Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching

With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regenera...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 238; p. 120182
Main Authors Zeng, Guisheng, Zhou, Rui, Hu, Chongwen, Zhao, Haohan, Gao, Hanxiao, Huang, Jianwen, Yu, Jiaping, Luo, Feng, Wang, Zhongbing, Deng, Chunjian, He, Junwei, Liu, Chunli
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regeneration of graphite from spent LIBs by low-temperature spent polyvinyl chloride (PVC) roasting-assisted leaching. Through low-temperature PVC roasting, the metal impurities of spent graphite were converted into water-soluble metal chloride, and the roasting tail gas was absorbed by water and converted into absorption liquor. After the leaching using the absorption liquor, the purity of the purified graphite exceeded 99.9%. Subsequently, the material was reheated at 1000°C to produce regenerated graphite. The material structure, including interlayer spacing and surface morphology, were significantly repaired, aligning with those of commercial graphite. The cyclic stability had been powerfully promoted, after 500 cycles at 1 C, the specific capacity of regenerated graphite remained at 111.5 mAh/g, with a retention rate of 75% (spent graphite was 43.4 mAh/g, 33%) and a coulombic efficiency exceeding 99%, demonstrating good rate performance and cycling stability. This technology not only reduces the regeneration costs of graphite materials but also achieves environmental benefits through the principle of “treating waste with waste”. [Display omitted] •Spent graphite was purified via low-temperature PVC roasting-assisted leaching.•The purity of purified graphite is higher than 99.9%.•Material structures of purified graphite were repaired after 1000°C roasting.•Regenerated graphite exhibits excellent electrochemical performance.•Reduced regeneration costs and achieved environmental benefits through this method.
AbstractList With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regeneration of graphite from spent LIBs by low-temperature spent polyvinyl chloride (PVC) roasting-assisted leaching. Through low-temperature PVC roasting, the metal impurities of spent graphite were converted into water-soluble metal chloride, and the roasting tail gas was absorbed by water and converted into absorption liquor. After the leaching using the absorption liquor, the purity of the purified graphite exceeded 99.9%. Subsequently, the material was reheated at 1000°C to produce regenerated graphite. The material structure, including interlayer spacing and surface morphology, were significantly repaired, aligning with those of commercial graphite. The cyclic stability had been powerfully promoted, after 500 cycles at 1 C, the specific capacity of regenerated graphite remained at 111.5 mAh/g, with a retention rate of 75% (spent graphite was 43.4 mAh/g, 33%) and a coulombic efficiency exceeding 99%, demonstrating good rate performance and cycling stability. This technology not only reduces the regeneration costs of graphite materials but also achieves environmental benefits through the principle of “treating waste with waste”. [Display omitted] •Spent graphite was purified via low-temperature PVC roasting-assisted leaching.•The purity of purified graphite is higher than 99.9%.•Material structures of purified graphite were repaired after 1000°C roasting.•Regenerated graphite exhibits excellent electrochemical performance.•Reduced regeneration costs and achieved environmental benefits through this method.
ArticleNumber 120182
Author Zhao, Haohan
Zhou, Rui
Gao, Hanxiao
Huang, Jianwen
Yu, Jiaping
He, Junwei
Luo, Feng
Hu, Chongwen
Deng, Chunjian
Zeng, Guisheng
Wang, Zhongbing
Liu, Chunli
Author_xml – sequence: 1
  givenname: Guisheng
  orcidid: 0009-0008-8406-5122
  surname: Zeng
  fullname: Zeng, Guisheng
  email: zgs77@163.com
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 2
  givenname: Rui
  surname: Zhou
  fullname: Zhou, Rui
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 3
  givenname: Chongwen
  surname: Hu
  fullname: Hu, Chongwen
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 4
  givenname: Haohan
  surname: Zhao
  fullname: Zhao, Haohan
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 5
  givenname: Hanxiao
  surname: Gao
  fullname: Gao, Hanxiao
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 6
  givenname: Jianwen
  surname: Huang
  fullname: Huang, Jianwen
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 7
  givenname: Jiaping
  surname: Yu
  fullname: Yu, Jiaping
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 8
  givenname: Feng
  surname: Luo
  fullname: Luo, Feng
  organization: Shangrao Dingxin Metal Chemical Co., Ltd, Shangrao, Jiangxi, 334100, China
– sequence: 9
  givenname: Zhongbing
  surname: Wang
  fullname: Wang, Zhongbing
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 10
  givenname: Chunjian
  surname: Deng
  fullname: Deng, Chunjian
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
– sequence: 11
  givenname: Junwei
  surname: He
  fullname: He, Junwei
  organization: Shangrao R-Lithium Recycling Technology Co., Ltd, Shangrao, Jiangxi, 334100, China
– sequence: 12
  givenname: Chunli
  surname: Liu
  fullname: Liu, Chunli
  email: clliu19@126.com
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
BookMark eNp9kMtKAzEUhrOoYKu-gYu8wNQkc2m6EaR4g4Igug65nOmkZCZDklbGle_gG_okThnXrg7_D__H4VugWec7QOiakiUltLrZL7UMyndLRli5pIxQzmZoTgjhWcVYfo4WMe7HWHBazNHnK-hBO9vtsK_xLsi-sQlwHXyLYw9dws6mxh7an69v6zusZEoQLER8tBI7_5ElaHsIMh0C4N674Wi7wWHdOB-sARy8jGnEZzJGGxMY7EDqZmwu0VktXYSrv3uB3h_u3zZP2fbl8Xlzt8005WXKTM55UauaEF0bXaxyDoRXShIq87JYcVWyUla5pobpsVtrWq1KZYzSKl8zuc4vUDFxdfAxBqhFH2wrwyAoESdnYi8mZ-LkTEzOxtntNIPxt6OFIKK20GkwNoBOwnj7P-AX1hx_1w
Cites_doi 10.1016/j.joei.2020.07.009
10.1021/acssuschemeng.0c02321
10.1016/j.fuel.2023.127555
10.1016/j.jece.2024.112055
10.3390/min12030362
10.1007/s42823-022-00450-7
10.1007/s12274-018-2153-2
10.3390/batteries3010001
10.1021/es302420z
10.1039/D3CC02246C
10.1002/eom2.12321
10.1016/j.cep.2016.04.007
10.2118/205389-PA
10.1016/j.jclepro.2020.123585
10.1016/j.wasman.2015.11.041
10.1016/j.joule.2019.08.018
10.1021/acssuschemeng.9b05003
10.1016/j.wasman.2016.08.031
10.1016/j.mtsust.2024.100825
10.1021/acssuschemeng.7b02876
10.1016/j.resconrec.2023.107301
10.1016/j.jaap.2022.105817
10.1039/C6CS00875E
10.1016/j.wasman.2023.06.034
10.1016/j.wasman.2023.05.034
10.1016/j.jmst.2019.11.013
10.1016/j.resconrec.2023.107267
10.1016/j.jhazmat.2021.125575
10.1016/j.ensm.2022.03.036
10.1177/00952443241227604
10.1016/j.ensm.2022.08.028
10.1016/j.electacta.2019.07.024
10.1002/aenm.202002238
10.1016/j.electacta.2019.05.050
10.1016/j.ensm.2021.06.020
10.1016/j.jechem.2023.12.052
10.1002/cey2.187
10.1016/j.jpowsour.2009.05.040
10.1021/acssuschemeng.2c03616
10.1016/j.wasman.2024.02.023
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.carbon.2025.120182
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_carbon_2025_120182
S0008622325001988
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SMS
WUQ
ID FETCH-LOGICAL-c185t-d3884fbf00cfdc4738e086ba01a35478b525a63c1d2c01a9c1675bddbcb392a93
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Wed Jul 30 11:52:00 EDT 2025
Sat Jul 05 17:10:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Regeneration
Spent graphite
Purification
Waste PVC roasting
Leaching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185t-d3884fbf00cfdc4738e086ba01a35478b525a63c1d2c01a9c1675bddbcb392a93
ORCID 0009-0008-8406-5122
ParticipantIDs crossref_primary_10_1016_j_carbon_2025_120182
elsevier_sciencedirect_doi_10_1016_j_carbon_2025_120182
PublicationCentury 2000
PublicationDate 2025-05-05
PublicationDateYYYYMMDD 2025-05-05
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-05
  day: 05
PublicationDecade 2020
PublicationTitle Carbon (New York)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu, Xie, Zheng, Wu, Zhao, Liu (bib9) 2023; 199
Cao, Yuan, Yin, Chen, He, Wang (bib20) 2016; 58
Han, Li, Zhang, Lei, Wang (bib34) 2022; 48
Kalousková, Moravcová, Vránová, Hrdlička, Brožek (bib18) 2024; 56
Dong, Hui, Li, Du (bib28) 2023; 169
Gao, Wang, Zhang, Jing, Ma, Chen, Zhang (bib31) 2020; 8
Heiskanen, Kim, Lucht (bib38) 2019; 3
Han, Zhou, Li, Yi, Lin, Qian (bib40) 2018; 11
Ge, Yuan, Yi, Sun, Yang (bib8) 2024; 27
Chen, Salvatierra, Li, Kittrell, Beckham, Wyss, La, Savas, Ge, Advincula, Scotland, Eddy, Deng, Yuan, Tour (bib10) 2023; 35
Dobrosavljevic, Schaer, Commenge, Falk (bib23) 2016; 105
Li, Wang, Chan, Xu, Wang, Ge, Zhang, Chen, Tang (bib37) 2022; 4
Xu, Lei, Wang, Yi, Sun, Yang (bib5) 2023; 167
Nshizirungu, Rana, Jo, Park (bib19) 2021; 414
Gu, Han, Chen, Zhou, Wang, Xu, Lin, Liu, Chen, Chen, Zhang, Han (bib36) 2022; 52
Yi, Yang, Zhang, Wu, Sun, Yi (bib11) 2020; 277
Bispo, Kartnaller, Cajaiba (bib24) 2021; 26
Dunn, Gaines, Sullivan, Wang (bib1) 2012; 46
Meng, Huang, Gao, Dai, Lu, Liu, Huang, Shih, Tang (bib25) 2022; 10
Liu, Ma, Xi, Nie (bib22) 2024; 178
Ma, Zhu, Cai, Wang, Chen, Yang, Chen (bib26) 2023; 169
Liao, Wu, Zhang, Chen (bib29) 2022; 12
Yu, Sun, Ma, Qiao, Yao (bib17) 2016; 48
Chen, Li, Li, Zhou, He, Ouyang, Xu, Wang, Hou (bib35) 2020; 44
Dong, Zeng, Yuan, Wang, Lei, Zhao, Ai, Kong, Yang, Ge (bib32) 2024; 91
Nozaki, Nagaoka, Hoshi, Ohta, Inagaki (bib7) 2009; 194
Ma, Chen, Chen, Meng, Wang (bib15) 2019; 7
Natarajan, Aravindan (bib4) 2020; 10
Feng, Chen, Lian, He, Zheng, Lu, Lin, Liu, Deng (bib33) 2024; 12
Liu, Xu, Yu, Hu, Liu, Wang, Deng, Luo, He, Zeng, Luo (bib2) 2024; 200
Qiao, Zhao, Shen, Li, Rao, Shao, Lei (bib6) 2023; 5
Wang, Huang, Huang, Wang, Wang, Chen, Liu, Wu, Xu, Li (bib14) 2019; 313
Schiavi, Farina, Zanoni, Altimari, Cojocariu, Rubino, Navarra, Panero, Pagnanelli (bib3) 2019; 319
Zhang, Yin, Wang, Tham, Xing, Zhang, Wang, Liu (bib13) 2023; 59
Lai, Zhang, Wu, Zhang, Li, Huang, Liao, Wang (bib41) 2018; 6
Toyoda, Hou, Huang, Inagaki (bib39) 2023; 33
Zhou, Liu, Wang, Zhang, Xu (bib27) 2020; 93
Li, Bai, Zhang, Jia, Hou, Chen, Guo, Kong, Bai, Li (bib21) 2023; 340
Mahmood, Yuan, Sui, Riaz, Yu, Liu, Chen, Wang, Zhao, Mahmood, Pei, Wei, Chen (bib30) 2021; 41
Li, Song, Manthiram (bib16) 2017; 46
Larsson, Rytinki, Ahmed, Albinsson, Mellander (bib12) 2017; 3
Liu (10.1016/j.carbon.2025.120182_bib22) 2024; 178
Wang (10.1016/j.carbon.2025.120182_bib14) 2019; 313
Nozaki (10.1016/j.carbon.2025.120182_bib7) 2009; 194
Yu (10.1016/j.carbon.2025.120182_bib9) 2023; 199
Chen (10.1016/j.carbon.2025.120182_bib35) 2020; 44
Bispo (10.1016/j.carbon.2025.120182_bib24) 2021; 26
Meng (10.1016/j.carbon.2025.120182_bib25) 2022; 10
Liao (10.1016/j.carbon.2025.120182_bib29) 2022; 12
Kalousková (10.1016/j.carbon.2025.120182_bib18) 2024; 56
Feng (10.1016/j.carbon.2025.120182_bib33) 2024; 12
Qiao (10.1016/j.carbon.2025.120182_bib6) 2023; 5
Li (10.1016/j.carbon.2025.120182_bib21) 2023; 340
Zhang (10.1016/j.carbon.2025.120182_bib13) 2023; 59
Nshizirungu (10.1016/j.carbon.2025.120182_bib19) 2021; 414
Chen (10.1016/j.carbon.2025.120182_bib10) 2023; 35
Larsson (10.1016/j.carbon.2025.120182_bib12) 2017; 3
Dunn (10.1016/j.carbon.2025.120182_bib1) 2012; 46
Natarajan (10.1016/j.carbon.2025.120182_bib4) 2020; 10
Lai (10.1016/j.carbon.2025.120182_bib41) 2018; 6
Heiskanen (10.1016/j.carbon.2025.120182_bib38) 2019; 3
Li (10.1016/j.carbon.2025.120182_bib16) 2017; 46
Zhou (10.1016/j.carbon.2025.120182_bib27) 2020; 93
Schiavi (10.1016/j.carbon.2025.120182_bib3) 2019; 319
Mahmood (10.1016/j.carbon.2025.120182_bib30) 2021; 41
Li (10.1016/j.carbon.2025.120182_bib37) 2022; 4
Ge (10.1016/j.carbon.2025.120182_bib8) 2024; 27
Cao (10.1016/j.carbon.2025.120182_bib20) 2016; 58
Yi (10.1016/j.carbon.2025.120182_bib11) 2020; 277
Dong (10.1016/j.carbon.2025.120182_bib28) 2023; 169
Han (10.1016/j.carbon.2025.120182_bib34) 2022; 48
Han (10.1016/j.carbon.2025.120182_bib40) 2018; 11
Ma (10.1016/j.carbon.2025.120182_bib15) 2019; 7
Ma (10.1016/j.carbon.2025.120182_bib26) 2023; 169
Dobrosavljevic (10.1016/j.carbon.2025.120182_bib23) 2016; 105
Gao (10.1016/j.carbon.2025.120182_bib31) 2020; 8
Toyoda (10.1016/j.carbon.2025.120182_bib39) 2023; 33
Liu (10.1016/j.carbon.2025.120182_bib2) 2024; 200
Xu (10.1016/j.carbon.2025.120182_bib5) 2023; 167
Gu (10.1016/j.carbon.2025.120182_bib36) 2022; 52
Dong (10.1016/j.carbon.2025.120182_bib32) 2024; 91
Yu (10.1016/j.carbon.2025.120182_bib17) 2016; 48
References_xml – volume: 194
  start-page: 486
  year: 2009
  end-page: 493
  ident: bib7
  article-title: Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors
  publication-title: J. Power Sources
– volume: 277
  year: 2020
  ident: bib11
  article-title: A green and facile approach for regeneration of graphite from spent lithium ion battery
  publication-title: J. Clean. Prod.
– volume: 44
  start-page: 229
  year: 2020
  end-page: 236
  ident: bib35
  article-title: A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability
  publication-title: J. Mater. Sci. Technol.
– volume: 3
  start-page: 1
  year: 2017
  ident: bib12
  article-title: Overcurrent abuse of primary prismatic zinc–air battery cells studying air supply effects on performance and safety shut-down
  publication-title: Batteries
– volume: 313
  start-page: 423
  year: 2019
  end-page: 431
  ident: bib14
  article-title: Reclaiming graphite from spent lithium ion batteries ecologically and economically
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 395
  year: 2021
  end-page: 403
  ident: bib30
  article-title: Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 9447
  year: 2020
  end-page: 9455
  ident: bib31
  article-title: Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination
  publication-title: ACS Sustainable Chem. Eng.
– volume: 319
  start-page: 481
  year: 2019
  end-page: 489
  ident: bib3
  article-title: Electrochemical synthesis of nanowire anodes from spent lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 12329
  year: 2022
  end-page: 12341
  ident: bib25
  article-title: Green and energy-saving recycling of LiCoO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 48
  start-page: 384
  year: 2022
  end-page: 392
  ident: bib34
  article-title: In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 878
  year: 2022
  end-page: 900
  ident: bib37
  article-title: Nature‐inspired materials and designs for flexible lithium‐ion batteries
  publication-title: Carbon Energy
– volume: 59
  start-page: 9702
  year: 2023
  end-page: 9705
  ident: bib13
  article-title: Rejuvenation of aged graphite anodes from spent lithium-ion batteries
  publication-title: Chem. Commun.
– volume: 414
  year: 2021
  ident: bib19
  article-title: Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: a comparative study
  publication-title: J. Hazard Mater.
– volume: 58
  start-page: 241
  year: 2016
  end-page: 249
  ident: bib20
  article-title: Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: influence of PVC content and heating rate
  publication-title: Waste Management
– volume: 46
  start-page: 12704
  year: 2012
  end-page: 12710
  ident: bib1
  article-title: Impact of recycling on Cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries
  publication-title: Environ. Sci. Technol.
– volume: 5
  year: 2023
  ident: bib6
  article-title: Recycling of graphite anode from spent lithium‐ion batteries: advances and perspectives
  publication-title: EcoMat
– volume: 7
  start-page: 19732
  year: 2019
  end-page: 19738
  ident: bib15
  article-title: High-performance graphite recovered from spent lithium-ion batteries
  publication-title: ACS Sustainable Chem. Eng.
– volume: 26
  start-page: 3634
  year: 2021
  end-page: 3642
  ident: bib24
  article-title: pH-based Control of the kinetics and process safety of the highly exothermic reaction between ammonium chloride and sodium nitrite for flow-assurance applications
  publication-title: SPE J.
– volume: 12
  start-page: 362
  year: 2022
  ident: bib29
  article-title: Removal of aqueous Cu2+ by amorphous calcium carbonate: efficiency and mechanism
  publication-title: Minerals
– volume: 169
  start-page: 62
  year: 2023
  end-page: 69
  ident: bib26
  article-title: Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC
  publication-title: Waste Management
– volume: 200
  year: 2024
  ident: bib2
  article-title: Integrating recycled valuable elements from spent LiFePO4 batteries based on a dimethyl oxalate leaching system
  publication-title: Resour. Conserv. Recycl.
– volume: 27
  year: 2024
  ident: bib8
  article-title: For the regeneration of spent graphite: the exploring of structural failure mechanism about commercial graphite
  publication-title: Materials Today Sustainability
– volume: 105
  start-page: 46
  year: 2016
  end-page: 63
  ident: bib23
  article-title: Intensification of a highly exothermic chlorination reaction using a combined experimental and simulation approach for fast operating conditions prediction
  publication-title: Chem. Eng. Process: Process Intensif.
– volume: 93
  start-page: 2362
  year: 2020
  end-page: 2370
  ident: bib27
  article-title: TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC
  publication-title: J. Energy Inst.
– volume: 12
  year: 2024
  ident: bib33
  article-title: Mechanistic insights into the adsorption and extraction of rare earth ions using oxygen- and phosphorus-doped porous graphitic carbon nitride
  publication-title: J. Environ. Chem. Eng.
– volume: 6
  start-page: 570
  year: 2018
  end-page: 578
  ident: bib41
  article-title: Effect of surface modification with spinel NiFe
  publication-title: ACS Sustainable Chem. Eng.
– volume: 340
  year: 2023
  ident: bib21
  article-title: Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics
  publication-title: Fuel
– volume: 91
  start-page: 656
  year: 2024
  end-page: 669
  ident: bib32
  article-title: Spent graphite regeneration: exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
  publication-title: J. Energy Chem.
– volume: 33
  start-page: 335
  year: 2023
  end-page: 362
  ident: bib39
  article-title: Exfoliated graphite: room temperature exfoliation and their applications
  publication-title: Carbon Lett.
– volume: 52
  start-page: 547
  year: 2022
  end-page: 561
  ident: bib36
  article-title: Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 2322
  year: 2019
  end-page: 2333
  ident: bib38
  article-title: Generation and evolution of the solid electrolyte interphase of lithium-ion batteries
  publication-title: Joule
– volume: 10
  year: 2020
  ident: bib4
  article-title: An urgent call to spent LIB recycling: whys and wherefores for graphite recovery
  publication-title: Adv. Energy Mater.
– volume: 167
  start-page: 135
  year: 2023
  end-page: 140
  ident: bib5
  article-title: Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery
  publication-title: Waste Management
– volume: 46
  start-page: 3006
  year: 2017
  end-page: 3059
  ident: bib16
  article-title: High-voltage positive electrode materials for lithium-ion batteries
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 262
  year: 2024
  end-page: 276
  ident: bib18
  article-title: formed poly(ε-caprolactone) as a novel non-toxic plasticizer of poly(vinyl chloride)
  publication-title: J. Elastomers Plast.
– volume: 169
  year: 2023
  ident: bib28
  article-title: Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 11
  start-page: 6294
  year: 2018
  end-page: 6303
  ident: bib40
  article-title: Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode
  publication-title: Nano Res.
– volume: 48
  start-page: 300
  year: 2016
  end-page: 314
  ident: bib17
  article-title: Thermal degradation of PVC: a review
  publication-title: Waste Management
– volume: 178
  start-page: 105
  year: 2024
  end-page: 114
  ident: bib22
  article-title: Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid
  publication-title: Waste Management
– volume: 199
  year: 2023
  ident: bib9
  article-title: Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair
  publication-title: Resour. Conserv. Recycl.
– volume: 35
  year: 2023
  ident: bib10
  article-title: Flash recycling of graphite anodes
  publication-title: Adv. Mater.
– volume: 93
  start-page: 2362
  year: 2020
  ident: 10.1016/j.carbon.2025.120182_bib27
  article-title: TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2020.07.009
– volume: 8
  start-page: 9447
  year: 2020
  ident: 10.1016/j.carbon.2025.120182_bib31
  article-title: Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02321
– volume: 340
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib21
  article-title: Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.127555
– volume: 12
  year: 2024
  ident: 10.1016/j.carbon.2025.120182_bib33
  article-title: Mechanistic insights into the adsorption and extraction of rare earth ions using oxygen- and phosphorus-doped porous graphitic carbon nitride
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.112055
– volume: 12
  start-page: 362
  year: 2022
  ident: 10.1016/j.carbon.2025.120182_bib29
  article-title: Removal of aqueous Cu2+ by amorphous calcium carbonate: efficiency and mechanism
  publication-title: Minerals
  doi: 10.3390/min12030362
– volume: 33
  start-page: 335
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib39
  article-title: Exfoliated graphite: room temperature exfoliation and their applications
  publication-title: Carbon Lett.
  doi: 10.1007/s42823-022-00450-7
– volume: 11
  start-page: 6294
  year: 2018
  ident: 10.1016/j.carbon.2025.120182_bib40
  article-title: Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2153-2
– volume: 3
  start-page: 1
  year: 2017
  ident: 10.1016/j.carbon.2025.120182_bib12
  article-title: Overcurrent abuse of primary prismatic zinc–air battery cells studying air supply effects on performance and safety shut-down
  publication-title: Batteries
  doi: 10.3390/batteries3010001
– volume: 46
  start-page: 12704
  year: 2012
  ident: 10.1016/j.carbon.2025.120182_bib1
  article-title: Impact of recycling on Cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302420z
– volume: 59
  start-page: 9702
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib13
  article-title: Rejuvenation of aged graphite anodes from spent lithium-ion batteries via a facile surface treatment strategy
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC02246C
– volume: 5
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib6
  article-title: Recycling of graphite anode from spent lithium‐ion batteries: advances and perspectives
  publication-title: EcoMat
  doi: 10.1002/eom2.12321
– volume: 35
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib10
  article-title: Flash recycling of graphite anodes
  publication-title: Adv. Mater.
– volume: 105
  start-page: 46
  year: 2016
  ident: 10.1016/j.carbon.2025.120182_bib23
  article-title: Intensification of a highly exothermic chlorination reaction using a combined experimental and simulation approach for fast operating conditions prediction
  publication-title: Chem. Eng. Process: Process Intensif.
  doi: 10.1016/j.cep.2016.04.007
– volume: 26
  start-page: 3634
  year: 2021
  ident: 10.1016/j.carbon.2025.120182_bib24
  article-title: pH-based Control of the kinetics and process safety of the highly exothermic reaction between ammonium chloride and sodium nitrite for flow-assurance applications
  publication-title: SPE J.
  doi: 10.2118/205389-PA
– volume: 277
  year: 2020
  ident: 10.1016/j.carbon.2025.120182_bib11
  article-title: A green and facile approach for regeneration of graphite from spent lithium ion battery
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123585
– volume: 48
  start-page: 300
  year: 2016
  ident: 10.1016/j.carbon.2025.120182_bib17
  article-title: Thermal degradation of PVC: a review
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2015.11.041
– volume: 3
  start-page: 2322
  year: 2019
  ident: 10.1016/j.carbon.2025.120182_bib38
  article-title: Generation and evolution of the solid electrolyte interphase of lithium-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.018
– volume: 7
  start-page: 19732
  year: 2019
  ident: 10.1016/j.carbon.2025.120182_bib15
  article-title: High-performance graphite recovered from spent lithium-ion batteries
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05003
– volume: 58
  start-page: 241
  year: 2016
  ident: 10.1016/j.carbon.2025.120182_bib20
  article-title: Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: influence of PVC content and heating rate
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2016.08.031
– volume: 27
  year: 2024
  ident: 10.1016/j.carbon.2025.120182_bib8
  article-title: For the regeneration of spent graphite: the exploring of structural failure mechanism about commercial graphite
  publication-title: Materials Today Sustainability
  doi: 10.1016/j.mtsust.2024.100825
– volume: 6
  start-page: 570
  year: 2018
  ident: 10.1016/j.carbon.2025.120182_bib41
  article-title: Effect of surface modification with spinel NiFe 2 O 4 on enhanced cyclic stability of LiMn 2 O 4 cathode material in lithium ion batteries
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02876
– volume: 200
  year: 2024
  ident: 10.1016/j.carbon.2025.120182_bib2
  article-title: Integrating recycled valuable elements from spent LiFePO4 batteries based on a dimethyl oxalate leaching system
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2023.107301
– volume: 169
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib28
  article-title: Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2022.105817
– volume: 46
  start-page: 3006
  year: 2017
  ident: 10.1016/j.carbon.2025.120182_bib16
  article-title: High-voltage positive electrode materials for lithium-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
– volume: 169
  start-page: 62
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib26
  article-title: Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2023.06.034
– volume: 167
  start-page: 135
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib5
  article-title: Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2023.05.034
– volume: 44
  start-page: 229
  year: 2020
  ident: 10.1016/j.carbon.2025.120182_bib35
  article-title: A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.11.013
– volume: 199
  year: 2023
  ident: 10.1016/j.carbon.2025.120182_bib9
  article-title: Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2023.107267
– volume: 414
  year: 2021
  ident: 10.1016/j.carbon.2025.120182_bib19
  article-title: Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: a comparative study
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.125575
– volume: 48
  start-page: 384
  year: 2022
  ident: 10.1016/j.carbon.2025.120182_bib34
  article-title: In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.03.036
– volume: 56
  start-page: 262
  year: 2024
  ident: 10.1016/j.carbon.2025.120182_bib18
  article-title: In situ formed poly(ε-caprolactone) as a novel non-toxic plasticizer of poly(vinyl chloride)
  publication-title: J. Elastomers Plast.
  doi: 10.1177/00952443241227604
– volume: 52
  start-page: 547
  year: 2022
  ident: 10.1016/j.carbon.2025.120182_bib36
  article-title: Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.028
– volume: 319
  start-page: 481
  year: 2019
  ident: 10.1016/j.carbon.2025.120182_bib3
  article-title: Electrochemical synthesis of nanowire anodes from spent lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.07.024
– volume: 10
  year: 2020
  ident: 10.1016/j.carbon.2025.120182_bib4
  article-title: An urgent call to spent LIB recycling: whys and wherefores for graphite recovery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002238
– volume: 313
  start-page: 423
  year: 2019
  ident: 10.1016/j.carbon.2025.120182_bib14
  article-title: Reclaiming graphite from spent lithium ion batteries ecologically and economically
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.050
– volume: 41
  start-page: 395
  year: 2021
  ident: 10.1016/j.carbon.2025.120182_bib30
  article-title: Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.06.020
– volume: 91
  start-page: 656
  year: 2024
  ident: 10.1016/j.carbon.2025.120182_bib32
  article-title: Spent graphite regeneration: exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.12.052
– volume: 4
  start-page: 878
  year: 2022
  ident: 10.1016/j.carbon.2025.120182_bib37
  article-title: Nature‐inspired materials and designs for flexible lithium‐ion batteries
  publication-title: Carbon Energy
  doi: 10.1002/cey2.187
– volume: 194
  start-page: 486
  year: 2009
  ident: 10.1016/j.carbon.2025.120182_bib7
  article-title: Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.05.040
– volume: 10
  start-page: 12329
  year: 2022
  ident: 10.1016/j.carbon.2025.120182_bib25
  article-title: Green and energy-saving recycling of LiCoO 2 by synergetic pyrolysis with polyvinyl chloride plastics
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c03616
– volume: 178
  start-page: 105
  year: 2024
  ident: 10.1016/j.carbon.2025.120182_bib22
  article-title: Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2024.02.023
SSID ssj0004814
Score 2.4749508
Snippet With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 120182
SubjectTerms Leaching
Purification
Regeneration
Spent graphite
Waste PVC roasting
Title Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching
URI https://dx.doi.org/10.1016/j.carbon.2025.120182
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lLnQjPrE-ShZu0zaTpE2XpViqYlcWuhvyGjtSO6UvqQvxH_xDv8TceaCCuHA5YQLhzOXec5lzTxC6jJS01ihOeNMywp1hRAtmSUNo2UxbktRS6G7Q7A_5zUiMSqhbzMKArDLP_VlOT7N1vlLP0azP4hhmfIGOe0YggKdIGPjlvAVRXnv9knlwmfl7w29-eLsYn0s1XkbNdQIuqIGoUV8KZfB7efpWcnp7aDfniriTHWcfldz0AG13iyvaDtGLJ30bmG18wEmEU-9pzyAxjIzgxcyXE-xJ9jhePX28vXv8sU7NNH1vjNexwpPkmYAzVW6rjGfJZLOOp5sJNmPQ5VmH54lagC6aeIoN8WDxJFdfHqFh7-q-2yf5ZQrE-JK8JJZJySMdNRomsoa3mHQePq0aVDHw9NIiEKrJDLWB8WttQ30roa3VRnsKpdrsGJWnydSdIEyZ5FwEklKnOI1Mm3IhwYjMRcy0nKkgUmAYzjLPjLAQkz2GGeYhYB5mmFdQqwA6_PHtQ5_W_9x5-u-dZ2gHnlLpojhH5eV85S48vVjqaho_VbTVub7tDz4B8RDS_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxELVCKKBBnOLGBa0hXtuJU6KIKFypQKJb-VpYFLJRCKBQIP6BP-RLmNlDgIQoaL1rafVsz7zRvnkmZD8x2ntnJJNNL5gMTjCrhGcNZXUzL0lyS6GLfrN3JU-v1XWNdKpeGJRVlrG_iOl5tC5HDks0D0dpij2-SMeBESjkKVrPkFkJxxevMTh4_dJ5SF0YfON_fny96p_LRV7OjG2GNqiROuCQC3X0e376lnO6i2ShJIv0qPieJVILw2Uy16nuaFshL8D6ptjceEOzhObm00AhKfaM0IcR5BMKLPs2fbz_eHuHBaA2d9OE4pg-pYYOsmeG1lSlrzIdZYPpUzqcDqi7RWGeD3ScmQcURjPg2LghPB2U8stVctU9vuz0WHmbAnOQkyfMC61lYpNGwyXeyZbQAfCzpsGNQFMvqyJlmsJxHzkYazsOtYT13joLHMq0xRqpD7NhWCeUCy2lijTnwUieuDaXSqMTWUiEawW3QViFYTwqTDPiSk12FxeYx4h5XGC-QVoV0PGPxY8hrv85c_PfM_fIXO_y4jw-P-mfbZF5fJLrGNU2qU_Gj2EHuMbE7uZ76RPqrNSL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycling+of+graphite+from+spent+lithium%E2%80%93ion+batteries+via+low-temperature+polyvinyl+chloride+roasting-assisted+leaching&rft.jtitle=Carbon+%28New+York%29&rft.au=Zeng%2C+Guisheng&rft.au=Zhou%2C+Rui&rft.au=Hu%2C+Chongwen&rft.au=Zhao%2C+Haohan&rft.date=2025-05-05&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.volume=238&rft_id=info:doi/10.1016%2Fj.carbon.2025.120182&rft.externalDocID=S0008622325001988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon