Non-intrusive binaural speech recognition prediction for hearing aid processing

Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we explore if models that predict SR performance of hearing-impaired (HI), aided users are applicable to automatically select the best algorithm...

Full description

Saved in:
Bibliographic Details
Published inSpeech communication Vol. 170; p. 103202
Main Authors Roßbach, Jana, Westhausen, Nils L., Kayser, Hendrik, Meyer, Bernd T.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we explore if models that predict SR performance of hearing-impaired (HI), aided users are applicable to automatically select the best algorithm. To this end, SR experiments are conducted with 19 HI subjects who are aided with an open-source HA. Listeners’ SR is measured in virtual, complex acoustic scenes with two distinct noise conditions using the different speech enhancement strategies implemented in this HA. For model-based selection, we apply a PHOneme-based Binaural Intelligibility model (PHOBI) based on our previous work and extended with a component for simulating hearing loss. The non-intrusive model utilizes a deep neural network to predict phone probabilities; the deterioration of these phone representations in the presence of noise or generally signal degradation is quantified and used as model output. PHOBI model is trained with 960 h of English speech signals, a broad range of noise signals and room impulse responses. The performance of model-based algorithm selection is measured with two metrics: (i) Its ability to rank the HA algorithms in the order of subjective SR results and (ii) the SR difference between the measured best algorithm and the model-based selection (ΔSR). Results are compared to selections obtained with one non-intrusive and two intrusive models. PHOBI outperforms the non-intrusive and one of the intrusive models in both noise conditions, achieving significantly higher correlations (r=0.63 and 0.80). ΔSR scores are significantly lower (better) compared to the non-intrusive baseline (3.5% and 4.6% against 8.6% and 9.8%, respectively). The results in terms of ΔSR between PHOBI and the intrusive models are statistically not different, although PHOBI operates on the observed signal alone and does not require a clean reference signal. •A DNN-based model accurately predicts the hearing aid algorithm that optimizes speech recognition for its user.•Individual predictions are made for 19 hearing-impaired, aided users in complex acoustic scenes.•The DNN-based approach is non-intrusive and performs equally well as established, intrusive models for speech recognition prediction.
AbstractList Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we explore if models that predict SR performance of hearing-impaired (HI), aided users are applicable to automatically select the best algorithm. To this end, SR experiments are conducted with 19 HI subjects who are aided with an open-source HA. Listeners’ SR is measured in virtual, complex acoustic scenes with two distinct noise conditions using the different speech enhancement strategies implemented in this HA. For model-based selection, we apply a PHOneme-based Binaural Intelligibility model (PHOBI) based on our previous work and extended with a component for simulating hearing loss. The non-intrusive model utilizes a deep neural network to predict phone probabilities; the deterioration of these phone representations in the presence of noise or generally signal degradation is quantified and used as model output. PHOBI model is trained with 960 h of English speech signals, a broad range of noise signals and room impulse responses. The performance of model-based algorithm selection is measured with two metrics: (i) Its ability to rank the HA algorithms in the order of subjective SR results and (ii) the SR difference between the measured best algorithm and the model-based selection (ΔSR). Results are compared to selections obtained with one non-intrusive and two intrusive models. PHOBI outperforms the non-intrusive and one of the intrusive models in both noise conditions, achieving significantly higher correlations (r=0.63 and 0.80). ΔSR scores are significantly lower (better) compared to the non-intrusive baseline (3.5% and 4.6% against 8.6% and 9.8%, respectively). The results in terms of ΔSR between PHOBI and the intrusive models are statistically not different, although PHOBI operates on the observed signal alone and does not require a clean reference signal. •A DNN-based model accurately predicts the hearing aid algorithm that optimizes speech recognition for its user.•Individual predictions are made for 19 hearing-impaired, aided users in complex acoustic scenes.•The DNN-based approach is non-intrusive and performs equally well as established, intrusive models for speech recognition prediction.
ArticleNumber 103202
Author Kayser, Hendrik
Roßbach, Jana
Westhausen, Nils L.
Meyer, Bernd T.
Author_xml – sequence: 1
  givenname: Jana
  orcidid: 0009-0004-6434-8310
  surname: Roßbach
  fullname: Roßbach, Jana
  email: jana.rossbach@uni-oldenburg.de
  organization: Communication Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany
– sequence: 2
  givenname: Nils L.
  surname: Westhausen
  fullname: Westhausen, Nils L.
  organization: Communication Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany
– sequence: 3
  givenname: Hendrik
  surname: Kayser
  fullname: Kayser, Hendrik
  organization: Auditory Signal Processing and Hearing Devices and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany
– sequence: 4
  givenname: Bernd T.
  surname: Meyer
  fullname: Meyer, Bernd T.
  organization: Communication Acoustics and Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Germany
BookMark eNp9UMtuwjAQ9IFKBdo_6CE_EGo7dh6XShXqS0Llwt2yNxtwBHZkB6T-fU3TM6fZ3dGMdmZBZs47JOSJ0RWjrHzuV3FA8KcVp1ymU5FwRuaJqvKyaIp7soixp5SKuuZzsv32LrduDOdoL5gZ6_Q56GOWTBAOWUhWe2dH6102BGwt_I2dD9kBdbBun2nbJsoDxpjWB3LX6WPEx39ckt372279mW-2H1_r100OrJZjjoZrIUwLlHPNNWPIGZVtxYzsGq5LkDXwRkIDoqRdBVJTFKarBGuFAV0siZhsIfgYA3ZqCPakw49iVF17UL2aelDXHtTUQ5K9TDJMr10sBhXBooMULCUdVevtbYNfCsZuNw
Cites_doi 10.1016/j.csl.2017.10.004
10.21437/Interspeech.2022-10408
10.1523/JNEUROSCI.2156-11.2011
10.1080/14992027.2017.1392048
10.1109/TASLP.2022.3184888
10.1121/1.1907229
10.1016/j.softx.2021.100953
10.21437/Interspeech.2024-473
10.21437/Interspeech.2022-10821
10.1016/j.heares.2022.108606
10.1155/2009/298605
10.21437/Interspeech.2022-10597
10.1016/j.specom.2018.06.001
10.1121/1.1918675
10.3813/AAA.919337
10.1155/ASP.2005.2915
10.1016/j.heares.2017.12.014
10.1097/01.HJ.0000366912.40173.76
10.1080/14992020500057517
10.1051/aacus/2022013
10.1121/1.419733
10.21437/Interspeech.2013-548
10.1016/j.specom.2018.11.006
10.17743/jaes.2014.0042
10.1109/TASL.2009.2020531
10.1109/TASLP.2019.2915167
10.1051/aacus/2022009
10.1177/1084713810379609
10.4081/audiores.2011.e24
10.1109/TASL.2011.2114881
10.1016/S0140-6736(17)31073-5
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.specom.2025.103202
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Social Welfare & Social Work
Psychology
ExternalDocumentID 10_1016_j_specom_2025_103202
S0167639325000172
GroupedDBID --K
--M
-~X
.DC
.~1
07C
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAFTH
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACXNI
ACZNC
ADBBV
ADEZE
ADIYS
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
AOUOD
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSH
SSO
SST
SSV
SSY
SSZ
T5K
WUQ
XJE
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c185t-eb2a44bdc022a2a11e2105d71b5f92a6c58c295c9c460f7c5a0e4bf741d4bca3
IEDL.DBID .~1
ISSN 0167-6393
IngestDate Sun Jul 06 05:08:27 EDT 2025
Sat Apr 19 15:57:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-intrusive
Deep neural network
Speech recognition prediction
Binaural
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185t-eb2a44bdc022a2a11e2105d71b5f92a6c58c295c9c460f7c5a0e4bf741d4bca3
ORCID 0009-0004-6434-8310
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167639325000172
ParticipantIDs crossref_primary_10_1016_j_specom_2025_103202
elsevier_sciencedirect_doi_10_1016_j_specom_2025_103202
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Speech communication
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Keidser, Dillon, Flax, Ching, Brewer (b41) 2011; 1
Searchfield, Linford, Kobayashi, Crowhen, Latzel (b57) 2018; 57
Breithaupt, Gerkmann, Martin (b9) 2008
Kayser, Hermansky, Meyer (b39) 2022; 6
Wilson, Tucci, Merson, O’Donoghue (b69) 2017; 390
Huber, Pusch, Moritz, Rennies, Schepker, Meyer (b32) 2018
Durlach (b16) 1963; 35
Karbasi, Kolossa (b35) 2022; 426
Kochkin (b42) 2010; 63
Tu, Ma, Barker (b60) 2022; 2022-September
Röttges, Hauth, Rennies, Brand (b53) 2022; 6
Hamacher, Chalupper, Eggers, Fischer, Kornagel, Puder, Rass (b26) 2005; 2005
Westhausen, Meyer (b67) 2023; PP
BBC, ., BBC Sound Effects URL
Karbasi, Zeiler, Kolossa (b36) 2022; 30
Veselý, K., Ghoshal, A., Burget, L., Povey, D., 2013. Sequence-discriminative Training of Deep Neural Networks. In: Proc. Interspeech. Lyon, France, pp. 2345–2349.
Moritz, Gerlach, Adiloglu, Anemüller, Kollmeier, Goetze (b45) 2015
Schädler, Kranzusch, Hauth, Warzybok (b55) 2020
Barker, Akeroyd, Cox, Culling, Firth, Graetzer, Griffiths, Harris, Viveros-Munoz, Naylor, Podwinska, Porter (b5) 2022
Hoffner, D.E., Roßbach, J., Meyer, B.T., 2024. Joint prediction of subjective listening effort and speech intelligibility based on end-to-end learning. In: Proc. Interspeech 2024. pp. 4214–4218.
Cherry (b13) 1953; 25
Luo, Mesgarani (b43) 2019; 27
Meyer, Mallidi, Kayser, Hermansky (b44) 2016
Grimm, Hohmann, Kollmeier (b23) 2009; 17
.
Andersen, de Haan, Tan, Jensen (b3) 2018; 102
Spille, Ewert, Kollmeier, Meyer (b58) 2018; 48
Westhausen, Kayser, Jansen, Meyer (b66) 2024; PP
Wagener, Brand, Kollmeier (b64) 1999; 38
Hauth, Berning, Kollmeier, Brand (b27) 2020; 24
Kayser, Herzke, Maanen, Zimmermann, Grimm, Hohmann (b40) 2022; 17
Santos, Senoussaoui, Falk (b54) 2014
Yi, Xiao, Xiao, Naderi, Möller, Wardah, Mittag, Cutler, Zhang, Williamson, Chen, Yang, Shang (b70) 2022
Hermansky, Variani, Peddinti (b29) 2013
Wagener, Brand (b63) 2005; 44
Roßbach, Rottges, Hauth, Brand, Meyer (b51) 2021
Wichern, Antognini, Flynn, Zhu, McQuinn, Crow, Manilow, Le Roux (b68) 2019; 2019-Septe
Nejime, Moore (b46) 1997; 102
Grimm, Herzke, Berg, Hohmann (b21) 2006; 92
Hendrikse, Grimm, Hohmann (b28) 2020; 24
Baumgärtel, Hu, Krawczyk-Becker, Marquardt, Herzke, Coleman, Adiloğlu, Bomke, Plotz, Gerkmann, Doclo, Kollmeier, Hohmann, Dietz (b6) 2015; 19
Grimm, Hendrikse, Hohmann (b20) 2021
Nordqvist (b47) 2004
Plack, Barker, Prendergast (b49) 2014; 18
Buechler (b11) 2001
Roßbach, Wagener, Meyer (b52) 2024; 89
Povey, Ghoshal, Boulianne, Burget, Glembek, Goel, Hannemann, Motlicek, Qian, Schwarz, Silovsky, Stemmer, Vesely (b50) 2011
Huber, Krüger, Meyer (b31) 2018
Elko, Pong (b17) 1995
Kates, Arehart (b37) 2020
Hall (b25) 1966
Kayser, Ewert, Anemüller, Rohdenburg, Hohmann, Kollmeier (b38) 2009; 2009
Grimm, Luberadzka, Hohmann (b24) 2019; 105
Taal, Hendriks, Heusdens, Jensen (b59) 2011; 19
Panayotov, Chen, Povey, Khudanpur (b48) 2015
Andersen, de Haan, Tan, Jensen (b2) 2017
Hülsmeier, D., Hauth, C.F., Röttges, S., Kranzusch, P., Roßbach, J., Schädler, M.R., Meyer, B.T., Warzybok, A., Brand, T., 2021. Towards Non-Intrusive Prediction of Speech Recognition Thresholds in Binaural Conditions. In: 14th ITG Conference on Speech Communication. ISBN: 9783800756285, pp. 1–5.
Dillon (b15) 2012
Graetzer, Barker, Cox, Akeroyd, Culling, Naylor, Porter, Muñoz (b19) 2021; 2
Husstedt, Wollermann, Tchorz (b34) 2017; 6
Bronkhorst (b10) 2000; 86
Wendt, Van de Par, Ewert (b65) 2014; 62
Castro Martinez, Gerlach, Payá-Vayá, Hermansky, Ooster, Meyer (b12) 2019; 106
Denk, Ernst, Ewert, Kollmeier (b14) 2018; 22
Fontan, Cretin-Maitenaz, Füllgrabe (b18) 2020; 24
Barker, Akeroyd, Bailey, Cox, Culling, Firth, Graetzer, Naylor (b4) 2024
Akeroyd, Barker, Cox, Culling, Graetzer, Naylor, Porter, Viveros Muñoz (b1) 2020; 148
Tu, Ma, Barker (b61) 2022
Bisgaard, Vlaming, Dahlquist (b8) 2010; 14
Schaette, McAlpine (b56) 2011; 31
Grimm, Hohmann (b22) 2019
Breithaupt (10.1016/j.specom.2025.103202_b9) 2008
Taal (10.1016/j.specom.2025.103202_b59) 2011; 19
Karbasi (10.1016/j.specom.2025.103202_b35) 2022; 426
Schädler (10.1016/j.specom.2025.103202_b55) 2020
Searchfield (10.1016/j.specom.2025.103202_b57) 2018; 57
10.1016/j.specom.2025.103202_b7
Grimm (10.1016/j.specom.2025.103202_b24) 2019; 105
Wichern (10.1016/j.specom.2025.103202_b68) 2019; 2019-Septe
Andersen (10.1016/j.specom.2025.103202_b3) 2018; 102
Luo (10.1016/j.specom.2025.103202_b43) 2019; 27
10.1016/j.specom.2025.103202_b62
Dillon (10.1016/j.specom.2025.103202_b15) 2012
Tu (10.1016/j.specom.2025.103202_b60) 2022; 2022-September
Akeroyd (10.1016/j.specom.2025.103202_b1) 2020; 148
Fontan (10.1016/j.specom.2025.103202_b18) 2020; 24
Andersen (10.1016/j.specom.2025.103202_b2) 2017
Kochkin (10.1016/j.specom.2025.103202_b42) 2010; 63
Tu (10.1016/j.specom.2025.103202_b61) 2022
Barker (10.1016/j.specom.2025.103202_b5) 2022
Durlach (10.1016/j.specom.2025.103202_b16) 1963; 35
Röttges (10.1016/j.specom.2025.103202_b53) 2022; 6
Santos (10.1016/j.specom.2025.103202_b54) 2014
Baumgärtel (10.1016/j.specom.2025.103202_b6) 2015; 19
Hauth (10.1016/j.specom.2025.103202_b27) 2020; 24
Meyer (10.1016/j.specom.2025.103202_b44) 2016
Schaette (10.1016/j.specom.2025.103202_b56) 2011; 31
Wilson (10.1016/j.specom.2025.103202_b69) 2017; 390
Huber (10.1016/j.specom.2025.103202_b31) 2018
Kayser (10.1016/j.specom.2025.103202_b39) 2022; 6
Nejime (10.1016/j.specom.2025.103202_b46) 1997; 102
Panayotov (10.1016/j.specom.2025.103202_b48) 2015
Elko (10.1016/j.specom.2025.103202_b17) 1995
Hall (10.1016/j.specom.2025.103202_b25) 1966
Husstedt (10.1016/j.specom.2025.103202_b34) 2017; 6
Grimm (10.1016/j.specom.2025.103202_b22) 2019
Cherry (10.1016/j.specom.2025.103202_b13) 1953; 25
Kayser (10.1016/j.specom.2025.103202_b38) 2009; 2009
Grimm (10.1016/j.specom.2025.103202_b21) 2006; 92
Westhausen (10.1016/j.specom.2025.103202_b66) 2024; PP
Karbasi (10.1016/j.specom.2025.103202_b36) 2022; 30
Buechler (10.1016/j.specom.2025.103202_b11) 2001
Spille (10.1016/j.specom.2025.103202_b58) 2018; 48
Kayser (10.1016/j.specom.2025.103202_b40) 2022; 17
Plack (10.1016/j.specom.2025.103202_b49) 2014; 18
Westhausen (10.1016/j.specom.2025.103202_b67) 2023; PP
Wagener (10.1016/j.specom.2025.103202_b64) 1999; 38
Roßbach (10.1016/j.specom.2025.103202_b51) 2021
Denk (10.1016/j.specom.2025.103202_b14) 2018; 22
Kates (10.1016/j.specom.2025.103202_b37) 2020
Castro Martinez (10.1016/j.specom.2025.103202_b12) 2019; 106
Hamacher (10.1016/j.specom.2025.103202_b26) 2005; 2005
Roßbach (10.1016/j.specom.2025.103202_b52) 2024; 89
Keidser (10.1016/j.specom.2025.103202_b41) 2011; 1
Wendt (10.1016/j.specom.2025.103202_b65) 2014; 62
Wagener (10.1016/j.specom.2025.103202_b63) 2005; 44
Grimm (10.1016/j.specom.2025.103202_b20) 2021
Nordqvist (10.1016/j.specom.2025.103202_b47) 2004
Grimm (10.1016/j.specom.2025.103202_b23) 2009; 17
Moritz (10.1016/j.specom.2025.103202_b45) 2015
Graetzer (10.1016/j.specom.2025.103202_b19) 2021; 2
Barker (10.1016/j.specom.2025.103202_b4) 2024
Hendrikse (10.1016/j.specom.2025.103202_b28) 2020; 24
Bisgaard (10.1016/j.specom.2025.103202_b8) 2010; 14
Huber (10.1016/j.specom.2025.103202_b32) 2018
Hermansky (10.1016/j.specom.2025.103202_b29) 2013
Povey (10.1016/j.specom.2025.103202_b50) 2011
10.1016/j.specom.2025.103202_b33
Bronkhorst (10.1016/j.specom.2025.103202_b10) 2000; 86
Yi (10.1016/j.specom.2025.103202_b70) 2022
10.1016/j.specom.2025.103202_b30
References_xml – start-page: 3308
  year: 2022
  end-page: 3312
  ident: b70
  article-title: ConferencingSpeech 2022 challenge: Non-intrusive objective speech quality assessment (NISQA) challenge for online conferencing applications
  publication-title: Interspeech
– reference: Hoffner, D.E., Roßbach, J., Meyer, B.T., 2024. Joint prediction of subjective listening effort and speech intelligibility based on end-to-end learning. In: Proc. Interspeech 2024. pp. 4214–4218.
– volume: 62
  year: 2014
  ident: b65
  article-title: A computationally-efficient and perceptually-plausible algorithm for binaural
  publication-title: J. Audio Eng. Soc.
– volume: PP
  start-page: 1
  year: 2024
  end-page: 10
  ident: b66
  article-title: Real-time multichannel deep speech enhancement in hearing aids: Comparing monaural and binaural processing in complex acoustic scenarios
  publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process.
– start-page: 908
  year: 2020
  end-page: 911
  ident: b55
  article-title: Simulating spatial speech recognition performance with an automatic-speech-recognition-based model
  publication-title: Proc. DAGA, Dtsch. Ges. F Ü R Akust.
– volume: 19
  start-page: 2125
  year: 2011
  end-page: 2136
  ident: b59
  article-title: An algorithm for intelligibility prediction of time-frequency weighted noisy speech
  publication-title: IEEE Trans. Audio, Speech Lang. Process.
– volume: 14
  start-page: 113
  year: 2010
  end-page: 120
  ident: b8
  article-title: Standard audiograms for the IEC 60118-15 measurement procedure
  publication-title: Trends Amplif.
– volume: 18
  start-page: 1
  year: 2014
  end-page: 11
  ident: b49
  article-title: Perceptual consequences of ”hidden” hearing loss
  publication-title: Trends Hear.
– year: 2019
  ident: b22
  article-title: First order ambisonics field recordings for use in virtual acoustic environments in the context of audiology
  publication-title: Zenodo
– start-page: 5085
  year: 2017
  end-page: 5089
  ident: b2
  article-title: A non-intrusive short-time objective intelligibility measure
  publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2001
  ident: b11
  article-title: How good are automatic program selection features? A look at the usefulness and acceptance of an automatic program selection mode
  publication-title: The Hearing Review
– volume: 2005
  year: 2005
  ident: b26
  article-title: Signal processing in high-end hearing aids: State of the art, challenges, and future trends
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 24
  start-page: 1
  year: 2020
  end-page: 16
  ident: b18
  article-title: Predicting speech perception in older listeners with sensorineural hearing loss using automatic speech recognition
  publication-title: Trends Hear.
– volume: 24
  year: 2020
  ident: b28
  article-title: Evaluation of the influence of head movement on hearing aid algorithm performance using acoustic simulations
  publication-title: Trends Hear.
– start-page: 86
  year: 2018
  end-page: 90
  ident: b32
  article-title: Objective assessment of a speech enhancement scheme with an automatic speech recognition-based system
  publication-title: Proc. ITG Conf. Speech Commun.
– volume: 2022-September
  start-page: 3488
  year: 2022
  end-page: 3492
  ident: b60
  article-title: Exploiting hidden representations from a DNN-based speech recogniser for speech intelligibility prediction in hearing-impaired listeners
  publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH
– volume: 6
  start-page: 143
  year: 2017
  end-page: 150
  ident: b34
  article-title: A method to analyse and test the automatic selection of hearing aid programs
  publication-title: Proc. Int. Symp. Audit. Audiol. Res.
– start-page: 11551
  year: 2024
  end-page: 11555
  ident: b4
  article-title: The 2nd clarity prediction challenge: A machine learning challenge for hearing aid intelligibility prediction
  publication-title: ICASSP
– volume: 31
  start-page: 13452
  year: 2011
  end-page: 13457
  ident: b56
  article-title: Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model
  publication-title: J. Neurosci.
– reference: BBC, ., BBC Sound Effects URL:
– year: 2004
  ident: b47
  article-title: Sound classification in hearing instruments
  publication-title: Journal of Acoustic Society of America
– volume: 105
  start-page: 566
  year: 2019
  end-page: 578
  ident: b24
  article-title: A toolbox for rendering virtual acoustic environments in the context of audiology
  publication-title: Acta Acust. United Acust.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 19
  ident: b14
  article-title: Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles
  publication-title: Trends Hear.
– volume: PP
  start-page: 1
  year: 2023
  end-page: 10
  ident: b67
  article-title: Binaural multichannel blind speaker separation with a causal low-latency and low-complexity approach
  publication-title: IEEE Open J. Signal Process.
– start-page: 5206
  year: 2015
  end-page: 5210
  ident: b48
  article-title: Librispeech: An ASR corpus based on public domain audio books
  publication-title: ICASSP
– volume: 102
  start-page: 1
  year: 2018
  end-page: 13
  ident: b3
  article-title: Refinement and validation of the binaural short time objective intelligibility measure for spatially diverse conditions
  publication-title: Speech Commun.
– reference: Veselý, K., Ghoshal, A., Burget, L., Povey, D., 2013. Sequence-discriminative Training of Deep Neural Networks. In: Proc. Interspeech. Lyon, France, pp. 2345–2349.
– volume: 1
  year: 2011
  ident: b41
  article-title: The NAL-NL2 prescription procedure
  publication-title: Audiol. Res.
– volume: 89
  year: 2024
  ident: b52
  article-title: Multilingual non-intrusive binaural intelligibility prediction based on phone classification
  publication-title: Comput. Speech Lang.
– start-page: 396
  year: 2021
  end-page: 400
  ident: b51
  article-title: Non-intrusive binaural prediction of speech intelligibility based on phoneme classification
  publication-title: ICASSP
– start-page: 3508
  year: 2022
  end-page: 3512
  ident: b5
  article-title: The 1st Clarity Prediction Challenge: A machine learning challenge for hearing aid intelligibility prediction
  publication-title: Interspeech
– volume: 92
  start-page: 618
  year: 2006
  end-page: 628
  ident: b21
  article-title: The master hearing aid: A PC-based platform for algorithm development and evaluation
  publication-title: Acta Acust. United Acust.
– volume: 38
  start-page: 86
  year: 1999
  end-page: 95
  ident: b64
  article-title: Development and evaluation of a german sentence test part III: Evaluation of the oldenburg sentence test
  publication-title: Z. F Ü R Audiol.
– volume: 35
  start-page: 1206
  year: 1963
  end-page: 1218
  ident: b16
  article-title: Equalization and cancellation theory of binaural masking-level differences
  publication-title: J. Acoust. Soc. Am.
– volume: 2019-Septe
  start-page: 1368
  year: 2019
  end-page: 1372
  ident: b68
  article-title: Wham!: Extending speech separation to noisy environments
  publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH
– volume: 2009
  year: 2009
  ident: b38
  article-title: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses
  publication-title: Eurasip J. Adv. Signal Process.
– start-page: 169
  year: 1995
  end-page: 172
  ident: b17
  article-title: A simple adaptive first-order differential microphone
  publication-title: Proceedings of 1995 Workshop on Applications of Signal Processing To Audio and Accoustics
– volume: 63
  start-page: 19
  year: 2010
  end-page: 32
  ident: b42
  article-title: MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing
  publication-title: Hear. J.
– volume: 44
  start-page: 144
  year: 2005
  end-page: 156
  ident: b63
  article-title: Sentence intelligibility in noise for listeners with normal hearing and hearing impairment: Influence of measurement procedure and masking parameters
  publication-title: Int. J. Audiol.
– reference: Hülsmeier, D., Hauth, C.F., Röttges, S., Kranzusch, P., Roßbach, J., Schädler, M.R., Meyer, B.T., Warzybok, A., Brand, T., 2021. Towards Non-Intrusive Prediction of Speech Recognition Thresholds in Binaural Conditions. In: 14th ITG Conference on Speech Communication. ISBN: 9783800756285, pp. 1–5.
– volume: 2
  start-page: 1181
  year: 2021
  end-page: 1185
  ident: b19
  article-title: Clarity-2021 challenges: Machine learning challenges for advancing hearing aid processing
  publication-title: Interspeech
– start-page: 55
  year: 2014
  end-page: 59
  ident: b54
  article-title: An improved non-intrusive intelligibility metric for noisy and reverberant speech
  publication-title: 14th International Workshop on Acoustic Signal Enhancement
– volume: 102
  start-page: 603
  year: 1997
  end-page: 615
  ident: b46
  article-title: Simulation of the effect of threshold elevation and loudness recruitment combined with reduced frequency selectivity on the intelligibility of speech in noise
  publication-title: J. Acoust. Soc. Am.
– year: 2020
  ident: b37
  article-title: The hearing-aid speech perception index (HASPI) version 2
  publication-title: Speech Commun.
– volume: 17
  year: 2022
  ident: b40
  article-title: Open community platform for hearing aid algorithm research: open master hearing aid (openmha)
  publication-title: SoftwareX
– volume: 25
  start-page: 975
  year: 1953
  end-page: 979
  ident: b13
  article-title: Some experiments on the recognition of speech with one and with two ears
  publication-title: J. Acoust. Soc. Am.
– volume: 24
  year: 2020
  ident: b27
  article-title: Modeling binaural unmasking of speech using a blind binaural processing stage
  publication-title: Trends Hear.
– volume: 426
  year: 2022
  ident: b35
  article-title: ASR-based speech intelligibility prediction: A review
  publication-title: Hear. Res.
– volume: 6
  year: 2022
  ident: b39
  article-title: Spatial speech detection for binaural hearing aids using deep phoneme classifiers
  publication-title: Acta Acust.
– volume: 19
  year: 2015
  ident: b6
  article-title: Comparing binaural pre-processing strategies II
  publication-title: Trends Hear.
– volume: 148
  year: 2020
  ident: b1
  article-title: Launching the first “Clarity” Machine Learning Challenge to revolutionise hearing device processing
  publication-title: J. Acoust. Soc. Am.
– volume: 86
  start-page: 117
  year: 2000
  end-page: 128
  ident: b10
  article-title: The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions
  publication-title: Acustica
– volume: 6
  year: 2022
  ident: b53
  article-title: Using a blind EC mechanism for modelling the interaction between binaural and temporal speech processing
  publication-title: Acta Acust.
– start-page: 4897
  year: 2008
  end-page: 4900
  ident: b9
  article-title: A novel a priori snr estimation approach based on selective cepstro-temporal smoothing
  publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process.
– start-page: 5330
  year: 2016
  end-page: 5334
  ident: b44
  article-title: Predicting error rates for unknown data in automatic speech recognition
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
– volume: 106
  start-page: 44
  year: 2019
  end-page: 56
  ident: b12
  article-title: DNN-based performance measures for predicting error rates in automatic speech recognition and optimizing hearing aid parameters
  publication-title: Speech Commun.
– year: 2021
  ident: b20
  article-title: Pub environment
  publication-title: Zenodo
– start-page: 3493
  year: 2022
  end-page: 3496
  ident: b61
  article-title: Unsupervised uncertainty measures of automatic speech recognition for non-intrusive speech intelligibility prediction
  publication-title: Interspeech
– year: 2018
  ident: b31
  article-title: Single-ended prediction of listening effort using deep neural networks
  publication-title: Hear. Res.
– start-page: 7423
  year: 2013
  end-page: 7426
  ident: b29
  article-title: Mean temporal distance: Predicting ASR error from temporal properties of speech signal
  publication-title: ICASSP
– volume: 27
  start-page: 1256
  year: 2019
  end-page: 1266
  ident: b43
  article-title: Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– start-page: 1
  year: 2011
  end-page: 4
  ident: b50
  article-title: The kaldi speech recognition toolkit
  publication-title: IEEE ASRU Workshop
– volume: 390
  start-page: 2503
  year: 2017
  end-page: 2515
  ident: b69
  article-title: Global hearing health care: new findings and perspectives
  publication-title: Lancet
– reference: .
– year: 2012
  ident: b15
  article-title: Hearing Aids
– volume: 17
  start-page: 1408
  year: 2009
  end-page: 1419
  ident: b23
  article-title: Increase and subjective evaluation of feedback stability in hearing aids by a binaural coherence-based noise reduction scheme
  publication-title: IEEE Trans. Audio, Speech Lang. Process.
– start-page: 468
  year: 2015
  end-page: 474
  ident: b45
  article-title: A chime-3 challenge system: Long-term acoustic features for noise robust automatic speech recognition
  publication-title: 2015 IEEE ASRU Workshop
– volume: 30
  start-page: 2141
  year: 2022
  end-page: 2155
  ident: b36
  article-title: Microscopic and Blind Prediction of Speech Intelligibility: Theory and Practice
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– year: 1966
  ident: b25
  article-title: The Hidden Dimension
– volume: 48
  start-page: 51
  year: 2018
  end-page: 66
  ident: b58
  article-title: Predicting speech intelligibility with deep neural networks
  publication-title: Comput. Speech Lang.
– volume: 57
  start-page: 201
  year: 2018
  end-page: 212
  ident: b57
  article-title: The performance of an automatic acoustic-based program classifier compared to hearing aid users’ manual selection of listening programs
  publication-title: Int. J. Audiol.
– start-page: 468
  year: 2015
  ident: 10.1016/j.specom.2025.103202_b45
  article-title: A chime-3 challenge system: Long-term acoustic features for noise robust automatic speech recognition
  publication-title: 2015 IEEE ASRU Workshop
– start-page: 11551
  year: 2024
  ident: 10.1016/j.specom.2025.103202_b4
  article-title: The 2nd clarity prediction challenge: A machine learning challenge for hearing aid intelligibility prediction
– volume: 48
  start-page: 51
  year: 2018
  ident: 10.1016/j.specom.2025.103202_b58
  article-title: Predicting speech intelligibility with deep neural networks
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2017.10.004
– year: 2012
  ident: 10.1016/j.specom.2025.103202_b15
– volume: 18
  start-page: 1
  year: 2014
  ident: 10.1016/j.specom.2025.103202_b49
  article-title: Perceptual consequences of ”hidden” hearing loss
  publication-title: Trends Hear.
– start-page: 7423
  year: 2013
  ident: 10.1016/j.specom.2025.103202_b29
  article-title: Mean temporal distance: Predicting ASR error from temporal properties of speech signal
  publication-title: ICASSP
– volume: 24
  year: 2020
  ident: 10.1016/j.specom.2025.103202_b28
  article-title: Evaluation of the influence of head movement on hearing aid algorithm performance using acoustic simulations
  publication-title: Trends Hear.
– year: 1966
  ident: 10.1016/j.specom.2025.103202_b25
– start-page: 5206
  year: 2015
  ident: 10.1016/j.specom.2025.103202_b48
  article-title: Librispeech: An ASR corpus based on public domain audio books
  publication-title: ICASSP
– start-page: 3493
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b61
  article-title: Unsupervised uncertainty measures of automatic speech recognition for non-intrusive speech intelligibility prediction
  publication-title: Interspeech
  doi: 10.21437/Interspeech.2022-10408
– volume: 148
  issue: 4
  year: 2020
  ident: 10.1016/j.specom.2025.103202_b1
  article-title: Launching the first “Clarity” Machine Learning Challenge to revolutionise hearing device processing
  publication-title: J. Acoust. Soc. Am.
– volume: 31
  start-page: 13452
  issue: 38
  year: 2011
  ident: 10.1016/j.specom.2025.103202_b56
  article-title: Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2156-11.2011
– volume: 2019-Septe
  start-page: 1368
  year: 2019
  ident: 10.1016/j.specom.2025.103202_b68
  article-title: Wham!: Extending speech separation to noisy environments
  publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH
– volume: 57
  start-page: 201
  issue: 3
  year: 2018
  ident: 10.1016/j.specom.2025.103202_b57
  article-title: The performance of an automatic acoustic-based program classifier compared to hearing aid users’ manual selection of listening programs
  publication-title: Int. J. Audiol.
  doi: 10.1080/14992027.2017.1392048
– volume: 24
  start-page: 1
  year: 2020
  ident: 10.1016/j.specom.2025.103202_b18
  article-title: Predicting speech perception in older listeners with sensorineural hearing loss using automatic speech recognition
  publication-title: Trends Hear.
– start-page: 4897
  year: 2008
  ident: 10.1016/j.specom.2025.103202_b9
  article-title: A novel a priori snr estimation approach based on selective cepstro-temporal smoothing
  publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process.
– volume: 30
  start-page: 2141
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b36
  article-title: Microscopic and Blind Prediction of Speech Intelligibility: Theory and Practice
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2022.3184888
– volume: 6
  start-page: 143
  issue: August
  year: 2017
  ident: 10.1016/j.specom.2025.103202_b34
  article-title: A method to analyse and test the automatic selection of hearing aid programs
  publication-title: Proc. Int. Symp. Audit. Audiol. Res.
– volume: 38
  start-page: 86
  issue: 3
  year: 1999
  ident: 10.1016/j.specom.2025.103202_b64
  article-title: Development and evaluation of a german sentence test part III: Evaluation of the oldenburg sentence test
  publication-title: Z. F Ü R Audiol.
– volume: 25
  start-page: 975
  year: 1953
  ident: 10.1016/j.specom.2025.103202_b13
  article-title: Some experiments on the recognition of speech with one and with two ears
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907229
– volume: 86
  start-page: 117
  issue: 1
  year: 2000
  ident: 10.1016/j.specom.2025.103202_b10
  article-title: The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions
  publication-title: Acustica
– start-page: 908
  year: 2020
  ident: 10.1016/j.specom.2025.103202_b55
  article-title: Simulating spatial speech recognition performance with an automatic-speech-recognition-based model
  publication-title: Proc. DAGA, Dtsch. Ges. F Ü R Akust.
– volume: 17
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b40
  article-title: Open community platform for hearing aid algorithm research: open master hearing aid (openmha)
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2021.100953
– ident: 10.1016/j.specom.2025.103202_b30
  doi: 10.21437/Interspeech.2024-473
– start-page: 3508
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b5
  article-title: The 1st Clarity Prediction Challenge: A machine learning challenge for hearing aid intelligibility prediction
  publication-title: Interspeech
  doi: 10.21437/Interspeech.2022-10821
– volume: 426
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b35
  article-title: ASR-based speech intelligibility prediction: A review
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2022.108606
– issue: April
  year: 2020
  ident: 10.1016/j.specom.2025.103202_b37
  article-title: The hearing-aid speech perception index (HASPI) version 2
  publication-title: Speech Commun.
– volume: 2009
  year: 2009
  ident: 10.1016/j.specom.2025.103202_b38
  article-title: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses
  publication-title: Eurasip J. Adv. Signal Process.
  doi: 10.1155/2009/298605
– start-page: 3308
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b70
  article-title: ConferencingSpeech 2022 challenge: Non-intrusive objective speech quality assessment (NISQA) challenge for online conferencing applications
  publication-title: Interspeech
  doi: 10.21437/Interspeech.2022-10597
– volume: 102
  start-page: 1
  year: 2018
  ident: 10.1016/j.specom.2025.103202_b3
  article-title: Refinement and validation of the binaural short time objective intelligibility measure for spatially diverse conditions
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2018.06.001
– start-page: 86
  year: 2018
  ident: 10.1016/j.specom.2025.103202_b32
  article-title: Objective assessment of a speech enhancement scheme with an automatic speech recognition-based system
  publication-title: Proc. ITG Conf. Speech Commun.
– start-page: 1
  year: 2011
  ident: 10.1016/j.specom.2025.103202_b50
  article-title: The kaldi speech recognition toolkit
  publication-title: IEEE ASRU Workshop
– volume: 35
  start-page: 1206
  issue: 8
  year: 1963
  ident: 10.1016/j.specom.2025.103202_b16
  article-title: Equalization and cancellation theory of binaural masking-level differences
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1918675
– volume: 105
  start-page: 566
  issue: 3
  year: 2019
  ident: 10.1016/j.specom.2025.103202_b24
  article-title: A toolbox for rendering virtual acoustic environments in the context of audiology
  publication-title: Acta Acust. United Acust.
  doi: 10.3813/AAA.919337
– start-page: 169
  year: 1995
  ident: 10.1016/j.specom.2025.103202_b17
  article-title: A simple adaptive first-order differential microphone
– volume: 2
  start-page: 1181
  year: 2021
  ident: 10.1016/j.specom.2025.103202_b19
  article-title: Clarity-2021 challenges: Machine learning challenges for advancing hearing aid processing
  publication-title: Interspeech
– volume: 2005
  issue: 18
  year: 2005
  ident: 10.1016/j.specom.2025.103202_b26
  article-title: Signal processing in high-end hearing aids: State of the art, challenges, and future trends
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/ASP.2005.2915
– ident: 10.1016/j.specom.2025.103202_b33
– volume: 19
  year: 2015
  ident: 10.1016/j.specom.2025.103202_b6
  article-title: Comparing binaural pre-processing strategies II
  publication-title: Trends Hear.
– volume: 92
  start-page: 618
  issue: 4
  year: 2006
  ident: 10.1016/j.specom.2025.103202_b21
  article-title: The master hearing aid: A PC-based platform for algorithm development and evaluation
  publication-title: Acta Acust. United Acust.
– volume: PP
  start-page: 1
  year: 2024
  ident: 10.1016/j.specom.2025.103202_b66
  article-title: Real-time multichannel deep speech enhancement in hearing aids: Comparing monaural and binaural processing in complex acoustic scenarios
  publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process.
– volume: PP
  start-page: 1
  year: 2023
  ident: 10.1016/j.specom.2025.103202_b67
  article-title: Binaural multichannel blind speaker separation with a causal low-latency and low-complexity approach
  publication-title: IEEE Open J. Signal Process.
– year: 2018
  ident: 10.1016/j.specom.2025.103202_b31
  article-title: Single-ended prediction of listening effort using deep neural networks
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2017.12.014
– volume: 24
  year: 2020
  ident: 10.1016/j.specom.2025.103202_b27
  article-title: Modeling binaural unmasking of speech using a blind binaural processing stage
  publication-title: Trends Hear.
– volume: 63
  start-page: 19
  issue: 1
  year: 2010
  ident: 10.1016/j.specom.2025.103202_b42
  article-title: MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing
  publication-title: Hear. J.
  doi: 10.1097/01.HJ.0000366912.40173.76
– start-page: 5330
  year: 2016
  ident: 10.1016/j.specom.2025.103202_b44
  article-title: Predicting error rates for unknown data in automatic speech recognition
– year: 2004
  ident: 10.1016/j.specom.2025.103202_b47
  article-title: Sound classification in hearing instruments
– volume: 44
  start-page: 144
  issue: 3
  year: 2005
  ident: 10.1016/j.specom.2025.103202_b63
  article-title: Sentence intelligibility in noise for listeners with normal hearing and hearing impairment: Influence of measurement procedure and masking parameters
  publication-title: Int. J. Audiol.
  doi: 10.1080/14992020500057517
– start-page: 5085
  year: 2017
  ident: 10.1016/j.specom.2025.103202_b2
  article-title: A non-intrusive short-time objective intelligibility measure
– issue: January
  year: 2021
  ident: 10.1016/j.specom.2025.103202_b20
  article-title: Pub environment
  publication-title: Zenodo
– year: 2019
  ident: 10.1016/j.specom.2025.103202_b22
  article-title: First order ambisonics field recordings for use in virtual acoustic environments in the context of audiology
  publication-title: Zenodo
– volume: 6
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b39
  article-title: Spatial speech detection for binaural hearing aids using deep phoneme classifiers
  publication-title: Acta Acust.
  doi: 10.1051/aacus/2022013
– volume: 102
  start-page: 603
  issue: 1
  year: 1997
  ident: 10.1016/j.specom.2025.103202_b46
  article-title: Simulation of the effect of threshold elevation and loudness recruitment combined with reduced frequency selectivity on the intelligibility of speech in noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.419733
– year: 2001
  ident: 10.1016/j.specom.2025.103202_b11
  article-title: How good are automatic program selection features? A look at the usefulness and acceptance of an automatic program selection mode
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.specom.2025.103202_b14
  article-title: Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles
  publication-title: Trends Hear.
– start-page: 396
  year: 2021
  ident: 10.1016/j.specom.2025.103202_b51
  article-title: Non-intrusive binaural prediction of speech intelligibility based on phoneme classification
– ident: 10.1016/j.specom.2025.103202_b62
  doi: 10.21437/Interspeech.2013-548
– volume: 106
  start-page: 44
  issue: November 2018
  year: 2019
  ident: 10.1016/j.specom.2025.103202_b12
  article-title: DNN-based performance measures for predicting error rates in automatic speech recognition and optimizing hearing aid parameters
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2018.11.006
– volume: 62
  issue: 11
  year: 2014
  ident: 10.1016/j.specom.2025.103202_b65
  article-title: A computationally-efficient and perceptually-plausible algorithm for binaural
  publication-title: J. Audio Eng. Soc.
  doi: 10.17743/jaes.2014.0042
– volume: 17
  start-page: 1408
  issue: 7
  year: 2009
  ident: 10.1016/j.specom.2025.103202_b23
  article-title: Increase and subjective evaluation of feedback stability in hearing aids by a binaural coherence-based noise reduction scheme
  publication-title: IEEE Trans. Audio, Speech Lang. Process.
  doi: 10.1109/TASL.2009.2020531
– volume: 2022-September
  start-page: 3488
  issue: September
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b60
  article-title: Exploiting hidden representations from a DNN-based speech recogniser for speech intelligibility prediction in hearing-impaired listeners
  publication-title: Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH
– start-page: 55
  year: 2014
  ident: 10.1016/j.specom.2025.103202_b54
  article-title: An improved non-intrusive intelligibility metric for noisy and reverberant speech
– volume: 27
  start-page: 1256
  issue: 8
  year: 2019
  ident: 10.1016/j.specom.2025.103202_b43
  article-title: Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2019.2915167
– volume: 6
  year: 2022
  ident: 10.1016/j.specom.2025.103202_b53
  article-title: Using a blind EC mechanism for modelling the interaction between binaural and temporal speech processing
  publication-title: Acta Acust.
  doi: 10.1051/aacus/2022009
– volume: 89
  issue: 101684
  year: 2024
  ident: 10.1016/j.specom.2025.103202_b52
  article-title: Multilingual non-intrusive binaural intelligibility prediction based on phone classification
  publication-title: Comput. Speech Lang.
– ident: 10.1016/j.specom.2025.103202_b7
– volume: 14
  start-page: 113
  issue: 2
  year: 2010
  ident: 10.1016/j.specom.2025.103202_b8
  article-title: Standard audiograms for the IEC 60118-15 measurement procedure
  publication-title: Trends Amplif.
  doi: 10.1177/1084713810379609
– volume: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.specom.2025.103202_b41
  article-title: The NAL-NL2 prescription procedure
  publication-title: Audiol. Res.
  doi: 10.4081/audiores.2011.e24
– volume: 19
  start-page: 2125
  issue: 7
  year: 2011
  ident: 10.1016/j.specom.2025.103202_b59
  article-title: An algorithm for intelligibility prediction of time-frequency weighted noisy speech
  publication-title: IEEE Trans. Audio, Speech Lang. Process.
  doi: 10.1109/TASL.2011.2114881
– volume: 390
  start-page: 2503
  issue: 10111
  year: 2017
  ident: 10.1016/j.specom.2025.103202_b69
  article-title: Global hearing health care: new findings and perspectives
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31073-5
SSID ssj0004882
Score 2.4280322
Snippet Hearing aids (HAs) often feature different signal processing algorithms to optimize speech recognition (SR) in a given acoustic environment. In this paper, we...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103202
SubjectTerms Binaural
Deep neural network
Non-intrusive
Speech recognition prediction
Title Non-intrusive binaural speech recognition prediction for hearing aid processing
URI https://dx.doi.org/10.1016/j.specom.2025.103202
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZemCoLwplQfEZpo4dpyMVUVVoJSBIrpFjuOIAkqqtgsLv51zHgWExMAWW7Zk3Z3u4XzfGeBcO8Z1FVfUSwNDuZcIGhsT0tBJfS2dODRFoXg38UeP_GYmZg0Y1FwYC6usfH_p0wtvXc30Kmn2FvN578EC6DG-ekwUXV-sH-ZcWiu__PiCeaCBsrq_t11d0-cKjJdlM-aWj86EZZ-z6nLlV3j6FnKGO7Bd5YqkXx5nFxoma8PhuLphXJELMt40RV61obVxZu9t6JS8W_Jk3lK1NLi2nsiXr3twP8kzOs8s4wLdHcHyWNn-GwSPavQz2cCK8owslvZfTvGJCS6xL2BjuCNqnpBFyTLA4T5Mh1fTwYhWbytQjRF6TbGgVpzHicYYrphyXYO1n0ikG4s0ZMrXItAsFDrU3HdSqYVyDI9TzD8SHmvlHUAzyzNzBET6rpEySEKpUo66VaEXmMDTykmx9mLsGGgt0WhRdtCIamjZS1RqILIaiEoNHIOsxR79sIQInfyfO0_-vfMUWnZUAhk70ETpmzNMNtZxt7CmLmz1r29Hk081u9Vs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7UAXBOVVKOABsVnNw85jrCqqlqZloIhukeM4ooCSqO3Cv-ecRwEhMbAlTixZd9Z3d_Z9dwA30lCmKZigduIpyuyY00gpn_pG4kjXiHxVBIqzuTN-YvdLvmzAsObC6LTKCvtLTC_QuhrpV9Ls56tV_1En0KN9tS1eVH1BHG7p6lS8Ca3BZDqef9EjvaJnVFHiW0-oGXRFmpcmNGaakm5xTUC3qvOVXxbqm9UZHcB-5S6SQbmiQ2iotAOnQXXIuCG3JNjVRd50oL3Ds48O9ErqLXlW74lYK_y3HsjWb0fwMM9Suko16QIRj2CELHQJDoJLVfKF7DKLspTka32dUzyij0t0E2y0eESsYpKXRAN8PYbF6G4xHNOqvQKVaKS3FGNqwVgUSzTjwhKmqTD847FrRjzxLeFI7knL59KXzDESV3JhKBYl6ILELJLCPoFmmqXqDIjrmMp1vdh3RcJQvcK3PeXZUhgJhl-W1QVaSzTMyyIaYZ1d9hqWGgi1BsJSA11wa7GHPzZDiDj_58zzf8-8hr3xYhaEwWQ-vYC2_lLmNfagiZpQl-h7bKOram99ApHH2B0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+binaural+speech+recognition+prediction+for+hearing+aid+processing&rft.jtitle=Speech+communication&rft.au=Ro%C3%9Fbach%2C+Jana&rft.au=Westhausen%2C+Nils+L.&rft.au=Kayser%2C+Hendrik&rft.au=Meyer%2C+Bernd+T.&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-6393&rft.volume=170&rft_id=info:doi/10.1016%2Fj.specom.2025.103202&rft.externalDocID=S0167639325000172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon