Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching
With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regenera...
Saved in:
Published in | Carbon (New York) Vol. 238; p. 120182 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regeneration of graphite from spent LIBs by low-temperature spent polyvinyl chloride (PVC) roasting-assisted leaching. Through low-temperature PVC roasting, the metal impurities of spent graphite were converted into water-soluble metal chloride, and the roasting tail gas was absorbed by water and converted into absorption liquor. After the leaching using the absorption liquor, the purity of the purified graphite exceeded 99.9%. Subsequently, the material was reheated at 1000°C to produce regenerated graphite. The material structure, including interlayer spacing and surface morphology, were significantly repaired, aligning with those of commercial graphite. The cyclic stability had been powerfully promoted, after 500 cycles at 1 C, the specific capacity of regenerated graphite remained at 111.5 mAh/g, with a retention rate of 75% (spent graphite was 43.4 mAh/g, 33%) and a coulombic efficiency exceeding 99%, demonstrating good rate performance and cycling stability. This technology not only reduces the regeneration costs of graphite materials but also achieves environmental benefits through the principle of “treating waste with waste”.
[Display omitted]
•Spent graphite was purified via low-temperature PVC roasting-assisted leaching.•The purity of purified graphite is higher than 99.9%.•Material structures of purified graphite were repaired after 1000°C roasting.•Regenerated graphite exhibits excellent electrochemical performance.•Reduced regeneration costs and achieved environmental benefits through this method. |
---|---|
AbstractList | With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regeneration of graphite from spent LIBs by low-temperature spent polyvinyl chloride (PVC) roasting-assisted leaching. Through low-temperature PVC roasting, the metal impurities of spent graphite were converted into water-soluble metal chloride, and the roasting tail gas was absorbed by water and converted into absorption liquor. After the leaching using the absorption liquor, the purity of the purified graphite exceeded 99.9%. Subsequently, the material was reheated at 1000°C to produce regenerated graphite. The material structure, including interlayer spacing and surface morphology, were significantly repaired, aligning with those of commercial graphite. The cyclic stability had been powerfully promoted, after 500 cycles at 1 C, the specific capacity of regenerated graphite remained at 111.5 mAh/g, with a retention rate of 75% (spent graphite was 43.4 mAh/g, 33%) and a coulombic efficiency exceeding 99%, demonstrating good rate performance and cycling stability. This technology not only reduces the regeneration costs of graphite materials but also achieves environmental benefits through the principle of “treating waste with waste”.
[Display omitted]
•Spent graphite was purified via low-temperature PVC roasting-assisted leaching.•The purity of purified graphite is higher than 99.9%.•Material structures of purified graphite were repaired after 1000°C roasting.•Regenerated graphite exhibits excellent electrochemical performance.•Reduced regeneration costs and achieved environmental benefits through this method. |
ArticleNumber | 120182 |
Author | Zhao, Haohan Zhou, Rui Gao, Hanxiao Huang, Jianwen Yu, Jiaping He, Junwei Luo, Feng Hu, Chongwen Deng, Chunjian Zeng, Guisheng Wang, Zhongbing Liu, Chunli |
Author_xml | – sequence: 1 givenname: Guisheng orcidid: 0009-0008-8406-5122 surname: Zeng fullname: Zeng, Guisheng email: zgs77@163.com organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 2 givenname: Rui surname: Zhou fullname: Zhou, Rui organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 3 givenname: Chongwen surname: Hu fullname: Hu, Chongwen organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 4 givenname: Haohan surname: Zhao fullname: Zhao, Haohan organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 5 givenname: Hanxiao surname: Gao fullname: Gao, Hanxiao organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 6 givenname: Jianwen surname: Huang fullname: Huang, Jianwen organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 7 givenname: Jiaping surname: Yu fullname: Yu, Jiaping organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 8 givenname: Feng surname: Luo fullname: Luo, Feng organization: Shangrao Dingxin Metal Chemical Co., Ltd, Shangrao, Jiangxi, 334100, China – sequence: 9 givenname: Zhongbing surname: Wang fullname: Wang, Zhongbing organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 10 givenname: Chunjian surname: Deng fullname: Deng, Chunjian organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China – sequence: 11 givenname: Junwei surname: He fullname: He, Junwei organization: Shangrao R-Lithium Recycling Technology Co., Ltd, Shangrao, Jiangxi, 334100, China – sequence: 12 givenname: Chunli surname: Liu fullname: Liu, Chunli email: clliu19@126.com organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China |
BookMark | eNp9kMtKAzEUhrOoYKu-gYu8wNQkc2m6EaR4g4Igug65nOmkZCZDklbGle_gG_okThnXrg7_D__H4VugWec7QOiakiUltLrZL7UMyndLRli5pIxQzmZoTgjhWcVYfo4WMe7HWHBazNHnK-hBO9vtsK_xLsi-sQlwHXyLYw9dws6mxh7an69v6zusZEoQLER8tBI7_5ElaHsIMh0C4N674Wi7wWHdOB-sARy8jGnEZzJGGxMY7EDqZmwu0VktXYSrv3uB3h_u3zZP2fbl8Xlzt8005WXKTM55UauaEF0bXaxyDoRXShIq87JYcVWyUla5pobpsVtrWq1KZYzSKl8zuc4vUDFxdfAxBqhFH2wrwyAoESdnYi8mZ-LkTEzOxtntNIPxt6OFIKK20GkwNoBOwnj7P-AX1hx_1w |
Cites_doi | 10.1016/j.joei.2020.07.009 10.1021/acssuschemeng.0c02321 10.1016/j.fuel.2023.127555 10.1016/j.jece.2024.112055 10.3390/min12030362 10.1007/s42823-022-00450-7 10.1007/s12274-018-2153-2 10.3390/batteries3010001 10.1021/es302420z 10.1039/D3CC02246C 10.1002/eom2.12321 10.1016/j.cep.2016.04.007 10.2118/205389-PA 10.1016/j.jclepro.2020.123585 10.1016/j.wasman.2015.11.041 10.1016/j.joule.2019.08.018 10.1021/acssuschemeng.9b05003 10.1016/j.wasman.2016.08.031 10.1016/j.mtsust.2024.100825 10.1021/acssuschemeng.7b02876 10.1016/j.resconrec.2023.107301 10.1016/j.jaap.2022.105817 10.1039/C6CS00875E 10.1016/j.wasman.2023.06.034 10.1016/j.wasman.2023.05.034 10.1016/j.jmst.2019.11.013 10.1016/j.resconrec.2023.107267 10.1016/j.jhazmat.2021.125575 10.1016/j.ensm.2022.03.036 10.1177/00952443241227604 10.1016/j.ensm.2022.08.028 10.1016/j.electacta.2019.07.024 10.1002/aenm.202002238 10.1016/j.electacta.2019.05.050 10.1016/j.ensm.2021.06.020 10.1016/j.jechem.2023.12.052 10.1002/cey2.187 10.1016/j.jpowsour.2009.05.040 10.1021/acssuschemeng.2c03616 10.1016/j.wasman.2024.02.023 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.carbon.2025.120182 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_carbon_2025_120182 S0008622325001988 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGHFR AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SMS WUQ |
ID | FETCH-LOGICAL-c185t-d3884fbf00cfdc4738e086ba01a35478b525a63c1d2c01a9c1675bddbcb392a93 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Wed Jul 30 11:52:00 EDT 2025 Sat Jul 05 17:10:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regeneration Spent graphite Purification Waste PVC roasting Leaching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185t-d3884fbf00cfdc4738e086ba01a35478b525a63c1d2c01a9c1675bddbcb392a93 |
ORCID | 0009-0008-8406-5122 |
ParticipantIDs | crossref_primary_10_1016_j_carbon_2025_120182 elsevier_sciencedirect_doi_10_1016_j_carbon_2025_120182 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-05 |
PublicationDateYYYYMMDD | 2025-05-05 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Carbon (New York) |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yu, Xie, Zheng, Wu, Zhao, Liu (bib9) 2023; 199 Cao, Yuan, Yin, Chen, He, Wang (bib20) 2016; 58 Han, Li, Zhang, Lei, Wang (bib34) 2022; 48 Kalousková, Moravcová, Vránová, Hrdlička, Brožek (bib18) 2024; 56 Dong, Hui, Li, Du (bib28) 2023; 169 Gao, Wang, Zhang, Jing, Ma, Chen, Zhang (bib31) 2020; 8 Heiskanen, Kim, Lucht (bib38) 2019; 3 Han, Zhou, Li, Yi, Lin, Qian (bib40) 2018; 11 Ge, Yuan, Yi, Sun, Yang (bib8) 2024; 27 Chen, Salvatierra, Li, Kittrell, Beckham, Wyss, La, Savas, Ge, Advincula, Scotland, Eddy, Deng, Yuan, Tour (bib10) 2023; 35 Dobrosavljevic, Schaer, Commenge, Falk (bib23) 2016; 105 Li, Wang, Chan, Xu, Wang, Ge, Zhang, Chen, Tang (bib37) 2022; 4 Xu, Lei, Wang, Yi, Sun, Yang (bib5) 2023; 167 Nshizirungu, Rana, Jo, Park (bib19) 2021; 414 Gu, Han, Chen, Zhou, Wang, Xu, Lin, Liu, Chen, Chen, Zhang, Han (bib36) 2022; 52 Yi, Yang, Zhang, Wu, Sun, Yi (bib11) 2020; 277 Bispo, Kartnaller, Cajaiba (bib24) 2021; 26 Dunn, Gaines, Sullivan, Wang (bib1) 2012; 46 Meng, Huang, Gao, Dai, Lu, Liu, Huang, Shih, Tang (bib25) 2022; 10 Liu, Ma, Xi, Nie (bib22) 2024; 178 Ma, Zhu, Cai, Wang, Chen, Yang, Chen (bib26) 2023; 169 Liao, Wu, Zhang, Chen (bib29) 2022; 12 Yu, Sun, Ma, Qiao, Yao (bib17) 2016; 48 Chen, Li, Li, Zhou, He, Ouyang, Xu, Wang, Hou (bib35) 2020; 44 Dong, Zeng, Yuan, Wang, Lei, Zhao, Ai, Kong, Yang, Ge (bib32) 2024; 91 Nozaki, Nagaoka, Hoshi, Ohta, Inagaki (bib7) 2009; 194 Ma, Chen, Chen, Meng, Wang (bib15) 2019; 7 Natarajan, Aravindan (bib4) 2020; 10 Feng, Chen, Lian, He, Zheng, Lu, Lin, Liu, Deng (bib33) 2024; 12 Liu, Xu, Yu, Hu, Liu, Wang, Deng, Luo, He, Zeng, Luo (bib2) 2024; 200 Qiao, Zhao, Shen, Li, Rao, Shao, Lei (bib6) 2023; 5 Wang, Huang, Huang, Wang, Wang, Chen, Liu, Wu, Xu, Li (bib14) 2019; 313 Schiavi, Farina, Zanoni, Altimari, Cojocariu, Rubino, Navarra, Panero, Pagnanelli (bib3) 2019; 319 Zhang, Yin, Wang, Tham, Xing, Zhang, Wang, Liu (bib13) 2023; 59 Lai, Zhang, Wu, Zhang, Li, Huang, Liao, Wang (bib41) 2018; 6 Toyoda, Hou, Huang, Inagaki (bib39) 2023; 33 Zhou, Liu, Wang, Zhang, Xu (bib27) 2020; 93 Li, Bai, Zhang, Jia, Hou, Chen, Guo, Kong, Bai, Li (bib21) 2023; 340 Mahmood, Yuan, Sui, Riaz, Yu, Liu, Chen, Wang, Zhao, Mahmood, Pei, Wei, Chen (bib30) 2021; 41 Li, Song, Manthiram (bib16) 2017; 46 Larsson, Rytinki, Ahmed, Albinsson, Mellander (bib12) 2017; 3 Liu (10.1016/j.carbon.2025.120182_bib22) 2024; 178 Wang (10.1016/j.carbon.2025.120182_bib14) 2019; 313 Nozaki (10.1016/j.carbon.2025.120182_bib7) 2009; 194 Yu (10.1016/j.carbon.2025.120182_bib9) 2023; 199 Chen (10.1016/j.carbon.2025.120182_bib35) 2020; 44 Bispo (10.1016/j.carbon.2025.120182_bib24) 2021; 26 Meng (10.1016/j.carbon.2025.120182_bib25) 2022; 10 Liao (10.1016/j.carbon.2025.120182_bib29) 2022; 12 Kalousková (10.1016/j.carbon.2025.120182_bib18) 2024; 56 Feng (10.1016/j.carbon.2025.120182_bib33) 2024; 12 Qiao (10.1016/j.carbon.2025.120182_bib6) 2023; 5 Li (10.1016/j.carbon.2025.120182_bib21) 2023; 340 Zhang (10.1016/j.carbon.2025.120182_bib13) 2023; 59 Nshizirungu (10.1016/j.carbon.2025.120182_bib19) 2021; 414 Chen (10.1016/j.carbon.2025.120182_bib10) 2023; 35 Larsson (10.1016/j.carbon.2025.120182_bib12) 2017; 3 Dunn (10.1016/j.carbon.2025.120182_bib1) 2012; 46 Natarajan (10.1016/j.carbon.2025.120182_bib4) 2020; 10 Lai (10.1016/j.carbon.2025.120182_bib41) 2018; 6 Heiskanen (10.1016/j.carbon.2025.120182_bib38) 2019; 3 Li (10.1016/j.carbon.2025.120182_bib16) 2017; 46 Zhou (10.1016/j.carbon.2025.120182_bib27) 2020; 93 Schiavi (10.1016/j.carbon.2025.120182_bib3) 2019; 319 Mahmood (10.1016/j.carbon.2025.120182_bib30) 2021; 41 Li (10.1016/j.carbon.2025.120182_bib37) 2022; 4 Ge (10.1016/j.carbon.2025.120182_bib8) 2024; 27 Cao (10.1016/j.carbon.2025.120182_bib20) 2016; 58 Yi (10.1016/j.carbon.2025.120182_bib11) 2020; 277 Dong (10.1016/j.carbon.2025.120182_bib28) 2023; 169 Han (10.1016/j.carbon.2025.120182_bib34) 2022; 48 Han (10.1016/j.carbon.2025.120182_bib40) 2018; 11 Ma (10.1016/j.carbon.2025.120182_bib15) 2019; 7 Ma (10.1016/j.carbon.2025.120182_bib26) 2023; 169 Dobrosavljevic (10.1016/j.carbon.2025.120182_bib23) 2016; 105 Gao (10.1016/j.carbon.2025.120182_bib31) 2020; 8 Toyoda (10.1016/j.carbon.2025.120182_bib39) 2023; 33 Liu (10.1016/j.carbon.2025.120182_bib2) 2024; 200 Xu (10.1016/j.carbon.2025.120182_bib5) 2023; 167 Gu (10.1016/j.carbon.2025.120182_bib36) 2022; 52 Dong (10.1016/j.carbon.2025.120182_bib32) 2024; 91 Yu (10.1016/j.carbon.2025.120182_bib17) 2016; 48 |
References_xml | – volume: 194 start-page: 486 year: 2009 end-page: 493 ident: bib7 article-title: Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors publication-title: J. Power Sources – volume: 277 year: 2020 ident: bib11 article-title: A green and facile approach for regeneration of graphite from spent lithium ion battery publication-title: J. Clean. Prod. – volume: 44 start-page: 229 year: 2020 end-page: 236 ident: bib35 article-title: A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability publication-title: J. Mater. Sci. Technol. – volume: 3 start-page: 1 year: 2017 ident: bib12 article-title: Overcurrent abuse of primary prismatic zinc–air battery cells studying air supply effects on performance and safety shut-down publication-title: Batteries – volume: 313 start-page: 423 year: 2019 end-page: 431 ident: bib14 article-title: Reclaiming graphite from spent lithium ion batteries ecologically and economically publication-title: Electrochim. Acta – volume: 41 start-page: 395 year: 2021 end-page: 403 ident: bib30 article-title: Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries publication-title: Energy Storage Mater. – volume: 8 start-page: 9447 year: 2020 end-page: 9455 ident: bib31 article-title: Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination publication-title: ACS Sustainable Chem. Eng. – volume: 319 start-page: 481 year: 2019 end-page: 489 ident: bib3 article-title: Electrochemical synthesis of nanowire anodes from spent lithium ion batteries publication-title: Electrochim. Acta – volume: 10 start-page: 12329 year: 2022 end-page: 12341 ident: bib25 article-title: Green and energy-saving recycling of LiCoO publication-title: ACS Sustainable Chem. Eng. – volume: 48 start-page: 384 year: 2022 end-page: 392 ident: bib34 article-title: In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode publication-title: Energy Storage Mater. – volume: 4 start-page: 878 year: 2022 end-page: 900 ident: bib37 article-title: Nature‐inspired materials and designs for flexible lithium‐ion batteries publication-title: Carbon Energy – volume: 59 start-page: 9702 year: 2023 end-page: 9705 ident: bib13 article-title: Rejuvenation of aged graphite anodes from spent lithium-ion batteries publication-title: Chem. Commun. – volume: 414 year: 2021 ident: bib19 article-title: Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: a comparative study publication-title: J. Hazard Mater. – volume: 58 start-page: 241 year: 2016 end-page: 249 ident: bib20 article-title: Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: influence of PVC content and heating rate publication-title: Waste Management – volume: 46 start-page: 12704 year: 2012 end-page: 12710 ident: bib1 article-title: Impact of recycling on Cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries publication-title: Environ. Sci. Technol. – volume: 5 year: 2023 ident: bib6 article-title: Recycling of graphite anode from spent lithium‐ion batteries: advances and perspectives publication-title: EcoMat – volume: 7 start-page: 19732 year: 2019 end-page: 19738 ident: bib15 article-title: High-performance graphite recovered from spent lithium-ion batteries publication-title: ACS Sustainable Chem. Eng. – volume: 26 start-page: 3634 year: 2021 end-page: 3642 ident: bib24 article-title: pH-based Control of the kinetics and process safety of the highly exothermic reaction between ammonium chloride and sodium nitrite for flow-assurance applications publication-title: SPE J. – volume: 12 start-page: 362 year: 2022 ident: bib29 article-title: Removal of aqueous Cu2+ by amorphous calcium carbonate: efficiency and mechanism publication-title: Minerals – volume: 169 start-page: 62 year: 2023 end-page: 69 ident: bib26 article-title: Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC publication-title: Waste Management – volume: 200 year: 2024 ident: bib2 article-title: Integrating recycled valuable elements from spent LiFePO4 batteries based on a dimethyl oxalate leaching system publication-title: Resour. Conserv. Recycl. – volume: 27 year: 2024 ident: bib8 article-title: For the regeneration of spent graphite: the exploring of structural failure mechanism about commercial graphite publication-title: Materials Today Sustainability – volume: 105 start-page: 46 year: 2016 end-page: 63 ident: bib23 article-title: Intensification of a highly exothermic chlorination reaction using a combined experimental and simulation approach for fast operating conditions prediction publication-title: Chem. Eng. Process: Process Intensif. – volume: 93 start-page: 2362 year: 2020 end-page: 2370 ident: bib27 article-title: TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC publication-title: J. Energy Inst. – volume: 12 year: 2024 ident: bib33 article-title: Mechanistic insights into the adsorption and extraction of rare earth ions using oxygen- and phosphorus-doped porous graphitic carbon nitride publication-title: J. Environ. Chem. Eng. – volume: 6 start-page: 570 year: 2018 end-page: 578 ident: bib41 article-title: Effect of surface modification with spinel NiFe publication-title: ACS Sustainable Chem. Eng. – volume: 340 year: 2023 ident: bib21 article-title: Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics publication-title: Fuel – volume: 91 start-page: 656 year: 2024 end-page: 669 ident: bib32 article-title: Spent graphite regeneration: exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption publication-title: J. Energy Chem. – volume: 33 start-page: 335 year: 2023 end-page: 362 ident: bib39 article-title: Exfoliated graphite: room temperature exfoliation and their applications publication-title: Carbon Lett. – volume: 52 start-page: 547 year: 2022 end-page: 561 ident: bib36 article-title: Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries publication-title: Energy Storage Mater. – volume: 3 start-page: 2322 year: 2019 end-page: 2333 ident: bib38 article-title: Generation and evolution of the solid electrolyte interphase of lithium-ion batteries publication-title: Joule – volume: 10 year: 2020 ident: bib4 article-title: An urgent call to spent LIB recycling: whys and wherefores for graphite recovery publication-title: Adv. Energy Mater. – volume: 167 start-page: 135 year: 2023 end-page: 140 ident: bib5 article-title: Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery publication-title: Waste Management – volume: 46 start-page: 3006 year: 2017 end-page: 3059 ident: bib16 article-title: High-voltage positive electrode materials for lithium-ion batteries publication-title: Chem. Soc. Rev. – volume: 56 start-page: 262 year: 2024 end-page: 276 ident: bib18 article-title: formed poly(ε-caprolactone) as a novel non-toxic plasticizer of poly(vinyl chloride) publication-title: J. Elastomers Plast. – volume: 169 year: 2023 ident: bib28 article-title: Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC publication-title: J. Anal. Appl. Pyrolysis – volume: 11 start-page: 6294 year: 2018 end-page: 6303 ident: bib40 article-title: Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode publication-title: Nano Res. – volume: 48 start-page: 300 year: 2016 end-page: 314 ident: bib17 article-title: Thermal degradation of PVC: a review publication-title: Waste Management – volume: 178 start-page: 105 year: 2024 end-page: 114 ident: bib22 article-title: Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid publication-title: Waste Management – volume: 199 year: 2023 ident: bib9 article-title: Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair publication-title: Resour. Conserv. Recycl. – volume: 35 year: 2023 ident: bib10 article-title: Flash recycling of graphite anodes publication-title: Adv. Mater. – volume: 93 start-page: 2362 year: 2020 ident: 10.1016/j.carbon.2025.120182_bib27 article-title: TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC publication-title: J. Energy Inst. doi: 10.1016/j.joei.2020.07.009 – volume: 8 start-page: 9447 year: 2020 ident: 10.1016/j.carbon.2025.120182_bib31 article-title: Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c02321 – volume: 340 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib21 article-title: Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics publication-title: Fuel doi: 10.1016/j.fuel.2023.127555 – volume: 12 year: 2024 ident: 10.1016/j.carbon.2025.120182_bib33 article-title: Mechanistic insights into the adsorption and extraction of rare earth ions using oxygen- and phosphorus-doped porous graphitic carbon nitride publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.112055 – volume: 12 start-page: 362 year: 2022 ident: 10.1016/j.carbon.2025.120182_bib29 article-title: Removal of aqueous Cu2+ by amorphous calcium carbonate: efficiency and mechanism publication-title: Minerals doi: 10.3390/min12030362 – volume: 33 start-page: 335 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib39 article-title: Exfoliated graphite: room temperature exfoliation and their applications publication-title: Carbon Lett. doi: 10.1007/s42823-022-00450-7 – volume: 11 start-page: 6294 year: 2018 ident: 10.1016/j.carbon.2025.120182_bib40 article-title: Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode publication-title: Nano Res. doi: 10.1007/s12274-018-2153-2 – volume: 3 start-page: 1 year: 2017 ident: 10.1016/j.carbon.2025.120182_bib12 article-title: Overcurrent abuse of primary prismatic zinc–air battery cells studying air supply effects on performance and safety shut-down publication-title: Batteries doi: 10.3390/batteries3010001 – volume: 46 start-page: 12704 year: 2012 ident: 10.1016/j.carbon.2025.120182_bib1 article-title: Impact of recycling on Cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries publication-title: Environ. Sci. Technol. doi: 10.1021/es302420z – volume: 59 start-page: 9702 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib13 article-title: Rejuvenation of aged graphite anodes from spent lithium-ion batteries via a facile surface treatment strategy publication-title: Chem. Commun. doi: 10.1039/D3CC02246C – volume: 5 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib6 article-title: Recycling of graphite anode from spent lithium‐ion batteries: advances and perspectives publication-title: EcoMat doi: 10.1002/eom2.12321 – volume: 35 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib10 article-title: Flash recycling of graphite anodes publication-title: Adv. Mater. – volume: 105 start-page: 46 year: 2016 ident: 10.1016/j.carbon.2025.120182_bib23 article-title: Intensification of a highly exothermic chlorination reaction using a combined experimental and simulation approach for fast operating conditions prediction publication-title: Chem. Eng. Process: Process Intensif. doi: 10.1016/j.cep.2016.04.007 – volume: 26 start-page: 3634 year: 2021 ident: 10.1016/j.carbon.2025.120182_bib24 article-title: pH-based Control of the kinetics and process safety of the highly exothermic reaction between ammonium chloride and sodium nitrite for flow-assurance applications publication-title: SPE J. doi: 10.2118/205389-PA – volume: 277 year: 2020 ident: 10.1016/j.carbon.2025.120182_bib11 article-title: A green and facile approach for regeneration of graphite from spent lithium ion battery publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123585 – volume: 48 start-page: 300 year: 2016 ident: 10.1016/j.carbon.2025.120182_bib17 article-title: Thermal degradation of PVC: a review publication-title: Waste Management doi: 10.1016/j.wasman.2015.11.041 – volume: 3 start-page: 2322 year: 2019 ident: 10.1016/j.carbon.2025.120182_bib38 article-title: Generation and evolution of the solid electrolyte interphase of lithium-ion batteries publication-title: Joule doi: 10.1016/j.joule.2019.08.018 – volume: 7 start-page: 19732 year: 2019 ident: 10.1016/j.carbon.2025.120182_bib15 article-title: High-performance graphite recovered from spent lithium-ion batteries publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b05003 – volume: 58 start-page: 241 year: 2016 ident: 10.1016/j.carbon.2025.120182_bib20 article-title: Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: influence of PVC content and heating rate publication-title: Waste Management doi: 10.1016/j.wasman.2016.08.031 – volume: 27 year: 2024 ident: 10.1016/j.carbon.2025.120182_bib8 article-title: For the regeneration of spent graphite: the exploring of structural failure mechanism about commercial graphite publication-title: Materials Today Sustainability doi: 10.1016/j.mtsust.2024.100825 – volume: 6 start-page: 570 year: 2018 ident: 10.1016/j.carbon.2025.120182_bib41 article-title: Effect of surface modification with spinel NiFe 2 O 4 on enhanced cyclic stability of LiMn 2 O 4 cathode material in lithium ion batteries publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02876 – volume: 200 year: 2024 ident: 10.1016/j.carbon.2025.120182_bib2 article-title: Integrating recycled valuable elements from spent LiFePO4 batteries based on a dimethyl oxalate leaching system publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2023.107301 – volume: 169 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib28 article-title: Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2022.105817 – volume: 46 start-page: 3006 year: 2017 ident: 10.1016/j.carbon.2025.120182_bib16 article-title: High-voltage positive electrode materials for lithium-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00875E – volume: 169 start-page: 62 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib26 article-title: Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC publication-title: Waste Management doi: 10.1016/j.wasman.2023.06.034 – volume: 167 start-page: 135 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib5 article-title: Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery publication-title: Waste Management doi: 10.1016/j.wasman.2023.05.034 – volume: 44 start-page: 229 year: 2020 ident: 10.1016/j.carbon.2025.120182_bib35 article-title: A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.11.013 – volume: 199 year: 2023 ident: 10.1016/j.carbon.2025.120182_bib9 article-title: Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2023.107267 – volume: 414 year: 2021 ident: 10.1016/j.carbon.2025.120182_bib19 article-title: Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: a comparative study publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.125575 – volume: 48 start-page: 384 year: 2022 ident: 10.1016/j.carbon.2025.120182_bib34 article-title: In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.03.036 – volume: 56 start-page: 262 year: 2024 ident: 10.1016/j.carbon.2025.120182_bib18 article-title: In situ formed poly(ε-caprolactone) as a novel non-toxic plasticizer of poly(vinyl chloride) publication-title: J. Elastomers Plast. doi: 10.1177/00952443241227604 – volume: 52 start-page: 547 year: 2022 ident: 10.1016/j.carbon.2025.120182_bib36 article-title: Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.028 – volume: 319 start-page: 481 year: 2019 ident: 10.1016/j.carbon.2025.120182_bib3 article-title: Electrochemical synthesis of nanowire anodes from spent lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.07.024 – volume: 10 year: 2020 ident: 10.1016/j.carbon.2025.120182_bib4 article-title: An urgent call to spent LIB recycling: whys and wherefores for graphite recovery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002238 – volume: 313 start-page: 423 year: 2019 ident: 10.1016/j.carbon.2025.120182_bib14 article-title: Reclaiming graphite from spent lithium ion batteries ecologically and economically publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.050 – volume: 41 start-page: 395 year: 2021 ident: 10.1016/j.carbon.2025.120182_bib30 article-title: Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.06.020 – volume: 91 start-page: 656 year: 2024 ident: 10.1016/j.carbon.2025.120182_bib32 article-title: Spent graphite regeneration: exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.12.052 – volume: 4 start-page: 878 year: 2022 ident: 10.1016/j.carbon.2025.120182_bib37 article-title: Nature‐inspired materials and designs for flexible lithium‐ion batteries publication-title: Carbon Energy doi: 10.1002/cey2.187 – volume: 194 start-page: 486 year: 2009 ident: 10.1016/j.carbon.2025.120182_bib7 article-title: Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.05.040 – volume: 10 start-page: 12329 year: 2022 ident: 10.1016/j.carbon.2025.120182_bib25 article-title: Green and energy-saving recycling of LiCoO 2 by synergetic pyrolysis with polyvinyl chloride plastics publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c03616 – volume: 178 start-page: 105 year: 2024 ident: 10.1016/j.carbon.2025.120182_bib22 article-title: Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid publication-title: Waste Management doi: 10.1016/j.wasman.2024.02.023 |
SSID | ssj0004814 |
Score | 2.4749508 |
Snippet | With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 120182 |
SubjectTerms | Leaching Purification Regeneration Spent graphite Waste PVC roasting |
Title | Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching |
URI | https://dx.doi.org/10.1016/j.carbon.2025.120182 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lLnQjPrE-ShZu0zaTpE2XpViqYlcWuhvyGjtSO6UvqQvxH_xDv8TceaCCuHA5YQLhzOXec5lzTxC6jJS01ihOeNMywp1hRAtmSUNo2UxbktRS6G7Q7A_5zUiMSqhbzMKArDLP_VlOT7N1vlLP0azP4hhmfIGOe0YggKdIGPjlvAVRXnv9knlwmfl7w29-eLsYn0s1XkbNdQIuqIGoUV8KZfB7efpWcnp7aDfniriTHWcfldz0AG13iyvaDtGLJ30bmG18wEmEU-9pzyAxjIzgxcyXE-xJ9jhePX28vXv8sU7NNH1vjNexwpPkmYAzVW6rjGfJZLOOp5sJNmPQ5VmH54lagC6aeIoN8WDxJFdfHqFh7-q-2yf5ZQrE-JK8JJZJySMdNRomsoa3mHQePq0aVDHw9NIiEKrJDLWB8WttQ30roa3VRnsKpdrsGJWnydSdIEyZ5FwEklKnOI1Mm3IhwYjMRcy0nKkgUmAYzjLPjLAQkz2GGeYhYB5mmFdQqwA6_PHtQ5_W_9x5-u-dZ2gHnlLpojhH5eV85S48vVjqaho_VbTVub7tDz4B8RDS_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxELVCKKBBnOLGBa0hXtuJU6KIKFypQKJb-VpYFLJRCKBQIP6BP-RLmNlDgIQoaL1rafVsz7zRvnkmZD8x2ntnJJNNL5gMTjCrhGcNZXUzL0lyS6GLfrN3JU-v1XWNdKpeGJRVlrG_iOl5tC5HDks0D0dpij2-SMeBESjkKVrPkFkJxxevMTh4_dJ5SF0YfON_fny96p_LRV7OjG2GNqiROuCQC3X0e376lnO6i2ShJIv0qPieJVILw2Uy16nuaFshL8D6ptjceEOzhObm00AhKfaM0IcR5BMKLPs2fbz_eHuHBaA2d9OE4pg-pYYOsmeG1lSlrzIdZYPpUzqcDqi7RWGeD3ScmQcURjPg2LghPB2U8stVctU9vuz0WHmbAnOQkyfMC61lYpNGwyXeyZbQAfCzpsGNQFMvqyJlmsJxHzkYazsOtYT13joLHMq0xRqpD7NhWCeUCy2lijTnwUieuDaXSqMTWUiEawW3QViFYTwqTDPiSk12FxeYx4h5XGC-QVoV0PGPxY8hrv85c_PfM_fIXO_y4jw-P-mfbZF5fJLrGNU2qU_Gj2EHuMbE7uZ76RPqrNSL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycling+of+graphite+from+spent+lithium%E2%80%93ion+batteries+via+low-temperature+polyvinyl+chloride+roasting-assisted+leaching&rft.jtitle=Carbon+%28New+York%29&rft.au=Zeng%2C+Guisheng&rft.au=Zhou%2C+Rui&rft.au=Hu%2C+Chongwen&rft.au=Zhao%2C+Haohan&rft.date=2025-05-05&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.volume=238&rft_id=info:doi/10.1016%2Fj.carbon.2025.120182&rft.externalDocID=S0008622325001988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |