Dynamic operating behavior of a solar hybrid microturbine system: A comparative study of serial and parallel configurations
The paper aims to investigate the system behavior of a solar hybrid microturbine through dynamic simulation, relying on experimental data from existing literature. The focus of this evaluation is on assessing the systems response to changes in solar heat flow from the solar receiver to simulate dyna...
Saved in:
Published in | Energy (Oxford) Vol. 309; p. 133058 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper aims to investigate the system behavior of a solar hybrid microturbine through dynamic simulation, relying on experimental data from existing literature. The focus of this evaluation is on assessing the systems response to changes in solar heat flow from the solar receiver to simulate dynamic operation. By evaluating various simulated operational scenarios, the systems performance was assessed by comparing the minimum, average, and maximum solar heat flow from the solar receiver during regular operation. The main objective of these evaluations is to determine the optimal configuration to ensure safe and efficient system operation. The study shows that the parallel configuration outperforms the serial configuration. Specifically, the parallel configuration achieves a peak thermal efficiency of 37%, while the serial configuration reaches 33%. Additionally, the fuel conversion rate for both configurations rises to over 90% at maximum Direct Normal Irradiance (DNI) and decreases to below 40% at minimum DNI. This studies provide valuable insights into the dynamic behavior and performance of the solar hybrid microturbine system, guiding the selection of the most suitable configuration for optimized operational outcomes. Moreover, the study underscores the importance of dynamic analysis in ensuring efficient and reliable power generation.
•A comparison of dynamic operating behavior has been conducted for solar hybrid microturbine.•The impact of serial versus parallel configurations on system performance have been demonstrated.•The performance of the solar hybrid microturbine system has been evaluated under various DNI conditions. |
---|---|
AbstractList | The paper aims to investigate the system behavior of a solar hybrid microturbine through dynamic simulation, relying on experimental data from existing literature. The focus of this evaluation is on assessing the systems response to changes in solar heat flow from the solar receiver to simulate dynamic operation. By evaluating various simulated operational scenarios, the systems performance was assessed by comparing the minimum, average, and maximum solar heat flow from the solar receiver during regular operation. The main objective of these evaluations is to determine the optimal configuration to ensure safe and efficient system operation. The study shows that the parallel configuration outperforms the serial configuration. Specifically, the parallel configuration achieves a peak thermal efficiency of 37%, while the serial configuration reaches 33%. Additionally, the fuel conversion rate for both configurations rises to over 90% at maximum Direct Normal Irradiance (DNI) and decreases to below 40% at minimum DNI. This studies provide valuable insights into the dynamic behavior and performance of the solar hybrid microturbine system, guiding the selection of the most suitable configuration for optimized operational outcomes. Moreover, the study underscores the importance of dynamic analysis in ensuring efficient and reliable power generation.
•A comparison of dynamic operating behavior has been conducted for solar hybrid microturbine.•The impact of serial versus parallel configurations on system performance have been demonstrated.•The performance of the solar hybrid microturbine system has been evaluated under various DNI conditions. |
ArticleNumber | 133058 |
Author | Wahono, Bambang Vogt, Damian M. Schatz, Markus Fudholi, Ahmad Arifin, Maulana |
Author_xml | – sequence: 1 givenname: Maulana orcidid: 0000-0001-5889-5845 surname: Arifin fullname: Arifin, Maulana email: maulana.arifin@brin.go.id organization: Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jl. Sangkuriang, Bandung 40135, West Java, Indonesia – sequence: 2 givenname: Ahmad surname: Fudholi fullname: Fudholi, Ahmad organization: Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jl. Sangkuriang, Bandung 40135, West Java, Indonesia – sequence: 3 givenname: Bambang orcidid: 0000-0002-4172-4254 surname: Wahono fullname: Wahono, Bambang organization: Research Center for Smart Mechatronics, National Research and Innovation Agency (BRIN), Jl. Sangkuriang, Bandung 40135, West Java, Indonesia – sequence: 4 givenname: Markus surname: Schatz fullname: Schatz, Markus organization: Faculty of Mechanical Engineering, Fluid Machinery for Energy Technology, Helmut-Schmidt-University, 22008 Hamburg, Germany – sequence: 5 givenname: Damian M. surname: Vogt fullname: Vogt, Damian M. organization: ITSM Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart, 70569 Stuttgart, Germany |
BookMark | eNp9kM1qwzAQhHVIoUnaN-hBL2BXa8l_PRRC2qaFQC_tWcj2OlGwpSA5AdOXr4x77mlhdr5hmBVZGGuQkAdgMTDIHk8xGnSHMU5YImLgnKXFgiwZz1iUCpHckpX3J8aCXJZL8vMyGtXrmtozOjVoc6AVHtVVW0dtSxX1tlOOHsfK6YYGo7PDxVXaIPWjH7B_ohta2_6sJvoa1OHSjBPq0WnVUWUaOj27DrtgNK0-XCarNf6O3LSq83j_d9fk--31a_se7T93H9vNPqqhSIeoKkXBqgwSqBOBVQIqy1UOPOMtVHnOWM5EimULeZFyaAuVMCxKxUEUkPFc8DURc24o773DVp6d7pUbJTA5jSZPch5NTqPJebSAPc8Yhm5XjU76WqOpsdEO60E2Vv8f8Ate0Xyx |
Cites_doi | 10.1016/j.solener.2005.04.020 10.1016/j.enconman.2019.02.020 10.1115/1.0003070V 10.1016/j.energy.2019.04.064 10.29008/ETC2017-375 10.1016/j.enconman.2018.05.045 10.1002/fuce.201400046 10.1016/j.solener.2016.06.020 10.1016/j.renene.2019.11.022 10.1016/j.enconman.2016.02.019 10.1016/j.egypro.2015.03.146 10.1016/0378-7796(80)90003-6 10.1016/j.egyr.2022.07.141 10.1016/j.renene.2017.05.081 10.1021/acs.iecr.2c01784 10.1115/GT2014-25225 10.1115/GT2014-26917 10.1115/GT2018-76370 10.1115/GT2010-22799 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.energy.2024.133058 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2024_133058 S0360544224028330 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AAYXX ABFNM ABXDB ADMUD AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ LY6 R2- SAC WUQ |
ID | FETCH-LOGICAL-c185t-b9480b6121c24eb21a67a71363f1b77007045e9f178531f8a20e89a3148163743 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Wed Oct 09 16:46:36 EDT 2024 Sat Oct 05 15:36:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Concentrated solar power Dynamic model Parallel solar Microturbine Serial solar microturbine Solar energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185t-b9480b6121c24eb21a67a71363f1b77007045e9f178531f8a20e89a3148163743 |
ORCID | 0000-0002-4172-4254 0000-0001-5889-5845 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2024_133058 elsevier_sciencedirect_doi_10_1016_j_energy_2024_133058 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-15 |
PublicationDateYYYYMMDD | 2024-11-15 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Merchan, Santos, Medina, Hernandez (b8) 2018; 128 Khader (b24) 2017 Heller, Pfänder, Denk, Tellez, Valverde, Fernandez, Ring (b26) 2006; 80 Ghavami M. Cycle analysis and optimisation of micro gas turbines for concentrated solar power. (Ph.D. thesis, Doctoral thesis), University of London; 2017, Unpublished, City. Tinnerholm, Pop, Sjolund (b38) 2022; 11 Traverso A, Barberis S, Lima D, Massardo AF. Dynamic analysis of concentrated solar hybridised gas turbine. In: Proc. ASME turbo expo 2014. vol. 1, 2014. Biencinto, González, Valenzuela, Zarza (b4) 2019; 199 Kathirgamanathan D, Axelsson L-U. Rotor over-speed analysis of a hybrid solar gas turbine. In: Proceedings of ASME turbo expo 2018 turbomachinery technical conference and exposition. vol. 1, 2018. Gavagnin (b17) 2018 Ellingwood, Mohammadi, Powell (b5) 2020; 203 Bammert (b9) 1980; 3 Arifin M, Schatz M, Vogt DM. Design and optimization of turbomachinery components for parabolic dish solar hybrid micro gas turbine. In: ASME turbo expo 2020: turbomachinery technical conference and exposition. vol. 1, London, England; 2020. Pan, Shen, Laumert, Wang (b6) 2022; 268 Amiri S, Al-Zaili, Sayma. Development of a dynamic model for simulating the transient behaviour of a solar-powered micro gas turbine. In: Proceedings of ASME turbo expo 2022: power for land, sea and air. vol. 1, 2022. Chen, Xiao, Ferrari, Yang, Ni, Cen (b15) 2020; 154 Buck, Giuliano, Uhlig (b30) 2017 Mengist (b40) 2019 Hartfuss G, Schatz M. Thermodynamic analysis of the hat-process for micro gas turbines. In: Proc. 12th eur. conf. turbomach. fluid dyn. thermodyn. vol. 1, 2017. Se, fur Luft-und Raumfahrt e.V., Dresden, V (b29) 2011 Damo, Ferrari, Turan, Massardo (b25) 2015; 15 Deligant, Huebel, Djaname, Ravelet, Specklin, Kebdani (b39) 2022; 8 Amsbeck L, Buck R, Heller P, Jedamski J. Development of a tube receiver for a solar-hybrid microturbine system. In: Proceedings of the 14th biennial CSP solarpaces symposium. vol. 1, USA; 2008. Felsmann, Gampe, Heide, Freimark (b12) 2014; 137 Merchan, Santos, Heras, Gonzalez-Ayala, Medina, Hernandez (b3) 2020; 119 Ssebabi, Dinter, van der Spuy, Schatz (b21) 2019; 177 Abdelhafidi, Ibrahim Halil Yılmaz, Bachari (b7) 2020; 220 Santos, Merchan, Medina, Hernandez (b31) 2016; 115 Sedighi, Padilla, Taylor, Lakea, Izadgoshasb, Rose (b20) 2019; 185 Crescenzi, Lanchi, Russo, Miliozzi, Montecchi, Pastorelli, Mariani (b22) 2013 Arifin, Fudholi, Wahyudie, Vogt (b33) 2022; 16 Stine, Harrigan (b35) 1985 Wang, Pan, Swanteson, Strand (b18) 2023; 283 Merchán, Santos, Medina, Hernández (b32) 2022; 155 Korzynietz, Brioso, del Río, Quero, Gallas, Uhlig, Ebert, Buck, Teraji (b28) 2016; 135 Hohloch M, Zanger J, Widenhorn A, Aigner M. Experimental characterization of micro gas turbine test rig. In: Proceedings of ASME turbo expo 2010: power for land, sea and air. vol. 1, 2010. Xiao, Yang, Ni (b2) 2022; 61 Arifin, Fudholi, Schatz, Vogt (b34) 2023; 287 Lange (b11) 1993; 6 Scheuerer (b10) 1987 Felsmann, Gampe, Freimark (b14) 2015; 3 Wang, Malmquist, Laumert (b19) 2018; 169 Lanchi M, Montecchi M, Crescenzi T, Mele D, Miliozzi A, Russo V, Mazzei D, Misceo M, Falchetta M, Mancini R. Investigation into the coupling of micro gas turbines with csp technology: Omsop project. In: Energy procedia, international conference on concentrating solar power and chemical energy systems, solarPACES 2014. vol. 69, 2014. Nikpey H, Majoumerd MM, Assadi M, Breuhaus P. Thermodynamic analysis of innovative micro gas turbine cycles. In: Proc. ASME turbo expo 2014. vol. 1, 2014. Sedighi (10.1016/j.energy.2024.133058_b20) 2019; 185 Heller (10.1016/j.energy.2024.133058_b26) 2006; 80 Xiao (10.1016/j.energy.2024.133058_b2) 2022; 61 10.1016/j.energy.2024.133058_b27 Stine (10.1016/j.energy.2024.133058_b35) 1985 Felsmann (10.1016/j.energy.2024.133058_b12) 2014; 137 Mengist (10.1016/j.energy.2024.133058_b40) 2019 10.1016/j.energy.2024.133058_b1 Merchán (10.1016/j.energy.2024.133058_b32) 2022; 155 Tinnerholm (10.1016/j.energy.2024.133058_b38) 2022; 11 Ssebabi (10.1016/j.energy.2024.133058_b21) 2019; 177 Ellingwood (10.1016/j.energy.2024.133058_b5) 2020; 203 Crescenzi (10.1016/j.energy.2024.133058_b22) 2013 Damo (10.1016/j.energy.2024.133058_b25) 2015; 15 Merchan (10.1016/j.energy.2024.133058_b8) 2018; 128 Santos (10.1016/j.energy.2024.133058_b31) 2016; 115 Korzynietz (10.1016/j.energy.2024.133058_b28) 2016; 135 10.1016/j.energy.2024.133058_b43 Abdelhafidi (10.1016/j.energy.2024.133058_b7) 2020; 220 10.1016/j.energy.2024.133058_b23 Wang (10.1016/j.energy.2024.133058_b19) 2018; 169 Chen (10.1016/j.energy.2024.133058_b15) 2020; 154 10.1016/j.energy.2024.133058_b41 10.1016/j.energy.2024.133058_b42 Arifin (10.1016/j.energy.2024.133058_b33) 2022; 16 Scheuerer (10.1016/j.energy.2024.133058_b10) 1987 10.1016/j.energy.2024.133058_b36 Gavagnin (10.1016/j.energy.2024.133058_b17) 2018 10.1016/j.energy.2024.133058_b37 10.1016/j.energy.2024.133058_b16 Pan (10.1016/j.energy.2024.133058_b6) 2022; 268 Deligant (10.1016/j.energy.2024.133058_b39) 2022; 8 Bammert (10.1016/j.energy.2024.133058_b9) 1980; 3 Wang (10.1016/j.energy.2024.133058_b18) 2023; 283 Se (10.1016/j.energy.2024.133058_b29) 2011 Buck (10.1016/j.energy.2024.133058_b30) 2017 Felsmann (10.1016/j.energy.2024.133058_b14) 2015; 3 Arifin (10.1016/j.energy.2024.133058_b34) 2023; 287 Lange (10.1016/j.energy.2024.133058_b11) 1993; 6 10.1016/j.energy.2024.133058_b13 Khader (10.1016/j.energy.2024.133058_b24) 2017 Biencinto (10.1016/j.energy.2024.133058_b4) 2019; 199 Merchan (10.1016/j.energy.2024.133058_b3) 2020; 119 |
References_xml | – volume: 16 year: 2022 ident: b33 article-title: Surrogate-based optimization of multiple-splitters radial compressor for solar hybrid microturbine publication-title: Energy Convers Manag: X contributor: fullname: Vogt – volume: 268 year: 2022 ident: b6 article-title: A novel gas turbine simulator for testing hybrid solar-brayton energy systems publication-title: Energy Convers Manage contributor: fullname: Wang – volume: 61 start-page: 13532 year: 2022 end-page: 13558 ident: b2 article-title: Model predictive control of a solar power system with microturbine and thermochemical energy storage publication-title: Ind Eng Chem Res contributor: fullname: Ni – volume: 283 year: 2023 ident: b18 article-title: Experimental demonstration of a load flexible combustor for hybrid solar brayton applications publication-title: Energy Convers Manage contributor: fullname: Strand – volume: 154 start-page: 187 year: 2020 end-page: 200 ident: b15 article-title: Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts publication-title: Renew Energy contributor: fullname: Cen – volume: 137 start-page: 9 year: 2014 ident: b12 article-title: Modeling and simulation of the dynamic operating behavior of a high solar share gas turbine system publication-title: J Eng Gas Turbines Power contributor: fullname: Freimark – volume: 185 start-page: 678 year: 2019 end-page: 717 ident: b20 article-title: High-temperature, point-focus, pressurised gas-phase solar receivers: A comprehensive review publication-title: Energy Convers Manage contributor: fullname: Rose – volume: 199 year: 2019 ident: b4 article-title: A new concept of solar thermal power plants with large-aperture parabolic-trough collectors and sco2 as working fluid publication-title: Energy Convers Manage contributor: fullname: Zarza – volume: 3 start-page: 163 year: 1980 end-page: 183 ident: b9 article-title: Layout of gas cycles for solar power generation publication-title: Electr Power Syst Res contributor: fullname: Bammert – volume: 115 start-page: 89 year: 2016 end-page: 102 ident: b31 article-title: Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant publication-title: Energy Convers Manage contributor: fullname: Hernandez – volume: 135 start-page: 578 year: 2016 end-page: 589 ident: b28 article-title: Solugas – comprehensive analysis of the solar hybrid brayton plant publication-title: Sol Energy contributor: fullname: Teraji – year: 2011 ident: b29 article-title: Entwicklung eines referenzkonzepts fur eine solarhybrid-gud-anlage (shcc) der leistungsklasse bis 20 mw contributor: fullname: V – volume: 203 year: 2020 ident: b5 article-title: A novel means to flexibly operate a hybrid concentrated solar power plant and improve operation during non-ideal direct normal irradiation conditions publication-title: Energy Convers Manage contributor: fullname: Powell – volume: 169 start-page: 1 year: 2018 end-page: 12 ident: b19 article-title: Comparison of potential control strategies for an impinging receiver based dish-brayton system when the solar irradiation exceeds its design value publication-title: Energy Convers Manage contributor: fullname: Laumert – volume: 15 start-page: 7 year: 2015 end-page: 14 ident: b25 article-title: Test rig for hybrid system emulation: New real-time transient model validated in a wide operative range publication-title: Fuel Cells contributor: fullname: Massardo – year: 2017 ident: b30 article-title: Advances in concentrating solar thermal research and technology: central tower systems using the brayton cycle contributor: fullname: Uhlig – volume: 220 year: 2020 ident: b7 article-title: An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions publication-title: Energy Convers Manage contributor: fullname: Bachari – volume: 119 year: 2020 ident: b3 article-title: On-design pre-optimization and off-design analysis of hybrid brayton thermosolar tower power plants for different fluids and plant configurations publication-title: Renew Sustain Energy Rev contributor: fullname: Hernandez – volume: 6 year: 1993 ident: b11 article-title: Auslegung und betriebsverhalten von gasturbinenanlagen mit solar-fossiler hybridbeheizung publication-title: VDI Fortschrittsberichte contributor: fullname: Lange – year: 1987 ident: b10 article-title: Berechnung des stationaren und instationaren betriebsverhaltens von solar-kraftanlagen mit paraboloidkonzentrator und gasturbine contributor: fullname: Scheuerer – year: 2013 ident: b22 article-title: Optimised dish design, omsop deliverable report contributor: fullname: Mariani – volume: 80 start-page: 1225 year: 2006 end-page: 1230 ident: b26 article-title: Test and evaluation of a solar powered gas turbine system publication-title: Sol Energy contributor: fullname: Ring – volume: 8 start-page: 1381 year: 2022 end-page: 1393 ident: b39 article-title: Design and off-design system simulation of concentrated solar super-critical co2 cycle integrating a radial turbine meanline model publication-title: Energy Rep contributor: fullname: Kebdani – volume: 287 year: 2023 ident: b34 article-title: A comparative study of mean-line models based on enthalpy loss and analysis of a cavity-structured radial turbine for solar hybrid microturbine applications publication-title: Energy Convers Manage contributor: fullname: Vogt – year: 2018 ident: b17 article-title: Techno-economic optimization of a solar thermal power generator based on parabolic dish and micro gas turbine contributor: fullname: Gavagnin – volume: 11 start-page: 1 year: 2022 end-page: 34 ident: b38 article-title: A modular, extensible, and modelica-standard-compliant openmodelica compiler framework in julia supporting structural variability publication-title: Electron J contributor: fullname: Sjolund – year: 2017 ident: b24 article-title: Development of a micro gas turbine for concentrated solar power applications contributor: fullname: Khader – year: 1985 ident: b35 article-title: Solar energy fundamentals and design contributor: fullname: Harrigan – year: 2019 ident: b40 article-title: Methods and tools for efficient model-based development of cyber–physical systems contributor: fullname: Mengist – volume: 155 year: 2022 ident: b32 article-title: High temperature central tower plants for concentrated solar power: 2021 overview publication-title: Renew Sustain Energy Rev contributor: fullname: Hernández – volume: 128 start-page: 473 year: 2018 end-page: 483 ident: b8 article-title: Thermodynamic model of a hybrid brayton thermosolar plant publication-title: Renew Energy contributor: fullname: Hernandez – volume: 3 start-page: 9 year: 2015 ident: b14 article-title: Dynamic behavior of a solar hybrid gas turbine system publication-title: ASME J contributor: fullname: Freimark – volume: 177 start-page: 121 year: 2019 end-page: 135 ident: b21 article-title: Predicting the performance of a micro gas turbine under solar-hybrid operation publication-title: Energy contributor: fullname: Schatz – year: 1987 ident: 10.1016/j.energy.2024.133058_b10 contributor: fullname: Scheuerer – volume: 80 start-page: 1225 issue: 1 year: 2006 ident: 10.1016/j.energy.2024.133058_b26 article-title: Test and evaluation of a solar powered gas turbine system publication-title: Sol Energy doi: 10.1016/j.solener.2005.04.020 contributor: fullname: Heller – volume: 185 start-page: 678 issue: 1 year: 2019 ident: 10.1016/j.energy.2024.133058_b20 article-title: High-temperature, point-focus, pressurised gas-phase solar receivers: A comprehensive review publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.020 contributor: fullname: Sedighi – ident: 10.1016/j.energy.2024.133058_b37 doi: 10.1115/1.0003070V – volume: 177 start-page: 121 issue: 1 year: 2019 ident: 10.1016/j.energy.2024.133058_b21 article-title: Predicting the performance of a micro gas turbine under solar-hybrid operation publication-title: Energy doi: 10.1016/j.energy.2019.04.064 contributor: fullname: Ssebabi – year: 2013 ident: 10.1016/j.energy.2024.133058_b22 contributor: fullname: Crescenzi – ident: 10.1016/j.energy.2024.133058_b42 doi: 10.29008/ETC2017-375 – volume: 169 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.energy.2024.133058_b19 article-title: Comparison of potential control strategies for an impinging receiver based dish-brayton system when the solar irradiation exceeds its design value publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.05.045 contributor: fullname: Wang – volume: 15 start-page: 7 issue: 1 year: 2015 ident: 10.1016/j.energy.2024.133058_b25 article-title: Test rig for hybrid system emulation: New real-time transient model validated in a wide operative range publication-title: Fuel Cells doi: 10.1002/fuce.201400046 contributor: fullname: Damo – year: 1985 ident: 10.1016/j.energy.2024.133058_b35 contributor: fullname: Stine – volume: 220 issue: 1 year: 2020 ident: 10.1016/j.energy.2024.133058_b7 article-title: An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions publication-title: Energy Convers Manage contributor: fullname: Abdelhafidi – volume: 135 start-page: 578 issue: 1 year: 2016 ident: 10.1016/j.energy.2024.133058_b28 article-title: Solugas – comprehensive analysis of the solar hybrid brayton plant publication-title: Sol Energy doi: 10.1016/j.solener.2016.06.020 contributor: fullname: Korzynietz – ident: 10.1016/j.energy.2024.133058_b36 – year: 2011 ident: 10.1016/j.energy.2024.133058_b29 contributor: fullname: Se – volume: 287 issue: 1 year: 2023 ident: 10.1016/j.energy.2024.133058_b34 article-title: A comparative study of mean-line models based on enthalpy loss and analysis of a cavity-structured radial turbine for solar hybrid microturbine applications publication-title: Energy Convers Manage contributor: fullname: Arifin – volume: 3 start-page: 9 year: 2015 ident: 10.1016/j.energy.2024.133058_b14 article-title: Dynamic behavior of a solar hybrid gas turbine system publication-title: ASME J contributor: fullname: Felsmann – volume: 154 start-page: 187 issue: 1 year: 2020 ident: 10.1016/j.energy.2024.133058_b15 article-title: Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts publication-title: Renew Energy doi: 10.1016/j.renene.2019.11.022 contributor: fullname: Chen – volume: 115 start-page: 89 issue: 1 year: 2016 ident: 10.1016/j.energy.2024.133058_b31 article-title: Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.02.019 contributor: fullname: Santos – year: 2017 ident: 10.1016/j.energy.2024.133058_b30 contributor: fullname: Buck – ident: 10.1016/j.energy.2024.133058_b23 doi: 10.1016/j.egypro.2015.03.146 – volume: 3 start-page: 163 issue: 1 year: 1980 ident: 10.1016/j.energy.2024.133058_b9 article-title: Layout of gas cycles for solar power generation publication-title: Electr Power Syst Res doi: 10.1016/0378-7796(80)90003-6 contributor: fullname: Bammert – volume: 6 issue: 283 year: 1993 ident: 10.1016/j.energy.2024.133058_b11 article-title: Auslegung und betriebsverhalten von gasturbinenanlagen mit solar-fossiler hybridbeheizung publication-title: VDI Fortschrittsberichte contributor: fullname: Lange – volume: 283 issue: 1 year: 2023 ident: 10.1016/j.energy.2024.133058_b18 article-title: Experimental demonstration of a load flexible combustor for hybrid solar brayton applications publication-title: Energy Convers Manage contributor: fullname: Wang – volume: 11 start-page: 1 year: 2022 ident: 10.1016/j.energy.2024.133058_b38 article-title: A modular, extensible, and modelica-standard-compliant openmodelica compiler framework in julia supporting structural variability publication-title: Electron J contributor: fullname: Tinnerholm – volume: 8 start-page: 1381 issue: 1 year: 2022 ident: 10.1016/j.energy.2024.133058_b39 article-title: Design and off-design system simulation of concentrated solar super-critical co2 cycle integrating a radial turbine meanline model publication-title: Energy Rep doi: 10.1016/j.egyr.2022.07.141 contributor: fullname: Deligant – volume: 203 issue: 1 year: 2020 ident: 10.1016/j.energy.2024.133058_b5 article-title: A novel means to flexibly operate a hybrid concentrated solar power plant and improve operation during non-ideal direct normal irradiation conditions publication-title: Energy Convers Manage contributor: fullname: Ellingwood – ident: 10.1016/j.energy.2024.133058_b16 – volume: 119 issue: 1 year: 2020 ident: 10.1016/j.energy.2024.133058_b3 article-title: On-design pre-optimization and off-design analysis of hybrid brayton thermosolar tower power plants for different fluids and plant configurations publication-title: Renew Sustain Energy Rev contributor: fullname: Merchan – volume: 128 start-page: 473 issue: 1 year: 2018 ident: 10.1016/j.energy.2024.133058_b8 article-title: Thermodynamic model of a hybrid brayton thermosolar plant publication-title: Renew Energy doi: 10.1016/j.renene.2017.05.081 contributor: fullname: Merchan – year: 2018 ident: 10.1016/j.energy.2024.133058_b17 contributor: fullname: Gavagnin – volume: 268 issue: 1 year: 2022 ident: 10.1016/j.energy.2024.133058_b6 article-title: A novel gas turbine simulator for testing hybrid solar-brayton energy systems publication-title: Energy Convers Manage contributor: fullname: Pan – volume: 16 issue: 1 year: 2022 ident: 10.1016/j.energy.2024.133058_b33 article-title: Surrogate-based optimization of multiple-splitters radial compressor for solar hybrid microturbine publication-title: Energy Convers Manag: X contributor: fullname: Arifin – volume: 61 start-page: 13532 issue: 36 year: 2022 ident: 10.1016/j.energy.2024.133058_b2 article-title: Model predictive control of a solar power system with microturbine and thermochemical energy storage publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.2c01784 contributor: fullname: Xiao – year: 2019 ident: 10.1016/j.energy.2024.133058_b40 contributor: fullname: Mengist – year: 2017 ident: 10.1016/j.energy.2024.133058_b24 contributor: fullname: Khader – ident: 10.1016/j.energy.2024.133058_b1 doi: 10.1115/GT2014-25225 – volume: 199 issue: 1 year: 2019 ident: 10.1016/j.energy.2024.133058_b4 article-title: A new concept of solar thermal power plants with large-aperture parabolic-trough collectors and sco2 as working fluid publication-title: Energy Convers Manage contributor: fullname: Biencinto – volume: 137 start-page: 9 issue: 3 year: 2014 ident: 10.1016/j.energy.2024.133058_b12 article-title: Modeling and simulation of the dynamic operating behavior of a high solar share gas turbine system publication-title: J Eng Gas Turbines Power contributor: fullname: Felsmann – ident: 10.1016/j.energy.2024.133058_b43 doi: 10.1115/GT2014-26917 – ident: 10.1016/j.energy.2024.133058_b27 – ident: 10.1016/j.energy.2024.133058_b13 doi: 10.1115/GT2018-76370 – volume: 155 issue: 1 year: 2022 ident: 10.1016/j.energy.2024.133058_b32 article-title: High temperature central tower plants for concentrated solar power: 2021 overview publication-title: Renew Sustain Energy Rev contributor: fullname: Merchán – ident: 10.1016/j.energy.2024.133058_b41 doi: 10.1115/GT2010-22799 |
SSID | ssj0005899 |
Score | 2.489618 |
Snippet | The paper aims to investigate the system behavior of a solar hybrid microturbine through dynamic simulation, relying on experimental data from existing... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 133058 |
SubjectTerms | Concentrated solar power Dynamic model Microturbine Parallel solar Serial solar microturbine Solar energy |
Title | Dynamic operating behavior of a solar hybrid microturbine system: A comparative study of serial and parallel configurations |
URI | https://dx.doi.org/10.1016/j.energy.2024.133058 |
Volume | 309 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLagHWBBPEV5VDewXpvH5cVWlVaFig48BFt0l1ygqKQVbQeExG_HziUqSIiBKUpiS9HZ8Wcn_nwAZ04qZehol7upjDj9v-XScyKeKiHS1HLdTNIH_euRP7gXV4_e4xp0Ky4MtVWWsd_E9CJal1fa5Wq2Z-Nx-xZjL-YbgjAJMdLFur1e_CSqQb1zORyMVp0eYbGNJMlzUqgYdEWbly4odlgoOqKF9ZpFe7__hlDfUKe_DVtlusg65ol2YE3nu7BRsYnnu3DQWzHVULB8Ved78HFh9ppn0xnNTUaEYhUln00zJtmcilr2_E6ULfZKfXmIPlgna2amO5-zDktWs8FZMYiWVI3TMpmnjG5OJnqCgnk2fload5rvw32_d9cd8HKnBZ4gXi-4ikRoKRomljgCa21b-oHE8tV3M1sFAc0EEp6OMjtAdLezUDqWDiPpYi2F-RwmIQdQy6e5PgQWJX4qEq2U51pCZlIqpS0rw3VXAkXtBvBqdeOZGagRV51mL7GxRkzWiI01GhBUJoh_OEaMMf9PzaN_ax7DJp0R5dD2TqC2eFvqU8w9FqoJ661Pu1l6GB2HNw_DLxKs3C8 |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOODFKErE5x68rvSxfXkjCAF5XISEW7PbbhWDhVg4GP-8M902aGI8eG1nkmZnOt987TwIubViIXxL2cyORcDw_y0TjhWwWHIex4ZtJwI_6E-m7mDOHxfOokK6ZS8MllUWsV_H9DxaF1faxWm2N8tl-wliL-QbHDEJMNIG3l6DbCAAZ691hqPBdF_p4edrJFGeoULZQZeXeam8xQ6IosXvgK8ZuPv9N4T6hjr9I3JYpIu0o5_omFRU2iD1sps4a5Bmb9-pBoLFq5qdkM8HvWuerjc4NxkQipYt-XSdUEEzJLX05QNbtugb1uUB-gBPVlRPd76nHRrtZ4PTfBAtqmqnpSKNKd5crdQKBNNk-bzT7pSdknm_N-sOWLFpgUWA11smA-4bEoeJRRYHrm0K1xNAX107MaXn4Uwg7qggMT1AdzPxhWUoPxA2cCnI5yAJaZJquk7VGaFB5MY8UlI6tsFFIoSUyjASOHfJQdRsEVaebrjRAzXCstLsNdTWCNEaobZGi3ilCcIfjhFCzP9T8_zfmjekPphNxuF4OB1dkAO8g-2HpnNJqtv3nbqCPGQrrws_-wKad9yJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+operating+behavior+of+a+solar+hybrid+microturbine+system%3A+A+comparative+study+of+serial+and+parallel+configurations&rft.jtitle=Energy+%28Oxford%29&rft.au=Arifin%2C+Maulana&rft.au=Fudholi%2C+Ahmad&rft.au=Wahono%2C+Bambang&rft.au=Schatz%2C+Markus&rft.date=2024-11-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=309&rft_id=info:doi/10.1016%2Fj.energy.2024.133058&rft.externalDocID=S0360544224028330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |