2018 end-page: 3811 ident: bib0010 article-title: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution publication-title: ACS Catal. – volume: 7 start-page: 496 year: 2017 end-page: 501 ident: bib0036 article-title: Selective corrosion of LaCoO publication-title: Catal. Sci. Technol. – volume: 164 start-page: 241 year: 2015 end-page: 250 ident: bib0043 article-title: 1D-MnO publication-title: Appl. Catal. B Environ. – volume: 259 start-page: 1004 year: 2018 end-page: 1010 ident: bib0029 article-title: Cation deficiency design: a simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst publication-title: Electrochim. Acta – volume: 35 start-page: 12161 year: 2010 end-page: 12168 ident: bib0045 article-title: Fabrication of nanocrystalline LaFeO publication-title: Int. J. Hydrogen Energy – volume: 117 start-page: 8628 year: 2013 end-page: 8635 ident: bib0014 article-title: Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS publication-title: J. Phys. Chem. C – volume: 52 start-page: 3887 year: 2013 end-page: 3890 ident: bib0041 article-title: Synthesis of perovskite-based porous La publication-title: Angew Chemie - Int Ed – volume: 14 start-page: 23277 year: 2022 end-page: 23284 ident: bib0017 article-title: Deep eutectic solvent synthesis of perovskite electrocatalysts for water oxidation publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 4802 year: 2019 end-page: 4809 ident: bib0046 article-title: Characterization of perovskite LaFeO publication-title: Ceram. Int. – volume: 56 start-page: 3897 year: 2017 end-page: 3900 ident: bib0011 article-title: Carbon-incorporated nickel–Cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution publication-title: Angew. Chemie - Int. Ed. – volume: 103 start-page: 15729 year: 2006 end-page: 15735 ident: bib0002 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. USA. – volume: 6 start-page: 1 year: 2019 end-page: 9 ident: bib0030 article-title: Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films publication-title: Adv. Sci. – volume: 334 start-page: 1383 year: 2011 end-page: 1385 ident: bib0012 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles publication-title: Science – volume: 529 year: 2020 ident: bib0020 article-title: Selective dissolution of A-site cations of La publication-title: Appl. Surf. Sci. – volume: 5 start-page: 1105 year: 2018 end-page: 1112 ident: bib0013 article-title: Promotion of oxygen reduction with both amorphous and crystalline MnOx through the surface engineering of La publication-title: Chem. Electro. Chem. – volume: 479 start-page: 234 year: 2019 end-page: 246 ident: bib0034 article-title: Enhancement of NO oxidation activity and SO publication-title: Appl. Surf. Sci. – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: bib0003 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature – volume: 7 year: 2017 ident: bib0006 article-title: Electrocatalytic oxygen evolution reaction in acidic environments – Reaction mechanisms and catalysts publication-title: Adv. Energy Mater. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib0007 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 24717 year: 2020 end-page: 24725 ident: bib0033 article-title: Bifunctional LaMn publication-title: ACS Appl. Mater. Interfaces – volume: 35 year: 2025 ident: bib0048 article-title: Tailoring nanocrystalline /amorphous interfaces to enhance oxygen evolution reaction performance for FeNi-based alloy fibers publication-title: Adv. Funct. Mater. – volume: 43 start-page: 2974 year: 2019 end-page: 2980 ident: bib0037 article-title: NO oxidative activity of mesoporous LaMnO publication-title: New J. Chem. – volume: 272 year: 2020 ident: bib0049 article-title: PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance publication-title: Appl. Catal. B Environ. – volume: 72 start-page: 209 year: 2024 end-page: 219 ident: bib0040 article-title: Electrochemically treated AlCoCrFeNi high entropy alloy as a self-supporting electrode for overall water splitting publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 1027 year: 2023 end-page: 1036 ident: bib0052 article-title: Unfolding the electrocatalytic efficiency of ultrastable CoFeLDH nanorods by creating oxygen vacancies for OER publication-title: ACS Appl. Energy Mater. – reference: EIA. Annual energy outlook. U S EIA Annu Energy Outlook 2020 with Projected to 2050, 2020. – volume: 47 start-page: 3741 year: 2022 end-page: 3751 ident: bib0025 article-title: Promotional effect of acetic acid on simultaneous NO and Hg0 oxidation over LaCoO publication-title: Int. J. Hydrogen Energy – volume: 48 start-page: 3952 year: 2023 end-page: 3964 ident: bib0028 article-title: Manifold improvement of water oxidation activity of NaCoO publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 1 year: 2019 end-page: 7 ident: bib0039 article-title: Hydrophilicity and water contact angle on methylammonium lead iodide publication-title: Adv Mater Interfaces – volume: 36 start-page: 1091 year: 2022 end-page: 1099 ident: bib0042 article-title: CoO enhanced oxygen evolution kinetics of LaMnO publication-title: Energy Fuels – volume: 45 year: 2025 ident: bib0019 article-title: Novel high-entropy perovskite titanate: a potential thermal protective material with improved thermophysical properties publication-title: J. Eur. Ceram. Soc. – volume: 411 start-page: 27 year: 2017 end-page: 33 ident: bib0044 article-title: Synthesis of highly efficient Mn publication-title: Appl. Surf. Sci. – volume: 15 start-page: 197 year: 2016 end-page: 203 ident: bib0005 article-title: Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction publication-title: Nat. Mater. – volume: 3 start-page: 10715 year: 2015 end-page: 10722 ident: bib0035 article-title: Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors publication-title: J. Mater. Chem. C – volume: 27 start-page: 7438 year: 2022 ident: bib0047 article-title: Design and preparation of NiFe publication-title: Molecules – volume: 4 start-page: 6824 year: 2016 end-page: 6830 ident: bib0004 article-title: Laser induced MoS publication-title: J. Mater. Chem. A – volume: 20 start-page: 5785 year: 2010 end-page: 5796 ident: bib0016 article-title: Cation ordering in perovskites publication-title: J. Mater. Chem. – volume: 29 start-page: 1 year: 2019 end-page: 12 ident: bib0023 article-title: Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides publication-title: Adv. Funct. Mater. – volume: 2 start-page: 495 year: 2015 end-page: 501 ident: bib0015 article-title: High activity and durability of novel perovskite electrocatalysts for water oxidation publication-title: Mater Horizons – volume: 6 start-page: 110274 year: 2016 end-page: 110287 ident: bib0038 article-title: Nonprecious mixed oxide catalysts Co publication-title: RSC Adv. – volume: 126 start-page: 1353 year: 1979 end-page: 1360 ident: bib0009 article-title: A potentiostatic pulse study of oxygen evolution on teflon-bonded nickel-cobalt oxide electrodes publication-title: J. Electrochem. Soc. – volume: 50 start-page: 6442 year: 2016 end-page: 6448 ident: bib0021 article-title: Surface tuning of La publication-title: Environ. Sci. Technol. – volume: 497 year: 2024 ident: bib0050 article-title: Shining light on atomic vacancies in electrocatalysts for boosted water splitting publication-title: Chem. Eng. J. – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: bib0053 article-title: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant publication-title: Adv. Energy Mater. – volume: 591 start-page: 277 year: 2014 ident: 10.1016/j.surfin.2025.106161_bib0018 article-title: Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.10.089 – volume: 6 start-page: 110274 year: 2016 ident: 10.1016/j.surfin.2025.106161_bib0038 article-title: Nonprecious mixed oxide catalysts Co3AlO and Co2NiAlO derived from nanoflowerlike cobalt-based hydrotalcites for highly efficient oxidation of nitric oxide publication-title: RSC Adv. doi: 10.1039/C6RA23704E – volume: 27 start-page: 7438 year: 2022 ident: 10.1016/j.surfin.2025.106161_bib0047 article-title: Design and preparation of NiFe2O4@FeOOH composite electrocatalyst for highly efficient and stable oxygen evolution reaction publication-title: Molecules doi: 10.3390/molecules27217438 – volume: 3 start-page: 10715 year: 2015 ident: 10.1016/j.surfin.2025.106161_bib0035 article-title: Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02043C – volume: 126 start-page: 1353 year: 1979 ident: 10.1016/j.surfin.2025.106161_bib0009 article-title: A potentiostatic pulse study of oxygen evolution on teflon-bonded nickel-cobalt oxide electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129276 – volume: 36 start-page: 1091 year: 2022 ident: 10.1016/j.surfin.2025.106161_bib0042 article-title: CoO enhanced oxygen evolution kinetics of LaMnO3 perovskite As a potential cathode for rechargeable Zn-air batteries publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c03869 – volume: 50 start-page: 6442 year: 2016 ident: 10.1016/j.surfin.2025.106161_bib0021 article-title: Surface tuning of La0.5Sr0.5CoO3 perovskite catalysts by acetic acid for NOx storage and reduction publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00110 – volume: 35 start-page: 12161 year: 2010 ident: 10.1016/j.surfin.2025.106161_bib0045 article-title: Fabrication of nanocrystalline LaFeO3: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.029 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.surfin.2025.106161_bib0007 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 72 start-page: 209 year: 2024 ident: 10.1016/j.surfin.2025.106161_bib0040 article-title: Electrochemically treated AlCoCrFeNi high entropy alloy as a self-supporting electrode for overall water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.05.350 – volume: 48 start-page: 3952 year: 2023 ident: 10.1016/j.surfin.2025.106161_bib0028 article-title: Manifold improvement of water oxidation activity of NaCoO2 by selective cation exchange publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.10.167 – volume: 14 start-page: 23277 year: 2022 ident: 10.1016/j.surfin.2025.106161_bib0017 article-title: Deep eutectic solvent synthesis of perovskite electrocatalysts for water oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c24223 – volume: 334 start-page: 1383 year: 2011 ident: 10.1016/j.surfin.2025.106161_bib0012 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles publication-title: Science doi: 10.1126/science.1212858 – volume: 117 start-page: 8628 year: 2013 ident: 10.1016/j.surfin.2025.106161_bib0014 article-title: Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS publication-title: J. Phys. Chem. C doi: 10.1021/jp3126768 – volume: 35 year: 2025 ident: 10.1016/j.surfin.2025.106161_bib0048 article-title: Tailoring nanocrystalline /amorphous interfaces to enhance oxygen evolution reaction performance for FeNi-based alloy fibers publication-title: Adv. Funct. Mater. – volume: 12 start-page: 24717 year: 2020 ident: 10.1016/j.surfin.2025.106161_bib0033 article-title: Bifunctional LaMn0.3Co0.7O3perovskite oxide catalyst for oxygen reduction and evolution reactions: the optimized egElectronic structures by manganese dopant publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03983 – volume: 7 start-page: 496 year: 2017 ident: 10.1016/j.surfin.2025.106161_bib0036 article-title: Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02489K – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.surfin.2025.106161_bib0053 article-title: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant publication-title: Adv. Energy Mater. – volume: 43 start-page: 2974 issue: 7 year: 2019 ident: 10.1016/j.surfin.2025.106161_bib0037 article-title: NO oxidative activity of mesoporous LaMnO3 and LaCoO3 perovskite nanoparticles by facile molten-salt synthesis publication-title: New J. Chem. doi: 10.1039/C8NJ04590A – volume: 259 start-page: 1004 year: 2018 ident: 10.1016/j.surfin.2025.106161_bib0029 article-title: Cation deficiency design: a simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.172 – volume: 164 start-page: 241 year: 2015 ident: 10.1016/j.surfin.2025.106161_bib0043 article-title: 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.08.044 – volume: 479 start-page: 234 year: 2019 ident: 10.1016/j.surfin.2025.106161_bib0034 article-title: Enhancement of NO oxidation activity and SO2 resistance over LaMnO3+δ perovskites catalysts with metal substitution and acid treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.104 – volume: 133 start-page: 11605 year: 2011 ident: 10.1016/j.surfin.2025.106161_bib0008 article-title: Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2024965 – volume: 44 start-page: 472 year: 2015 ident: 10.1016/j.surfin.2025.106161_bib0024 article-title: Remarkable effect of Pt nanoparticles on visible light-induced oxygen generation from water catalysed by perovskite oxides publication-title: Dalt. Trans. doi: 10.1039/C4DT02732A – volume: 6 start-page: 766 year: 2022 ident: 10.1016/j.surfin.2025.106161_bib0026 article-title: High surface area MnO2 nanomaterials synthesized by selective cation dissolution for efficient water oxidation publication-title: Sustain. Energy Fuels doi: 10.1039/D1SE01080H – volume: 7 year: 2017 ident: 10.1016/j.surfin.2025.106161_bib0006 article-title: Electrocatalytic oxygen evolution reaction in acidic environments – Reaction mechanisms and catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601275 – volume: 20 start-page: 5785 year: 2010 ident: 10.1016/j.surfin.2025.106161_bib0016 article-title: Cation ordering in perovskites publication-title: J. Mater. Chem. doi: 10.1039/b926757c – volume: 529 year: 2020 ident: 10.1016/j.surfin.2025.106161_bib0020 article-title: Selective dissolution of A-site cations of La0.6Sr0.4Co0.8Fe0.2O3 perovskite catalysts to enhance the oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147165 – volume: 5 start-page: 1105 year: 2018 ident: 10.1016/j.surfin.2025.106161_bib0013 article-title: Promotion of oxygen reduction with both amorphous and crystalline MnOx through the surface engineering of La0.8Sr0.2MnO3-δ perovskite publication-title: Chem. Electro. Chem. – volume: 7 start-page: 1027 year: 2023 ident: 10.1016/j.surfin.2025.106161_bib0052 article-title: Unfolding the electrocatalytic efficiency of ultrastable CoFeLDH nanorods by creating oxygen vacancies for OER publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.3c02468 – volume: 52 start-page: 3887 year: 2013 ident: 10.1016/j.surfin.2025.106161_bib0041 article-title: Synthesis of perovskite-based porous La0.75Sr 0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries publication-title: Angew Chemie - Int Ed doi: 10.1002/anie.201210057 – volume: 56 start-page: 3897 year: 2017 ident: 10.1016/j.surfin.2025.106161_bib0011 article-title: Carbon-incorporated nickel–Cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution publication-title: Angew. Chemie - Int. Ed. doi: 10.1002/anie.201612635 – volume: 411 start-page: 27 year: 2017 ident: 10.1016/j.surfin.2025.106161_bib0044 article-title: Synthesis of highly efficient Mn 2O3 catalysts for CO oxidation derived from Mn-MIL-100 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.179 – volume: 497 year: 2024 ident: 10.1016/j.surfin.2025.106161_bib0050 article-title: Shining light on atomic vacancies in electrocatalysts for boosted water splitting publication-title: Chem. Eng. J. – volume: 33 year: 2024 ident: 10.1016/j.surfin.2025.106161_bib0051 article-title: Regulating oxygen vacancies in Co3O4by combining solution reduction and Ni2+impregnation for oxygen evolution reaction publication-title: Chem. Eng. J. – volume: 29 start-page: 1 year: 2019 ident: 10.1016/j.surfin.2025.106161_bib0023 article-title: Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides publication-title: Adv. Funct. Mater. – volume: 45 year: 2025 ident: 10.1016/j.surfin.2025.106161_bib0019 article-title: Novel high-entropy perovskite titanate: a potential thermal protective material with improved thermophysical properties publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2024.116878 – volume: 45 start-page: 4802 year: 2019 ident: 10.1016/j.surfin.2025.106161_bib0046 article-title: Characterization of perovskite LaFeO3 synthesized by microwave plasma method for photocatalytic applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.175 – volume: 103 start-page: 15729 year: 2006 ident: 10.1016/j.surfin.2025.106161_bib0002 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0603395103 – volume: 2 start-page: 495 year: 2015 ident: 10.1016/j.surfin.2025.106161_bib0015 article-title: High activity and durability of novel perovskite electrocatalysts for water oxidation publication-title: Mater Horizons doi: 10.1039/C5MH00096C – volume: 15 start-page: 197 year: 2016 ident: 10.1016/j.surfin.2025.106161_bib0005 article-title: Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction publication-title: Nat. Mater. doi: 10.1038/nmat4481 – volume: 6 start-page: 1 year: 2019 ident: 10.1016/j.surfin.2025.106161_bib0030 article-title: Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films publication-title: Adv. Sci. doi: 10.1002/advs.201801898 – ident: 10.1016/j.surfin.2025.106161_bib0001 – volume: 110 start-page: 11704 year: 2013 ident: 10.1016/j.surfin.2025.106161_bib0022 article-title: Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by mn and co oxides publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1310703110 – volume: 47 start-page: 3741 year: 2022 ident: 10.1016/j.surfin.2025.106161_bib0025 article-title: Promotional effect of acetic acid on simultaneous NO and Hg0 oxidation over LaCoO3 perovskite publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.264 – volume: 6 start-page: 1 year: 2019 ident: 10.1016/j.surfin.2025.106161_bib0039 article-title: Hydrophilicity and water contact angle on methylammonium lead iodide publication-title: Adv Mater Interfaces doi: 10.1002/admi.201801173 – volume: 4 start-page: 396 year: 2021 ident: 10.1016/j.surfin.2025.106161_bib0027 article-title: Irregularly shaped Mn2O3 nanostructures with high surface area for water oxidation publication-title: ACS Appl. Nano. Mater. doi: 10.1021/acsanm.0c02747 – volume: 4 start-page: 6824 year: 2016 ident: 10.1016/j.surfin.2025.106161_bib0004 article-title: Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09322H – volume: 8 start-page: 3803 year: 2018 ident: 10.1016/j.surfin.2025.106161_bib0010 article-title: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.8b01046 – volume: 488 start-page: 294 year: 2012 ident: 10.1016/j.surfin.2025.106161_bib0003 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 272 year: 2020 ident: 10.1016/j.surfin.2025.106161_bib0049 article-title: PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119046 |
SSID | ssj0001879515 |
Score | 2.2941394 |
Snippet | One of the most important subjects in heterogeneous water oxidation catalysis is the sensible design of inexpensive catalysts with high catalytic activity.... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106161 |
SubjectTerms | Acid-etching Perovskite oxides Surface engineering Water-oxidation |
Title | Surface engineering of perovskite oxides as a promotional approach for water-oxidation |
URI | https://dx.doi.org/10.1016/j.surfin.2025.106161 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_DIXgRP3F-kYPXuLZJk_Q4hmM63MFN3a0kTQL1sI11U_988_rBFMSDUCgteaW8PN7vNf29XxC6yQITWg9MREeGEhY6RWTIHVFSCGWpCWj59_xxzIfP7GEWz1qo3_TCAK2yzv1VTi-zdX2nW3uzu8zz7iRiHNTLAMR95EEPVzuiCfeh3e7dj4bj7VILbKhd7mUAJgRsmia6kulVbFYuBy3UKL6FLyQe_g5S34BncID264oR96qXOkQtOz9CuyVzMyuO0cvEP1dlFtutsiBeOAwC4O8FrM3ixWdubIGVP_Cyot9B_Y0bPXHsC1f84YvOFYGh5VydoOngbtofknqzBJJ5yF0TJ6SLM5NZFgZWGCMT42Jf_GRaahaZIDKOBolmVMSx1BqU3Tx8Gek0Ey6i9BTtzBdze4awCJV1VLJEwXDtEqk4484am1jDmewg0jgnXVaSGGnDFXtLK2em4My0cmYHicaD6Y-pTX3W_tPy_N-WF2gPriqKzSXaWa829spXD2t9XUcHnEdPr6MvZDfF_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqVggWxFOUpwdW0yR2YmesKlBKH0sL6hbZsS2Voa2aFvj5-PJQQUIMSJkSXxR9tu4u9nffIXSfedo3LjARFWhKmG8lEX5kiRScS0O1R4vT89E4Sl7Y8yycNVCvroUBWmXl-0ufXnjr6k6nQrOzms87k4BFoF4GQdytPKjhaoE6VdhErW5_kIx3Wy3QULvoZQAmBGzqIrqC6ZVv13YOWqhB-AB_SJH_e5D6FniejtBhlTHibvlRx6hhFidor2BuZvkpep2498rMYLNTFsRLi0EA_D2HvVm8_Jxrk2PpLrwq6XeQf-NaTxy7xBV_uKRzTWBoMVdnaPr0OO0lpGqWQDIXcjfEcmHDTGeG-Z7hWotY29AlP5kSigXaC7SlXqwY5WEolAJlNxe-tLCKcRtQeo6ai-XCXCDMfWksFSyWMFzZWMiIRdZoExsdMdFGpAYnXZWSGGnNFXtLSzBTADMtwWwjXiOY_pja1HntPy0v_215h_aT6WiYDvvjwRU6gCcl3eYaNTfrrblxmcRG3VYr5QuHjcdB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+engineering+of+perovskite+oxides+as+a+promotional+approach+for+water-oxidation&rft.jtitle=Surfaces+and+interfaces&rft.au=Bhatt%2C+Dipti&rft.au=Kunchala%2C+Ravi+K.&rft.au=Naidu%2C+Boddu+S.&rft.date=2025-04-01&rft.issn=2468-0230&rft.volume=62&rft.spage=106161&rft_id=info:doi/10.1016%2Fj.surfin.2025.106161&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfin_2025_106161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0230&client=summon |