Non-intrusive binaural speech recognition prediction for hearing aid processing
Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we explore if models that predict SR performance of hearing-impaired (HI), aided users are applicable to automatically select the best algorithm...
Saved in:
Published in | Speech communication Vol. 170; p. 103202 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we explore if models that predict SR performance of hearing-impaired (HI), aided users are applicable to automatically select the best algorithm. To this end, SR experiments are conducted with 19 HI subjects who are aided with an open-source HA. Listeners’ SR is measured in virtual, complex acoustic scenes with two distinct noise conditions using the different speech enhancement strategies implemented in this HA. For model-based selection, we apply a PHOneme-based Binaural Intelligibility model (PHOBI) based on our previous work and extended with a component for simulating hearing loss. The non-intrusive model utilizes a deep neural network to predict phone probabilities; the deterioration of these phone representations in the presence of noise or generally signal degradation is quantified and used as model output. PHOBI model is trained with 960 h of English speech signals, a broad range of noise signals and room impulse responses. The performance of model-based algorithm selection is measured with two metrics: (i) Its ability to rank the HA algorithms in the order of subjective SR results and (ii) the SR difference between the measured best algorithm and the model-based selection (ΔSR). Results are compared to selections obtained with one non-intrusive and two intrusive models. PHOBI outperforms the non-intrusive and one of the intrusive models in both noise conditions, achieving significantly higher correlations (r=0.63 and 0.80). ΔSR scores are significantly lower (better) compared to the non-intrusive baseline (3.5% and 4.6% against 8.6% and 9.8%, respectively). The results in terms of ΔSR between PHOBI and the intrusive models are statistically not different, although PHOBI operates on the observed signal alone and does not require a clean reference signal.
•A DNN-based model accurately predicts the hearing aid algorithm that optimizes speech recognition for its user.•Individual predictions are made for 19 hearing-impaired, aided users in complex acoustic scenes.•The DNN-based approach is non-intrusive and performs equally well as established, intrusive models for speech recognition prediction. |
---|---|
AbstractList | Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we explore if models that predict SR performance of hearing-impaired (HI), aided users are applicable to automatically select the best algorithm. To this end, SR experiments are conducted with 19 HI subjects who are aided with an open-source HA. Listeners’ SR is measured in virtual, complex acoustic scenes with two distinct noise conditions using the different speech enhancement strategies implemented in this HA. For model-based selection, we apply a PHOneme-based Binaural Intelligibility model (PHOBI) based on our previous work and extended with a component for simulating hearing loss. The non-intrusive model utilizes a deep neural network to predict phone probabilities; the deterioration of these phone representations in the presence of noise or generally signal degradation is quantified and used as model output. PHOBI model is trained with 960 h of English speech signals, a broad range of noise signals and room impulse responses. The performance of model-based algorithm selection is measured with two metrics: (i) Its ability to rank the HA algorithms in the order of subjective SR results and (ii) the SR difference between the measured best algorithm and the model-based selection (ΔSR). Results are compared to selections obtained with one non-intrusive and two intrusive models. PHOBI outperforms the non-intrusive and one of the intrusive models in both noise conditions, achieving significantly higher correlations (r=0.63 and 0.80). ΔSR scores are significantly lower (better) compared to the non-intrusive baseline (3.5% and 4.6% against 8.6% and 9.8%, respectively). The results in terms of ΔSR between PHOBI and the intrusive models are statistically not different, although PHOBI operates on the observed signal alone and does not require a clean reference signal.
•A DNN-based model accurately predicts the hearing aid algorithm that optimizes speech recognition for its user.•Individual predictions are made for 19 hearing-impaired, aided users in complex acoustic scenes.•The DNN-based approach is non-intrusive and performs equally well as established, intrusive models for speech recognition prediction. |
ArticleNumber | 103202 |
Author | Kayser, Hendrik Roßbach, Jana Westhausen, Nils L. Meyer, Bernd T. |
Author_xml | – sequence: 1 givenname: Jana orcidid: 0009-0004-6434-8310 surname: Roßbach fullname: Roßbach, Jana email: jana.rossbach@uni-oldenburg.de organization: Communication Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany – sequence: 2 givenname: Nils L. surname: Westhausen fullname: Westhausen, Nils L. organization: Communication Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany – sequence: 3 givenname: Hendrik surname: Kayser fullname: Kayser, Hendrik organization: Auditory Signal Processing and Hearing Devices and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany – sequence: 4 givenname: Bernd T. surname: Meyer fullname: Meyer, Bernd T. organization: Communication Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany |
BookMark | eNp9UMtuwjAQ9IFKBdo_6CE_EGo7dh6XShXqS0Llwt2yNxtwBHZkB6T-fU3TM6fZ3dGMdmZBZs47JOSJ0RWjrHzuV3FA8KcVp1ymU5FwRuaJqvKyaIp7soixp5SKuuZzsv32LrduDOdoL5gZ6_Q56GOWTBAOWUhWe2dH6102BGwt_I2dD9kBdbBun2nbJsoDxpjWB3LX6WPEx39ckt372279mW-2H1_r100OrJZjjoZrIUwLlHPNNWPIGZVtxYzsGq5LkDXwRkIDoqRdBVJTFKarBGuFAV0siZhsIfgYA3ZqCPakw49iVF17UL2aelDXHtTUQ5K9TDJMr10sBhXBooMULCUdVevtbYNfCsZuNw |
Cites_doi | 10.1016/j.csl.2017.10.004 10.21437/Interspeech.2022-10408 10.1523/JNEUROSCI.2156-11.2011 10.1080/14992027.2017.1392048 10.1109/TASLP.2022.3184888 10.1121/1.1907229 10.1016/j.softx.2021.100953 10.21437/Interspeech.2024-473 10.21437/Interspeech.2022-10821 10.1016/j.heares.2022.108606 10.1155/2009/298605 10.21437/Interspeech.2022-10597 10.1016/j.specom.2018.06.001 10.1121/1.1918675 10.3813/AAA.919337 10.1155/ASP.2005.2915 10.1016/j.heares.2017.12.014 10.1097/01.HJ.0000366912.40173.76 10.1080/14992020500057517 10.1051/aacus/2022013 10.1121/1.419733 10.21437/Interspeech.2013-548 10.1016/j.specom.2018.11.006 10.17743/jaes.2014.0042 10.1109/TASL.2009.2020531 10.1109/TASLP.2019.2915167 10.1051/aacus/2022009 10.1177/1084713810379609 10.4081/audiores.2011.e24 10.1109/TASL.2011.2114881 10.1016/S0140-6736(17)31073-5 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.specom.2025.103202 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Social Welfare & Social Work Psychology |
ExternalDocumentID | 10_1016_j_specom_2025_103202 S0167639325000172 |
GroupedDBID | --K --M -~X .DC .~1 07C 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN 9JO AACTN AADFP AAEDT AAEDW AAFJI AAFTH AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABIVO ABJNI ABMAC ABMMH ABOYX ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACXNI ACZNC ADBBV ADEZE ADIYS ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AOUOD APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSH SSO SST SSV SSY SSZ T5K WUQ XJE ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c185t-eb2a44bdc022a2a11e2105d71b5f92a6c58c295c9c460f7c5a0e4bf741d4bca3 |
IEDL.DBID | .~1 |
ISSN | 0167-6393 |
IngestDate | Sun Jul 06 05:08:27 EDT 2025 Sat Apr 19 15:57:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-intrusive Deep neural network Speech recognition prediction Binaural |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185t-eb2a44bdc022a2a11e2105d71b5f92a6c58c295c9c460f7c5a0e4bf741d4bca3 |
ORCID | 0009-0004-6434-8310 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167639325000172 |
ParticipantIDs | crossref_primary_10_1016_j_specom_2025_103202 elsevier_sciencedirect_doi_10_1016_j_specom_2025_103202 |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Speech communication |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Keidser, Dillon, Flax, Ching, Brewer (b41) 2011; 1 Searchfield, Linford, Kobayashi, Crowhen, Latzel (b57) 2018; 57 Breithaupt, Gerkmann, Martin (b9) 2008 Kayser, Hermansky, Meyer (b39) 2022; 6 Wilson, Tucci, Merson, O’Donoghue (b69) 2017; 390 Huber, Pusch, Moritz, Rennies, Schepker, Meyer (b32) 2018 Durlach (b16) 1963; 35 Karbasi, Kolossa (b35) 2022; 426 Kochkin (b42) 2010; 63 Tu, Ma, Barker (b60) 2022; 2022-September Röttges, Hauth, Rennies, Brand (b53) 2022; 6 Hamacher, Chalupper, Eggers, Fischer, Kornagel, Puder, Rass (b26) 2005; 2005 Westhausen, Meyer (b67) 2023; PP BBC, ., BBC Sound Effects URL Karbasi, Zeiler, Kolossa (b36) 2022; 30 Veselý, K., Ghoshal, A., Burget, L., Povey, D., 2013. Sequence-discriminative Training of Deep Neural Networks. In: Proc. Interspeech. Lyon, France, pp. 2345–2349. Moritz, Gerlach, Adiloglu, Anemüller, Kollmeier, Goetze (b45) 2015 Schädler, Kranzusch, Hauth, Warzybok (b55) 2020 Barker, Akeroyd, Cox, Culling, Firth, Graetzer, Griffiths, Harris, Viveros-Munoz, Naylor, Podwinska, Porter (b5) 2022 Hoffner, D.E., Roßbach, J., Meyer, B.T., 2024. Joint prediction of subjective listening effort and speech intelligibility based on end-to-end learning. In: Proc. Interspeech 2024. pp. 4214–4218. Cherry (b13) 1953; 25 Luo, Mesgarani (b43) 2019; 27 Meyer, Mallidi, Kayser, Hermansky (b44) 2016 Grimm, Hohmann, Kollmeier (b23) 2009; 17 . Andersen, de Haan, Tan, Jensen (b3) 2018; 102 Spille, Ewert, Kollmeier, Meyer (b58) 2018; 48 Westhausen, Kayser, Jansen, Meyer (b66) 2024; PP Wagener, Brand, Kollmeier (b64) 1999; 38 Hauth, Berning, Kollmeier, Brand (b27) 2020; 24 Kayser, Herzke, Maanen, Zimmermann, Grimm, Hohmann (b40) 2022; 17 Santos, Senoussaoui, Falk (b54) 2014 Yi, Xiao, Xiao, Naderi, Möller, Wardah, Mittag, Cutler, Zhang, Williamson, Chen, Yang, Shang (b70) 2022 Hermansky, Variani, Peddinti (b29) 2013 Wagener, Brand (b63) 2005; 44 Roßbach, Rottges, Hauth, Brand, Meyer (b51) 2021 Wichern, Antognini, Flynn, Zhu, McQuinn, Crow, Manilow, Le Roux (b68) 2019; 2019-Septe Nejime, Moore (b46) 1997; 102 Grimm, Herzke, Berg, Hohmann (b21) 2006; 92 Hendrikse, Grimm, Hohmann (b28) 2020; 24 Baumgärtel, Hu, Krawczyk-Becker, Marquardt, Herzke, Coleman, Adiloğlu, Bomke, Plotz, Gerkmann, Doclo, Kollmeier, Hohmann, Dietz (b6) 2015; 19 Grimm, Hendrikse, Hohmann (b20) 2021 Nordqvist (b47) 2004 Plack, Barker, Prendergast (b49) 2014; 18 Buechler (b11) 2001 Roßbach, Wagener, Meyer (b52) 2024; 89 Povey, Ghoshal, Boulianne, Burget, Glembek, Goel, Hannemann, Motlicek, Qian, Schwarz, Silovsky, Stemmer, Vesely (b50) 2011 Huber, Krüger, Meyer (b31) 2018 Elko, Pong (b17) 1995 Kates, Arehart (b37) 2020 Hall (b25) 1966 Kayser, Ewert, Anemüller, Rohdenburg, Hohmann, Kollmeier (b38) 2009; 2009 Grimm, Luberadzka, Hohmann (b24) 2019; 105 Taal, Hendriks, Heusdens, Jensen (b59) 2011; 19 Panayotov, Chen, Povey, Khudanpur (b48) 2015 Andersen, de Haan, Tan, Jensen (b2) 2017 Hülsmeier, D., Hauth, C.F., Röttges, S., Kranzusch, P., Roßbach, J., Schädler, M.R., Meyer, B.T., Warzybok, A., Brand, T., 2021. Towards Non-Intrusive Prediction of Speech Recognition Thresholds in Binaural Conditions. In: 14th ITG Conference on Speech Communication. ISBN: 9783800756285, pp. 1–5. Dillon (b15) 2012 Graetzer, Barker, Cox, Akeroyd, Culling, Naylor, Porter, Muñoz (b19) 2021; 2 Husstedt, Wollermann, Tchorz (b34) 2017; 6 Bronkhorst (b10) 2000; 86 Wendt, Van de Par, Ewert (b65) 2014; 62 Castro Martinez, Gerlach, Payá-Vayá, Hermansky, Ooster, Meyer (b12) 2019; 106 Denk, Ernst, Ewert, Kollmeier (b14) 2018; 22 Fontan, Cretin-Maitenaz, Füllgrabe (b18) 2020; 24 Barker, Akeroyd, Bailey, Cox, Culling, Firth, Graetzer, Naylor (b4) 2024 Akeroyd, Barker, Cox, Culling, Graetzer, Naylor, Porter, Viveros Muñoz (b1) 2020; 148 Tu, Ma, Barker (b61) 2022 Bisgaard, Vlaming, Dahlquist (b8) 2010; 14 Schaette, McAlpine (b56) 2011; 31 Grimm, Hohmann (b22) 2019 Breithaupt (10.1016/j.specom.2025.103202_b9) 2008 Taal (10.1016/j.specom.2025.103202_b59) 2011; 19 Karbasi (10.1016/j.specom.2025.103202_b35) 2022; 426 Schädler (10.1016/j.specom.2025.103202_b55) 2020 Searchfield (10.1016/j.specom.2025.103202_b57) 2018; 57 10.1016/j.specom.2025.103202_b7 Grimm (10.1016/j.specom.2025.103202_b24) 2019; 105 Wichern (10.1016/j.specom.2025.103202_b68) 2019; 2019-Septe Andersen (10.1016/j.specom.2025.103202_b3) 2018; 102 Luo (10.1016/j.specom.2025.103202_b43) 2019; 27 10.1016/j.specom.2025.103202_b62 Dillon (10.1016/j.specom.2025.103202_b15) 2012 Tu (10.1016/j.specom.2025.103202_b60) 2022; 2022-September Akeroyd (10.1016/j.specom.2025.103202_b1) 2020; 148 Fontan (10.1016/j.specom.2025.103202_b18) 2020; 24 Andersen (10.1016/j.specom.2025.103202_b2) 2017 Kochkin (10.1016/j.specom.2025.103202_b42) 2010; 63 Tu (10.1016/j.specom.2025.103202_b61) 2022 Barker (10.1016/j.specom.2025.103202_b5) 2022 Durlach (10.1016/j.specom.2025.103202_b16) 1963; 35 Röttges (10.1016/j.specom.2025.103202_b53) 2022; 6 Santos (10.1016/j.specom.2025.103202_b54) 2014 Baumgärtel (10.1016/j.specom.2025.103202_b6) 2015; 19 Hauth (10.1016/j.specom.2025.103202_b27) 2020; 24 Meyer (10.1016/j.specom.2025.103202_b44) 2016 Schaette (10.1016/j.specom.2025.103202_b56) 2011; 31 Wilson (10.1016/j.specom.2025.103202_b69) 2017; 390 Huber (10.1016/j.specom.2025.103202_b31) 2018 Kayser (10.1016/j.specom.2025.103202_b39) 2022; 6 Nejime (10.1016/j.specom.2025.103202_b46) 1997; 102 Panayotov (10.1016/j.specom.2025.103202_b48) 2015 Elko (10.1016/j.specom.2025.103202_b17) 1995 Hall (10.1016/j.specom.2025.103202_b25) 1966 Husstedt (10.1016/j.specom.2025.103202_b34) 2017; 6 Grimm (10.1016/j.specom.2025.103202_b22) 2019 Cherry (10.1016/j.specom.2025.103202_b13) 1953; 25 Kayser (10.1016/j.specom.2025.103202_b38) 2009; 2009 Grimm (10.1016/j.specom.2025.103202_b21) 2006; 92 Westhausen (10.1016/j.specom.2025.103202_b66) 2024; PP Karbasi (10.1016/j.specom.2025.103202_b36) 2022; 30 Buechler (10.1016/j.specom.2025.103202_b11) 2001 Spille (10.1016/j.specom.2025.103202_b58) 2018; 48 Kayser (10.1016/j.specom.2025.103202_b40) 2022; 17 Plack (10.1016/j.specom.2025.103202_b49) 2014; 18 Westhausen (10.1016/j.specom.2025.103202_b67) 2023; PP Wagener (10.1016/j.specom.2025.103202_b64) 1999; 38 Roßbach (10.1016/j.specom.2025.103202_b51) 2021 Denk (10.1016/j.specom.2025.103202_b14) 2018; 22 Kates (10.1016/j.specom.2025.103202_b37) 2020 Castro Martinez (10.1016/j.specom.2025.103202_b12) 2019; 106 Hamacher (10.1016/j.specom.2025.103202_b26) 2005; 2005 Roßbach (10.1016/j.specom.2025.103202_b52) 2024; 89 Keidser (10.1016/j.specom.2025.103202_b41) 2011; 1 Wendt (10.1016/j.specom.2025.103202_b65) 2014; 62 Wagener (10.1016/j.specom.2025.103202_b63) 2005; 44 Grimm (10.1016/j.specom.2025.103202_b20) 2021 Nordqvist (10.1016/j.specom.2025.103202_b47) 2004 Grimm (10.1016/j.specom.2025.103202_b23) 2009; 17 Moritz (10.1016/j.specom.2025.103202_b45) 2015 Graetzer (10.1016/j.specom.2025.103202_b19) 2021; 2 Barker (10.1016/j.specom.2025.103202_b4) 2024 Hendrikse (10.1016/j.specom.2025.103202_b28) 2020; 24 Bisgaard (10.1016/j.specom.2025.103202_b8) 2010; 14 Huber (10.1016/j.specom.2025.103202_b32) 2018 Hermansky (10.1016/j.specom.2025.103202_b29) 2013 Povey (10.1016/j.specom.2025.103202_b50) 2011 10.1016/j.specom.2025.103202_b33 Bronkhorst (10.1016/j.specom.2025.103202_b10) 2000; 86 Yi (10.1016/j.specom.2025.103202_b70) 2022 10.1016/j.specom.2025.103202_b30 |
References_xml | – start-page: 3308 year: 2022 end-page: 3312 ident: b70 article-title: ConferencingSpeech 2022 challenge: Non-intrusive objective speech quality assessment (NISQA) challenge for online conferencing applications publication-title: Interspeech – reference: Hoffner, D.E., Roßbach, J., Meyer, B.T., 2024. Joint prediction of subjective listening effort and speech intelligibility based on end-to-end learning. In: Proc. Interspeech 2024. pp. 4214–4218. – volume: 62 year: 2014 ident: b65 article-title: A computationally-efficient and perceptually-plausible algorithm for binaural publication-title: J. Audio Eng. Soc. – volume: PP start-page: 1 year: 2024 end-page: 10 ident: b66 article-title: Real-time multichannel deep speech enhancement in hearing aids: Comparing monaural and binaural processing in complex acoustic scenarios publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process. – start-page: 908 year: 2020 end-page: 911 ident: b55 article-title: Simulating spatial speech recognition performance with an automatic-speech-recognition-based model publication-title: Proc. DAGA, Dtsch. Ges. F Ü R Akust. – volume: 19 start-page: 2125 year: 2011 end-page: 2136 ident: b59 article-title: An algorithm for intelligibility prediction of time-frequency weighted noisy speech publication-title: IEEE Trans. Audio, Speech Lang. Process. – volume: 14 start-page: 113 year: 2010 end-page: 120 ident: b8 article-title: Standard audiograms for the IEC 60118-15 measurement procedure publication-title: Trends Amplif. – volume: 18 start-page: 1 year: 2014 end-page: 11 ident: b49 article-title: Perceptual consequences of ”hidden” hearing loss publication-title: Trends Hear. – year: 2019 ident: b22 article-title: First order ambisonics field recordings for use in virtual acoustic environments in the context of audiology publication-title: Zenodo – start-page: 5085 year: 2017 end-page: 5089 ident: b2 article-title: A non-intrusive short-time objective intelligibility measure publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2001 ident: b11 article-title: How good are automatic program selection features? A look at the usefulness and acceptance of an automatic program selection mode publication-title: The Hearing Review – volume: 2005 year: 2005 ident: b26 article-title: Signal processing in high-end hearing aids: State of the art, challenges, and future trends publication-title: EURASIP J. Adv. Signal Process. – volume: 24 start-page: 1 year: 2020 end-page: 16 ident: b18 article-title: Predicting speech perception in older listeners with sensorineural hearing loss using automatic speech recognition publication-title: Trends Hear. – volume: 24 year: 2020 ident: b28 article-title: Evaluation of the influence of head movement on hearing aid algorithm performance using acoustic simulations publication-title: Trends Hear. – start-page: 86 year: 2018 end-page: 90 ident: b32 article-title: Objective assessment of a speech enhancement scheme with an automatic speech recognition-based system publication-title: Proc. ITG Conf. Speech Commun. – volume: 2022-September start-page: 3488 year: 2022 end-page: 3492 ident: b60 article-title: Exploiting hidden representations from a DNN-based speech recogniser for speech intelligibility prediction in hearing-impaired listeners publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH – volume: 6 start-page: 143 year: 2017 end-page: 150 ident: b34 article-title: A method to analyse and test the automatic selection of hearing aid programs publication-title: Proc. Int. Symp. Audit. Audiol. Res. – start-page: 11551 year: 2024 end-page: 11555 ident: b4 article-title: The 2nd clarity prediction challenge: A machine learning challenge for hearing aid intelligibility prediction publication-title: ICASSP – volume: 31 start-page: 13452 year: 2011 end-page: 13457 ident: b56 article-title: Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model publication-title: J. Neurosci. – reference: BBC, ., BBC Sound Effects URL: – year: 2004 ident: b47 article-title: Sound classification in hearing instruments publication-title: Journal of Acoustic Society of America – volume: 105 start-page: 566 year: 2019 end-page: 578 ident: b24 article-title: A toolbox for rendering virtual acoustic environments in the context of audiology publication-title: Acta Acust. United Acust. – volume: 22 start-page: 1 year: 2018 end-page: 19 ident: b14 article-title: Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles publication-title: Trends Hear. – volume: PP start-page: 1 year: 2023 end-page: 10 ident: b67 article-title: Binaural multichannel blind speaker separation with a causal low-latency and low-complexity approach publication-title: IEEE Open J. Signal Process. – start-page: 5206 year: 2015 end-page: 5210 ident: b48 article-title: Librispeech: An ASR corpus based on public domain audio books publication-title: ICASSP – volume: 102 start-page: 1 year: 2018 end-page: 13 ident: b3 article-title: Refinement and validation of the binaural short time objective intelligibility measure for spatially diverse conditions publication-title: Speech Commun. – reference: Veselý, K., Ghoshal, A., Burget, L., Povey, D., 2013. Sequence-discriminative Training of Deep Neural Networks. In: Proc. Interspeech. Lyon, France, pp. 2345–2349. – volume: 1 year: 2011 ident: b41 article-title: The NAL-NL2 prescription procedure publication-title: Audiol. Res. – volume: 89 year: 2024 ident: b52 article-title: Multilingual non-intrusive binaural intelligibility prediction based on phone classification publication-title: Comput. Speech Lang. – start-page: 396 year: 2021 end-page: 400 ident: b51 article-title: Non-intrusive binaural prediction of speech intelligibility based on phoneme classification publication-title: ICASSP – start-page: 3508 year: 2022 end-page: 3512 ident: b5 article-title: The 1st Clarity Prediction Challenge: A machine learning challenge for hearing aid intelligibility prediction publication-title: Interspeech – volume: 92 start-page: 618 year: 2006 end-page: 628 ident: b21 article-title: The master hearing aid: A PC-based platform for algorithm development and evaluation publication-title: Acta Acust. United Acust. – volume: 38 start-page: 86 year: 1999 end-page: 95 ident: b64 article-title: Development and evaluation of a german sentence test part III: Evaluation of the oldenburg sentence test publication-title: Z. F Ü R Audiol. – volume: 35 start-page: 1206 year: 1963 end-page: 1218 ident: b16 article-title: Equalization and cancellation theory of binaural masking-level differences publication-title: J. Acoust. Soc. Am. – volume: 2019-Septe start-page: 1368 year: 2019 end-page: 1372 ident: b68 article-title: Wham!: Extending speech separation to noisy environments publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH – volume: 2009 year: 2009 ident: b38 article-title: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses publication-title: Eurasip J. Adv. Signal Process. – start-page: 169 year: 1995 end-page: 172 ident: b17 article-title: A simple adaptive first-order differential microphone publication-title: Proceedings of 1995 Workshop on Applications of Signal Processing To Audio and Accoustics – volume: 63 start-page: 19 year: 2010 end-page: 32 ident: b42 article-title: MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing publication-title: Hear. J. – volume: 44 start-page: 144 year: 2005 end-page: 156 ident: b63 article-title: Sentence intelligibility in noise for listeners with normal hearing and hearing impairment: Influence of measurement procedure and masking parameters publication-title: Int. J. Audiol. – reference: Hülsmeier, D., Hauth, C.F., Röttges, S., Kranzusch, P., Roßbach, J., Schädler, M.R., Meyer, B.T., Warzybok, A., Brand, T., 2021. Towards Non-Intrusive Prediction of Speech Recognition Thresholds in Binaural Conditions. In: 14th ITG Conference on Speech Communication. ISBN: 9783800756285, pp. 1–5. – volume: 2 start-page: 1181 year: 2021 end-page: 1185 ident: b19 article-title: Clarity-2021 challenges: Machine learning challenges for advancing hearing aid processing publication-title: Interspeech – start-page: 55 year: 2014 end-page: 59 ident: b54 article-title: An improved non-intrusive intelligibility metric for noisy and reverberant speech publication-title: 14th International Workshop on Acoustic Signal Enhancement – volume: 102 start-page: 603 year: 1997 end-page: 615 ident: b46 article-title: Simulation of the effect of threshold elevation and loudness recruitment combined with reduced frequency selectivity on the intelligibility of speech in noise publication-title: J. Acoust. Soc. Am. – year: 2020 ident: b37 article-title: The hearing-aid speech perception index (HASPI) version 2 publication-title: Speech Commun. – volume: 17 year: 2022 ident: b40 article-title: Open community platform for hearing aid algorithm research: open master hearing aid (openmha) publication-title: SoftwareX – volume: 25 start-page: 975 year: 1953 end-page: 979 ident: b13 article-title: Some experiments on the recognition of speech with one and with two ears publication-title: J. Acoust. Soc. Am. – volume: 24 year: 2020 ident: b27 article-title: Modeling binaural unmasking of speech using a blind binaural processing stage publication-title: Trends Hear. – volume: 426 year: 2022 ident: b35 article-title: ASR-based speech intelligibility prediction: A review publication-title: Hear. Res. – volume: 6 year: 2022 ident: b39 article-title: Spatial speech detection for binaural hearing aids using deep phoneme classifiers publication-title: Acta Acust. – volume: 19 year: 2015 ident: b6 article-title: Comparing binaural pre-processing strategies II publication-title: Trends Hear. – volume: 148 year: 2020 ident: b1 article-title: Launching the first “Clarity” Machine Learning Challenge to revolutionise hearing device processing publication-title: J. Acoust. Soc. Am. – volume: 86 start-page: 117 year: 2000 end-page: 128 ident: b10 article-title: The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions publication-title: Acustica – volume: 6 year: 2022 ident: b53 article-title: Using a blind EC mechanism for modelling the interaction between binaural and temporal speech processing publication-title: Acta Acust. – start-page: 4897 year: 2008 end-page: 4900 ident: b9 article-title: A novel a priori snr estimation approach based on selective cepstro-temporal smoothing publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process. – start-page: 5330 year: 2016 end-page: 5334 ident: b44 article-title: Predicting error rates for unknown data in automatic speech recognition publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings – volume: 106 start-page: 44 year: 2019 end-page: 56 ident: b12 article-title: DNN-based performance measures for predicting error rates in automatic speech recognition and optimizing hearing aid parameters publication-title: Speech Commun. – year: 2021 ident: b20 article-title: Pub environment publication-title: Zenodo – start-page: 3493 year: 2022 end-page: 3496 ident: b61 article-title: Unsupervised uncertainty measures of automatic speech recognition for non-intrusive speech intelligibility prediction publication-title: Interspeech – year: 2018 ident: b31 article-title: Single-ended prediction of listening effort using deep neural networks publication-title: Hear. Res. – start-page: 7423 year: 2013 end-page: 7426 ident: b29 article-title: Mean temporal distance: Predicting ASR error from temporal properties of speech signal publication-title: ICASSP – volume: 27 start-page: 1256 year: 2019 end-page: 1266 ident: b43 article-title: Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – start-page: 1 year: 2011 end-page: 4 ident: b50 article-title: The kaldi speech recognition toolkit publication-title: IEEE ASRU Workshop – volume: 390 start-page: 2503 year: 2017 end-page: 2515 ident: b69 article-title: Global hearing health care: new findings and perspectives publication-title: Lancet – reference: . – year: 2012 ident: b15 article-title: Hearing Aids – volume: 17 start-page: 1408 year: 2009 end-page: 1419 ident: b23 article-title: Increase and subjective evaluation of feedback stability in hearing aids by a binaural coherence-based noise reduction scheme publication-title: IEEE Trans. Audio, Speech Lang. Process. – start-page: 468 year: 2015 end-page: 474 ident: b45 article-title: A chime-3 challenge system: Long-term acoustic features for noise robust automatic speech recognition publication-title: 2015 IEEE ASRU Workshop – volume: 30 start-page: 2141 year: 2022 end-page: 2155 ident: b36 article-title: Microscopic and Blind Prediction of Speech Intelligibility: Theory and Practice publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – year: 1966 ident: b25 article-title: The Hidden Dimension – volume: 48 start-page: 51 year: 2018 end-page: 66 ident: b58 article-title: Predicting speech intelligibility with deep neural networks publication-title: Comput. Speech Lang. – volume: 57 start-page: 201 year: 2018 end-page: 212 ident: b57 article-title: The performance of an automatic acoustic-based program classifier compared to hearing aid users’ manual selection of listening programs publication-title: Int. J. Audiol. – start-page: 468 year: 2015 ident: 10.1016/j.specom.2025.103202_b45 article-title: A chime-3 challenge system: Long-term acoustic features for noise robust automatic speech recognition publication-title: 2015 IEEE ASRU Workshop – start-page: 11551 year: 2024 ident: 10.1016/j.specom.2025.103202_b4 article-title: The 2nd clarity prediction challenge: A machine learning challenge for hearing aid intelligibility prediction – volume: 48 start-page: 51 year: 2018 ident: 10.1016/j.specom.2025.103202_b58 article-title: Predicting speech intelligibility with deep neural networks publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2017.10.004 – year: 2012 ident: 10.1016/j.specom.2025.103202_b15 – volume: 18 start-page: 1 year: 2014 ident: 10.1016/j.specom.2025.103202_b49 article-title: Perceptual consequences of ”hidden” hearing loss publication-title: Trends Hear. – start-page: 7423 year: 2013 ident: 10.1016/j.specom.2025.103202_b29 article-title: Mean temporal distance: Predicting ASR error from temporal properties of speech signal publication-title: ICASSP – volume: 24 year: 2020 ident: 10.1016/j.specom.2025.103202_b28 article-title: Evaluation of the influence of head movement on hearing aid algorithm performance using acoustic simulations publication-title: Trends Hear. – year: 1966 ident: 10.1016/j.specom.2025.103202_b25 – start-page: 5206 year: 2015 ident: 10.1016/j.specom.2025.103202_b48 article-title: Librispeech: An ASR corpus based on public domain audio books publication-title: ICASSP – start-page: 3493 year: 2022 ident: 10.1016/j.specom.2025.103202_b61 article-title: Unsupervised uncertainty measures of automatic speech recognition for non-intrusive speech intelligibility prediction publication-title: Interspeech doi: 10.21437/Interspeech.2022-10408 – volume: 148 issue: 4 year: 2020 ident: 10.1016/j.specom.2025.103202_b1 article-title: Launching the first “Clarity” Machine Learning Challenge to revolutionise hearing device processing publication-title: J. Acoust. Soc. Am. – volume: 31 start-page: 13452 issue: 38 year: 2011 ident: 10.1016/j.specom.2025.103202_b56 article-title: Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2156-11.2011 – volume: 2019-Septe start-page: 1368 year: 2019 ident: 10.1016/j.specom.2025.103202_b68 article-title: Wham!: Extending speech separation to noisy environments publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH – volume: 57 start-page: 201 issue: 3 year: 2018 ident: 10.1016/j.specom.2025.103202_b57 article-title: The performance of an automatic acoustic-based program classifier compared to hearing aid users’ manual selection of listening programs publication-title: Int. J. Audiol. doi: 10.1080/14992027.2017.1392048 – volume: 24 start-page: 1 year: 2020 ident: 10.1016/j.specom.2025.103202_b18 article-title: Predicting speech perception in older listeners with sensorineural hearing loss using automatic speech recognition publication-title: Trends Hear. – start-page: 4897 year: 2008 ident: 10.1016/j.specom.2025.103202_b9 article-title: A novel a priori snr estimation approach based on selective cepstro-temporal smoothing publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process. – volume: 30 start-page: 2141 year: 2022 ident: 10.1016/j.specom.2025.103202_b36 article-title: Microscopic and Blind Prediction of Speech Intelligibility: Theory and Practice publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2022.3184888 – volume: 6 start-page: 143 issue: August year: 2017 ident: 10.1016/j.specom.2025.103202_b34 article-title: A method to analyse and test the automatic selection of hearing aid programs publication-title: Proc. Int. Symp. Audit. Audiol. Res. – volume: 38 start-page: 86 issue: 3 year: 1999 ident: 10.1016/j.specom.2025.103202_b64 article-title: Development and evaluation of a german sentence test part III: Evaluation of the oldenburg sentence test publication-title: Z. F Ü R Audiol. – volume: 25 start-page: 975 year: 1953 ident: 10.1016/j.specom.2025.103202_b13 article-title: Some experiments on the recognition of speech with one and with two ears publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907229 – volume: 86 start-page: 117 issue: 1 year: 2000 ident: 10.1016/j.specom.2025.103202_b10 article-title: The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions publication-title: Acustica – start-page: 908 year: 2020 ident: 10.1016/j.specom.2025.103202_b55 article-title: Simulating spatial speech recognition performance with an automatic-speech-recognition-based model publication-title: Proc. DAGA, Dtsch. Ges. F Ü R Akust. – volume: 17 year: 2022 ident: 10.1016/j.specom.2025.103202_b40 article-title: Open community platform for hearing aid algorithm research: open master hearing aid (openmha) publication-title: SoftwareX doi: 10.1016/j.softx.2021.100953 – ident: 10.1016/j.specom.2025.103202_b30 doi: 10.21437/Interspeech.2024-473 – start-page: 3508 year: 2022 ident: 10.1016/j.specom.2025.103202_b5 article-title: The 1st Clarity Prediction Challenge: A machine learning challenge for hearing aid intelligibility prediction publication-title: Interspeech doi: 10.21437/Interspeech.2022-10821 – volume: 426 year: 2022 ident: 10.1016/j.specom.2025.103202_b35 article-title: ASR-based speech intelligibility prediction: A review publication-title: Hear. Res. doi: 10.1016/j.heares.2022.108606 – issue: April year: 2020 ident: 10.1016/j.specom.2025.103202_b37 article-title: The hearing-aid speech perception index (HASPI) version 2 publication-title: Speech Commun. – volume: 2009 year: 2009 ident: 10.1016/j.specom.2025.103202_b38 article-title: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses publication-title: Eurasip J. Adv. Signal Process. doi: 10.1155/2009/298605 – start-page: 3308 year: 2022 ident: 10.1016/j.specom.2025.103202_b70 article-title: ConferencingSpeech 2022 challenge: Non-intrusive objective speech quality assessment (NISQA) challenge for online conferencing applications publication-title: Interspeech doi: 10.21437/Interspeech.2022-10597 – volume: 102 start-page: 1 year: 2018 ident: 10.1016/j.specom.2025.103202_b3 article-title: Refinement and validation of the binaural short time objective intelligibility measure for spatially diverse conditions publication-title: Speech Commun. doi: 10.1016/j.specom.2018.06.001 – start-page: 86 year: 2018 ident: 10.1016/j.specom.2025.103202_b32 article-title: Objective assessment of a speech enhancement scheme with an automatic speech recognition-based system publication-title: Proc. ITG Conf. Speech Commun. – start-page: 1 year: 2011 ident: 10.1016/j.specom.2025.103202_b50 article-title: The kaldi speech recognition toolkit publication-title: IEEE ASRU Workshop – volume: 35 start-page: 1206 issue: 8 year: 1963 ident: 10.1016/j.specom.2025.103202_b16 article-title: Equalization and cancellation theory of binaural masking-level differences publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1918675 – volume: 105 start-page: 566 issue: 3 year: 2019 ident: 10.1016/j.specom.2025.103202_b24 article-title: A toolbox for rendering virtual acoustic environments in the context of audiology publication-title: Acta Acust. United Acust. doi: 10.3813/AAA.919337 – start-page: 169 year: 1995 ident: 10.1016/j.specom.2025.103202_b17 article-title: A simple adaptive first-order differential microphone – volume: 2 start-page: 1181 year: 2021 ident: 10.1016/j.specom.2025.103202_b19 article-title: Clarity-2021 challenges: Machine learning challenges for advancing hearing aid processing publication-title: Interspeech – volume: 2005 issue: 18 year: 2005 ident: 10.1016/j.specom.2025.103202_b26 article-title: Signal processing in high-end hearing aids: State of the art, challenges, and future trends publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/ASP.2005.2915 – ident: 10.1016/j.specom.2025.103202_b33 – volume: 19 year: 2015 ident: 10.1016/j.specom.2025.103202_b6 article-title: Comparing binaural pre-processing strategies II publication-title: Trends Hear. – volume: 92 start-page: 618 issue: 4 year: 2006 ident: 10.1016/j.specom.2025.103202_b21 article-title: The master hearing aid: A PC-based platform for algorithm development and evaluation publication-title: Acta Acust. United Acust. – volume: PP start-page: 1 year: 2024 ident: 10.1016/j.specom.2025.103202_b66 article-title: Real-time multichannel deep speech enhancement in hearing aids: Comparing monaural and binaural processing in complex acoustic scenarios publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process. – volume: PP start-page: 1 year: 2023 ident: 10.1016/j.specom.2025.103202_b67 article-title: Binaural multichannel blind speaker separation with a causal low-latency and low-complexity approach publication-title: IEEE Open J. Signal Process. – year: 2018 ident: 10.1016/j.specom.2025.103202_b31 article-title: Single-ended prediction of listening effort using deep neural networks publication-title: Hear. Res. doi: 10.1016/j.heares.2017.12.014 – volume: 24 year: 2020 ident: 10.1016/j.specom.2025.103202_b27 article-title: Modeling binaural unmasking of speech using a blind binaural processing stage publication-title: Trends Hear. – volume: 63 start-page: 19 issue: 1 year: 2010 ident: 10.1016/j.specom.2025.103202_b42 article-title: MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing publication-title: Hear. J. doi: 10.1097/01.HJ.0000366912.40173.76 – start-page: 5330 year: 2016 ident: 10.1016/j.specom.2025.103202_b44 article-title: Predicting error rates for unknown data in automatic speech recognition – year: 2004 ident: 10.1016/j.specom.2025.103202_b47 article-title: Sound classification in hearing instruments – volume: 44 start-page: 144 issue: 3 year: 2005 ident: 10.1016/j.specom.2025.103202_b63 article-title: Sentence intelligibility in noise for listeners with normal hearing and hearing impairment: Influence of measurement procedure and masking parameters publication-title: Int. J. Audiol. doi: 10.1080/14992020500057517 – start-page: 5085 year: 2017 ident: 10.1016/j.specom.2025.103202_b2 article-title: A non-intrusive short-time objective intelligibility measure – issue: January year: 2021 ident: 10.1016/j.specom.2025.103202_b20 article-title: Pub environment publication-title: Zenodo – year: 2019 ident: 10.1016/j.specom.2025.103202_b22 article-title: First order ambisonics field recordings for use in virtual acoustic environments in the context of audiology publication-title: Zenodo – volume: 6 year: 2022 ident: 10.1016/j.specom.2025.103202_b39 article-title: Spatial speech detection for binaural hearing aids using deep phoneme classifiers publication-title: Acta Acust. doi: 10.1051/aacus/2022013 – volume: 102 start-page: 603 issue: 1 year: 1997 ident: 10.1016/j.specom.2025.103202_b46 article-title: Simulation of the effect of threshold elevation and loudness recruitment combined with reduced frequency selectivity on the intelligibility of speech in noise publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.419733 – year: 2001 ident: 10.1016/j.specom.2025.103202_b11 article-title: How good are automatic program selection features? A look at the usefulness and acceptance of an automatic program selection mode – volume: 22 start-page: 1 year: 2018 ident: 10.1016/j.specom.2025.103202_b14 article-title: Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles publication-title: Trends Hear. – start-page: 396 year: 2021 ident: 10.1016/j.specom.2025.103202_b51 article-title: Non-intrusive binaural prediction of speech intelligibility based on phoneme classification – ident: 10.1016/j.specom.2025.103202_b62 doi: 10.21437/Interspeech.2013-548 – volume: 106 start-page: 44 issue: November 2018 year: 2019 ident: 10.1016/j.specom.2025.103202_b12 article-title: DNN-based performance measures for predicting error rates in automatic speech recognition and optimizing hearing aid parameters publication-title: Speech Commun. doi: 10.1016/j.specom.2018.11.006 – volume: 62 issue: 11 year: 2014 ident: 10.1016/j.specom.2025.103202_b65 article-title: A computationally-efficient and perceptually-plausible algorithm for binaural publication-title: J. Audio Eng. Soc. doi: 10.17743/jaes.2014.0042 – volume: 17 start-page: 1408 issue: 7 year: 2009 ident: 10.1016/j.specom.2025.103202_b23 article-title: Increase and subjective evaluation of feedback stability in hearing aids by a binaural coherence-based noise reduction scheme publication-title: IEEE Trans. Audio, Speech Lang. Process. doi: 10.1109/TASL.2009.2020531 – volume: 2022-September start-page: 3488 issue: September year: 2022 ident: 10.1016/j.specom.2025.103202_b60 article-title: Exploiting hidden representations from a DNN-based speech recogniser for speech intelligibility prediction in hearing-impaired listeners publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH – start-page: 55 year: 2014 ident: 10.1016/j.specom.2025.103202_b54 article-title: An improved non-intrusive intelligibility metric for noisy and reverberant speech – volume: 27 start-page: 1256 issue: 8 year: 2019 ident: 10.1016/j.specom.2025.103202_b43 article-title: Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2019.2915167 – volume: 6 year: 2022 ident: 10.1016/j.specom.2025.103202_b53 article-title: Using a blind EC mechanism for modelling the interaction between binaural and temporal speech processing publication-title: Acta Acust. doi: 10.1051/aacus/2022009 – volume: 89 issue: 101684 year: 2024 ident: 10.1016/j.specom.2025.103202_b52 article-title: Multilingual non-intrusive binaural intelligibility prediction based on phone classification publication-title: Comput. Speech Lang. – ident: 10.1016/j.specom.2025.103202_b7 – volume: 14 start-page: 113 issue: 2 year: 2010 ident: 10.1016/j.specom.2025.103202_b8 article-title: Standard audiograms for the IEC 60118-15 measurement procedure publication-title: Trends Amplif. doi: 10.1177/1084713810379609 – volume: 1 issue: 1 year: 2011 ident: 10.1016/j.specom.2025.103202_b41 article-title: The NAL-NL2 prescription procedure publication-title: Audiol. Res. doi: 10.4081/audiores.2011.e24 – volume: 19 start-page: 2125 issue: 7 year: 2011 ident: 10.1016/j.specom.2025.103202_b59 article-title: An algorithm for intelligibility prediction of time-frequency weighted noisy speech publication-title: IEEE Trans. Audio, Speech Lang. Process. doi: 10.1109/TASL.2011.2114881 – volume: 390 start-page: 2503 issue: 10111 year: 2017 ident: 10.1016/j.specom.2025.103202_b69 article-title: Global hearing health care: new findings and perspectives publication-title: Lancet doi: 10.1016/S0140-6736(17)31073-5 |
SSID | ssj0004882 |
Score | 2.4280322 |
Snippet | Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103202 |
SubjectTerms | Binaural Deep neural network Non-intrusive Speech recognition prediction |
Title | Non-intrusive binaural speech recognition prediction for hearing aid processing |
URI | https://dx.doi.org/10.1016/j.specom.2025.103202 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZemCoLwplQfEZpo4dpyMVUVVoJSBIrpFjuOIAkqqtgsLv51zHgWExMAWW7Zk3Z3u4XzfGeBcO8Z1FVfUSwNDuZcIGhsT0tBJfS2dODRFoXg38UeP_GYmZg0Y1FwYC6usfH_p0wtvXc30Kmn2FvN578EC6DG-ekwUXV-sH-ZcWiu__PiCeaCBsrq_t11d0-cKjJdlM-aWj86EZZ-z6nLlV3j6FnKGO7Bd5YqkXx5nFxoma8PhuLphXJELMt40RV61obVxZu9t6JS8W_Jk3lK1NLi2nsiXr3twP8kzOs8s4wLdHcHyWNn-GwSPavQz2cCK8owslvZfTvGJCS6xL2BjuCNqnpBFyTLA4T5Mh1fTwYhWbytQjRF6TbGgVpzHicYYrphyXYO1n0ikG4s0ZMrXItAsFDrU3HdSqYVyDI9TzD8SHmvlHUAzyzNzBET6rpEySEKpUo66VaEXmMDTykmx9mLsGGgt0WhRdtCIamjZS1RqILIaiEoNHIOsxR79sIQInfyfO0_-vfMUWnZUAhk70ETpmzNMNtZxt7CmLmz1r29Hk081u9Vs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7UAXBOVVKOABsVnNw85jrCqqlqZloIhukeM4ooCSqO3Cv-ecRwEhMbAlTixZd9Z3d_Z9dwA30lCmKZigduIpyuyY00gpn_pG4kjXiHxVBIqzuTN-YvdLvmzAsObC6LTKCvtLTC_QuhrpV9Ls56tV_1En0KN9tS1eVH1BHG7p6lS8Ca3BZDqef9EjvaJnVFHiW0-oGXRFmpcmNGaakm5xTUC3qvOVXxbqm9UZHcB-5S6SQbmiQ2iotAOnQXXIuCG3JNjVRd50oL3Ds48O9ErqLXlW74lYK_y3HsjWb0fwMM9Suko16QIRj2CELHQJDoJLVfKF7DKLspTka32dUzyij0t0E2y0eESsYpKXRAN8PYbF6G4xHNOqvQKVaKS3FGNqwVgUSzTjwhKmqTD847FrRjzxLeFI7knL59KXzDESV3JhKBYl6ILELJLCPoFmmqXqDIjrmMp1vdh3RcJQvcK3PeXZUhgJhl-W1QVaSzTMyyIaYZ1d9hqWGgi1BsJSA11wa7GHPzZDiDj_58zzf8-8hr3xYhaEwWQ-vYC2_lLmNfagiZpQl-h7bKOram99ApHH2B0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+binaural+speech+recognition+prediction+for+hearing+aid+processing&rft.jtitle=Speech+communication&rft.au=Ro%C3%9Fbach%2C+Jana&rft.au=Westhausen%2C+Nils+L.&rft.au=Kayser%2C+Hendrik&rft.au=Meyer%2C+Bernd+T.&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-6393&rft.volume=170&rft_id=info:doi/10.1016%2Fj.specom.2025.103202&rft.externalDocID=S0167639325000172 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon |