Striatal D 1 - and D 2 -type Dopamine Receptors Are Linked to Motor Response Inhibition in Human Subjects
Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D 1 - and D 2 -type receptors are unclear. Although evidence supports dissociable contributions of D 1 - and D 2 -type receptors to response...
Saved in:
Published in | The Journal of neuroscience Vol. 35; no. 15; pp. 5990 - 5997 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
15.04.2015
|
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 |
DOI | 10.1523/JNEUROSCI.4850-14.2015 |
Cover
Loading…
Abstract | Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D
1
- and D
2
-type receptors are unclear. Although evidence supports dissociable contributions of D
1
- and D
2
-type receptors to response inhibition in rats and associations of D
2
-type receptors to response inhibition in humans, the relationship between D
1
-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D
1
- and D
2
-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D
1
- and D
2
-type receptor availability [binding potential referred to nondisplaceable uptake (BP
ND
)], measured using positron emission tomography with [
11
C]NNC-112 and [
18
F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D
1
- and D
2
-type BP
ND
in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D
1
- and D
2
-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D
1
- and D
2
-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. |
---|---|
AbstractList | Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D
1
- and D
2
-type receptors are unclear. Although evidence supports dissociable contributions of D
1
- and D
2
-type receptors to response inhibition in rats and associations of D
2
-type receptors to response inhibition in humans, the relationship between D
1
-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D
1
- and D
2
-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D
1
- and D
2
-type receptor availability [binding potential referred to nondisplaceable uptake (BP
ND
)], measured using positron emission tomography with [
11
C]NNC-112 and [
18
F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D
1
- and D
2
-type BP
ND
in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D
1
- and D
2
-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D
1
- and D
2
-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. |
Author | Sabb, Fred Cannon, Tyrone Borg, Jacqueline Mandelkern, Mark A. Ishibashi, Kenji Bilder, Robert London, Edythe D. Ghahremani, Dara G. Robertson, Chelsea L. Brown, Amira K. |
Author_xml | – sequence: 1 givenname: Chelsea L. surname: Robertson fullname: Robertson, Chelsea L. – sequence: 2 givenname: Kenji surname: Ishibashi fullname: Ishibashi, Kenji – sequence: 3 givenname: Mark A. surname: Mandelkern fullname: Mandelkern, Mark A. – sequence: 4 givenname: Amira K. surname: Brown fullname: Brown, Amira K. – sequence: 5 givenname: Dara G. surname: Ghahremani fullname: Ghahremani, Dara G. – sequence: 6 givenname: Fred surname: Sabb fullname: Sabb, Fred – sequence: 7 givenname: Robert surname: Bilder fullname: Bilder, Robert – sequence: 8 givenname: Tyrone surname: Cannon fullname: Cannon, Tyrone – sequence: 9 givenname: Jacqueline surname: Borg fullname: Borg, Jacqueline – sequence: 10 givenname: Edythe D. surname: London fullname: London, Edythe D. |
BookMark | eNqFkNFOwjAUhhuDiYC-gukLFE-7dt0SbwigYFASkOul27pYhHZpywVv7xaNF954df6cP99JzjdCA-usRuiewoQKljy8vC32281utprwTAChfMKAiis07NqcMA50gIbAJJCUS36DRiEcAEAClUNkdtEbFdURzzHFBCtbd4lhEi-txnPXqpOxGm91pdvofMBTr_Ha2E9d4-jwq-uWXRtaZ4PGK_thShONs9hYvDyflMW7c3nQVQy36LpRx6DvfuYY7Z8W77MlWW-eV7PpmlQ0E5HkFBJVasbSuhZKCp4oTUWqm1yCyJtMcGBJw8qkZMAgyyCt84xrIas6TyBNkzFKv-9W3oXgdVO03pyUvxQUil5Y8Sus6IUVlBe9sA58_ANWJqr-meiVOf6HfwEyzHLT |
CitedBy_id | crossref_primary_10_1038_s41380_020_0784_7 crossref_primary_10_1016_j_nbas_2023_100079 crossref_primary_10_1016_j_cobeha_2018_07_002 crossref_primary_10_1038_tp_2017_18 crossref_primary_10_1152_jn_00125_2017 crossref_primary_10_3389_fpsyg_2018_01765 crossref_primary_10_1016_j_concog_2016_02_014 crossref_primary_10_1007_s11682_021_00491_y crossref_primary_10_1038_s41531_017_0024_2 crossref_primary_10_1523_JNEUROSCI_0968_21_2021 crossref_primary_10_1016_j_neulet_2018_03_007 crossref_primary_10_1016_j_biomaterials_2019_119704 crossref_primary_10_1016_j_neuroimage_2019_04_021 crossref_primary_10_3389_fnbeh_2022_791749 crossref_primary_10_1016_j_cortex_2019_12_007 crossref_primary_10_1016_j_neuroimage_2017_05_062 crossref_primary_10_3390_ijms241713238 crossref_primary_10_1007_s00213_019_05420_y crossref_primary_10_1016_j_ijpsycho_2022_10_001 crossref_primary_10_1016_j_neubiorev_2021_04_023 crossref_primary_10_1038_mp_2015_223 crossref_primary_10_3390_biom12050723 crossref_primary_10_1080_15592294_2019_1583032 crossref_primary_10_1038_nrn_2017_8 crossref_primary_10_1093_ijnp_pyy030 crossref_primary_10_1098_rstb_2017_0153 crossref_primary_10_1093_ijnp_pyaa084 crossref_primary_10_1523_JNEUROSCI_0621_23_2024 crossref_primary_10_1002_adfm_202204732 crossref_primary_10_1016_j_jpsychires_2024_12_020 crossref_primary_10_1124_jpet_119_260794 crossref_primary_10_1016_j_cub_2022_06_067 crossref_primary_10_1093_braincomms_fcad350 crossref_primary_10_1016_j_neuroimage_2017_06_015 crossref_primary_10_1038_npp_2015_331 crossref_primary_10_1038_s41380_023_02123_x crossref_primary_10_1038_s41598_019_47662_y crossref_primary_10_1093_scan_nsab045 crossref_primary_10_1016_j_neuropharm_2020_108278 crossref_primary_10_1016_j_pbb_2023_173557 crossref_primary_10_1007_s00221_016_4764_8 crossref_primary_10_1016_j_tics_2017_03_009 crossref_primary_10_1093_psyrad_kkad016 crossref_primary_10_1002_hbm_24959 crossref_primary_10_1523_JNEUROSCI_1984_18_2018 crossref_primary_10_3389_fpsyt_2022_868804 crossref_primary_10_1038_s41598_021_88429_8 crossref_primary_10_1016_j_neubiorev_2023_105317 crossref_primary_10_1038_s41386_018_0065_1 crossref_primary_10_1016_j_cortex_2024_02_008 crossref_primary_10_1111_adb_12903 crossref_primary_10_14336_AD_2024_0124_1 crossref_primary_10_1371_journal_pone_0174219 crossref_primary_10_1038_npp_2017_61 crossref_primary_10_1016_j_neuroimage_2021_118269 crossref_primary_10_1016_j_yhbeh_2025_105697 crossref_primary_10_1016_j_neuroimage_2023_120415 crossref_primary_10_1016_j_neubiorev_2017_05_019 crossref_primary_10_1016_j_bbi_2022_08_016 crossref_primary_10_1016_j_neurobiolaging_2018_02_003 |
Cites_doi | 10.1007/s11307-007-0077-4 10.1016/S1053-8119(02)91132-8 10.3389/fpsyg.2012.00037 10.1038/jcbfm.2013.55 10.1146/annurev-neuro-061010-113641 10.1016/j.ijpsycho.2011.05.007 10.1523/JNEUROSCI.1894-10.2010 10.1016/S0001-6918(02)00079-3 10.1162/jocn.2008.20100 10.1016/j.neuroscience.2009.01.027 10.1146/annurev.ne.06.030183.000355 10.1038/sj.npp.1380111 10.1016/j.neuropsychologia.2013.12.027 10.1016/j.neuroscience.2011.08.018 10.1016/S1361-8415(01)00036-6 10.1016/S0006-3223(03)00609-7 10.1016/j.tins.2007.03.008 10.1038/sj.npp.1301278 10.1037/0096-1523.10.2.276 10.1006/nimg.2000.0685 10.1007/s00213-004-1830-x 10.1002/mds.870090613 10.1126/science.1121218 10.1016/j.bbr.2003.09.022 10.1080/00952990701522724 10.1016/j.drugalcdep.2005.02.002 10.1006/nimg.1996.0066 10.1371/journal.pone.0036781 10.1523/JNEUROSCI.6182-10.2011 10.1016/j.neubiorev.2009.07.003 10.1016/S0306-4522(98)00604-6 10.1016/0166-2236(90)90107-L 10.1016/j.neuroimage.2014.12.070 10.1016/j.neuroscience.2014.07.021 10.1007/s00213-008-1127-6 10.1073/pnas.95.24.14494 10.1097/00004647-200212000-00004 10.1162/0898929052880093 10.1016/j.neuroimage.2011.02.046 10.1016/j.bbr.2013.06.001 10.1007/s00213-014-3686-z 10.1523/JNEUROSCI.3765-09.2009 10.1038/sj.jcbfm.9600468 10.1016/j.paid.2005.03.024 10.1037/1064-1297.16.2.124 10.1007/s00213-007-0701-7 10.1016/S0301-0082(96)00042-1 10.1037/0735-7044.117.6.1302 10.1037/a0033659 10.1016/j.tics.2013.12.003 10.1016/j.neuroimage.2011.02.070 10.1016/S0376-8716(01)00206-X 10.1126/science.1185778 10.2310/7290.2013.00065 10.1007/s00213-013-3141-6 10.1016/0014-2999(92)90578-R 10.1016/j.biopsych.2008.05.015 10.1023/A:1023285614844 10.1162/jocn_a_00327 10.1523/JNEUROSCI.2423-08.2008 10.1037/0735-7044.114.4.830 10.1016/j.neuroimage.2010.04.276 10.1016/j.pbb.2007.12.021 10.1016/j.bbr.2008.09.021 10.1097/00004647-200109000-00002 10.1007/BF00916508 10.1016/j.neuropsychologia.2013.01.014 10.1037/a0017185 10.1073/pnas.91.23.11271 10.1523/JNEUROSCI.4284-11.2012 10.1016/j.neuroimage.2010.02.006 10.1016/j.bandc.2012.09.010 10.1177/1087054708326110 10.1523/JNEUROSCI.15-07-05222.1995 10.1097/00004647-200002000-00003 10.1111/nyas.12388 10.1111/j.1752-1688.2003.tb03687.x 10.1016/j.neuroscience.2010.07.050 10.1016/0969-8051(94)00117-3 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1523/JNEUROSCI.4850-14.2015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 5997 |
ExternalDocumentID | 10_1523_JNEUROSCI_4850_14_2015 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK |
ID | FETCH-LOGICAL-c185t-9103abe226dd5a7543ae156ef97059f854023f2b3b20208806d984e57cd930663 |
ISSN | 0270-6474 |
IngestDate | Tue Jul 01 03:47:22 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c185t-9103abe226dd5a7543ae156ef97059f854023f2b3b20208806d984e57cd930663 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1523_JNEUROSCI_4850_14_2015 crossref_citationtrail_10_1523_JNEUROSCI_4850_14_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-15 |
PublicationDateYYYYMMDD | 2015-04-15 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | The Journal of neuroscience |
PublicationYear | 2015 |
References | 2023041304163408000_35.15.5990.50 2023041304163408000_35.15.5990.51 2023041304163408000_35.15.5990.10 2023041304163408000_35.15.5990.54 2023041304163408000_35.15.5990.11 2023041304163408000_35.15.5990.55 2023041304163408000_35.15.5990.52 2023041304163408000_35.15.5990.53 2023041304163408000_35.15.5990.14 2023041304163408000_35.15.5990.58 2023041304163408000_35.15.5990.15 2023041304163408000_35.15.5990.59 2023041304163408000_35.15.5990.12 2023041304163408000_35.15.5990.56 2023041304163408000_35.15.5990.13 2023041304163408000_35.15.5990.57 2023041304163408000_35.15.5990.18 2023041304163408000_35.15.5990.19 2023041304163408000_35.15.5990.16 2023041304163408000_35.15.5990.17 2023041304163408000_35.15.5990.61 2023041304163408000_35.15.5990.62 2023041304163408000_35.15.5990.60 2023041304163408000_35.15.5990.21 2023041304163408000_35.15.5990.65 2023041304163408000_35.15.5990.22 2023041304163408000_35.15.5990.66 2023041304163408000_35.15.5990.63 2023041304163408000_35.15.5990.20 2023041304163408000_35.15.5990.64 2023041304163408000_35.15.5990.25 2023041304163408000_35.15.5990.69 2023041304163408000_35.15.5990.26 2023041304163408000_35.15.5990.23 2023041304163408000_35.15.5990.67 2023041304163408000_35.15.5990.24 2023041304163408000_35.15.5990.68 2023041304163408000_35.15.5990.29 Fujita (2023041304163408000_35.15.5990.36) 2006; 47 2023041304163408000_35.15.5990.27 2023041304163408000_35.15.5990.28 2023041304163408000_35.15.5990.72 2023041304163408000_35.15.5990.73 2023041304163408000_35.15.5990.70 2023041304163408000_35.15.5990.71 2023041304163408000_35.15.5990.32 2023041304163408000_35.15.5990.76 2023041304163408000_35.15.5990.33 2023041304163408000_35.15.5990.77 2023041304163408000_35.15.5990.30 2023041304163408000_35.15.5990.74 2023041304163408000_35.15.5990.31 Hersch (2023041304163408000_35.15.5990.40) 1995; 15 2023041304163408000_35.15.5990.75 2023041304163408000_35.15.5990.37 2023041304163408000_35.15.5990.34 2023041304163408000_35.15.5990.78 2023041304163408000_35.15.5990.35 2023041304163408000_35.15.5990.79 2023041304163408000_35.15.5990.38 2023041304163408000_35.15.5990.39 2023041304163408000_35.15.5990.43 2023041304163408000_35.15.5990.44 2023041304163408000_35.15.5990.41 2023041304163408000_35.15.5990.42 2023041304163408000_35.15.5990.80 2023041304163408000_35.15.5990.3 2023041304163408000_35.15.5990.4 2023041304163408000_35.15.5990.5 2023041304163408000_35.15.5990.6 2023041304163408000_35.15.5990.1 2023041304163408000_35.15.5990.2 2023041304163408000_35.15.5990.47 2023041304163408000_35.15.5990.48 2023041304163408000_35.15.5990.45 2023041304163408000_35.15.5990.46 2023041304163408000_35.15.5990.7 2023041304163408000_35.15.5990.8 2023041304163408000_35.15.5990.9 2023041304163408000_35.15.5990.49 |
References_xml | – ident: 2023041304163408000_35.15.5990.31 doi: 10.1007/s11307-007-0077-4 – ident: 2023041304163408000_35.15.5990.43 doi: 10.1016/S1053-8119(02)91132-8 – ident: 2023041304163408000_35.15.5990.17 doi: 10.3389/fpsyg.2012.00037 – ident: 2023041304163408000_35.15.5990.23 doi: 10.1038/jcbfm.2013.55 – ident: 2023041304163408000_35.15.5990.37 doi: 10.1146/annurev-neuro-061010-113641 – ident: 2023041304163408000_35.15.5990.63 doi: 10.1016/j.ijpsycho.2011.05.007 – ident: 2023041304163408000_35.15.5990.22 doi: 10.1523/JNEUROSCI.1894-10.2010 – ident: 2023041304163408000_35.15.5990.6 doi: 10.1016/S0001-6918(02)00079-3 – ident: 2023041304163408000_35.15.5990.79 doi: 10.1162/jocn.2008.20100 – ident: 2023041304163408000_35.15.5990.9 doi: 10.1016/j.neuroscience.2009.01.027 – ident: 2023041304163408000_35.15.5990.19 doi: 10.1146/annurev.ne.06.030183.000355 – ident: 2023041304163408000_35.15.5990.39 doi: 10.1038/sj.npp.1380111 – ident: 2023041304163408000_35.15.5990.16 doi: 10.1016/j.neuropsychologia.2013.12.027 – ident: 2023041304163408000_35.15.5990.46 doi: 10.1016/j.neuroscience.2011.08.018 – ident: 2023041304163408000_35.15.5990.42 doi: 10.1016/S1361-8415(01)00036-6 – ident: 2023041304163408000_35.15.5990.4 doi: 10.1016/S0006-3223(03)00609-7 – ident: 2023041304163408000_35.15.5990.68 doi: 10.1016/j.tins.2007.03.008 – ident: 2023041304163408000_35.15.5990.35 doi: 10.1038/sj.npp.1301278 – ident: 2023041304163408000_35.15.5990.50 doi: 10.1037/0096-1523.10.2.276 – ident: 2023041304163408000_35.15.5990.62 doi: 10.1006/nimg.2000.0685 – ident: 2023041304163408000_35.15.5990.64 doi: 10.1007/s00213-004-1830-x – ident: 2023041304163408000_35.15.5990.73 doi: 10.1002/mds.870090613 – ident: 2023041304163408000_35.15.5990.13 doi: 10.1126/science.1121218 – ident: 2023041304163408000_35.15.5990.26 doi: 10.1016/j.bbr.2003.09.022 – ident: 2023041304163408000_35.15.5990.48 doi: 10.1080/00952990701522724 – ident: 2023041304163408000_35.15.5990.53 doi: 10.1016/j.drugalcdep.2005.02.002 – volume: 47 start-page: 282P year: 2006 ident: 2023041304163408000_35.15.5990.36 article-title: Test retest reproducibility and influence of dopamine levels on [18F]fallypride PET quantification publication-title: J Nucl Med – ident: 2023041304163408000_35.15.5990.47 doi: 10.1006/nimg.1996.0066 – ident: 2023041304163408000_35.15.5990.11 doi: 10.1371/journal.pone.0036781 – ident: 2023041304163408000_35.15.5990.30 doi: 10.1523/JNEUROSCI.6182-10.2011 – ident: 2023041304163408000_35.15.5990.25 doi: 10.1016/j.neubiorev.2009.07.003 – ident: 2023041304163408000_35.15.5990.80 doi: 10.1016/S0306-4522(98)00604-6 – ident: 2023041304163408000_35.15.5990.2 doi: 10.1016/0166-2236(90)90107-L – ident: 2023041304163408000_35.15.5990.18 doi: 10.1016/j.neuroimage.2014.12.070 – ident: 2023041304163408000_35.15.5990.45 doi: 10.1016/j.neuroscience.2014.07.021 – ident: 2023041304163408000_35.15.5990.29 doi: 10.1007/s00213-008-1127-6 – ident: 2023041304163408000_35.15.5990.71 doi: 10.1073/pnas.95.24.14494 – ident: 2023041304163408000_35.15.5990.76 doi: 10.1097/00004647-200212000-00004 – ident: 2023041304163408000_35.15.5990.34 doi: 10.1162/0898929052880093 – ident: 2023041304163408000_35.15.5990.57 doi: 10.1016/j.neuroimage.2011.02.046 – ident: 2023041304163408000_35.15.5990.67 doi: 10.1016/j.bbr.2013.06.001 – ident: 2023041304163408000_35.15.5990.58 doi: 10.1007/s00213-014-3686-z – ident: 2023041304163408000_35.15.5990.49 doi: 10.1523/JNEUROSCI.3765-09.2009 – ident: 2023041304163408000_35.15.5990.65 doi: 10.1038/sj.jcbfm.9600468 – ident: 2023041304163408000_35.15.5990.59 doi: 10.1016/j.paid.2005.03.024 – ident: 2023041304163408000_35.15.5990.60 doi: 10.1037/1064-1297.16.2.124 – ident: 2023041304163408000_35.15.5990.28 doi: 10.1007/s00213-007-0701-7 – ident: 2023041304163408000_35.15.5990.52 doi: 10.1016/S0301-0082(96)00042-1 – ident: 2023041304163408000_35.15.5990.27 doi: 10.1037/0735-7044.117.6.1302 – ident: 2023041304163408000_35.15.5990.74 doi: 10.1037/a0033659 – ident: 2023041304163408000_35.15.5990.5 doi: 10.1016/j.tics.2013.12.003 – ident: 2023041304163408000_35.15.5990.69 doi: 10.1016/j.neuroimage.2011.02.070 – ident: 2023041304163408000_35.15.5990.33 doi: 10.1016/S0376-8716(01)00206-X – ident: 2023041304163408000_35.15.5990.12 doi: 10.1126/science.1185778 – ident: 2023041304163408000_35.15.5990.41 doi: 10.2310/7290.2013.00065 – ident: 2023041304163408000_35.15.5990.7 doi: 10.1007/s00213-013-3141-6 – ident: 2023041304163408000_35.15.5990.3 doi: 10.1016/0014-2999(92)90578-R – ident: 2023041304163408000_35.15.5990.24 doi: 10.1016/j.biopsych.2008.05.015 – ident: 2023041304163408000_35.15.5990.8 doi: 10.1023/A:1023285614844 – ident: 2023041304163408000_35.15.5990.56 doi: 10.1162/jocn_a_00327 – ident: 2023041304163408000_35.15.5990.77 doi: 10.1523/JNEUROSCI.2423-08.2008 – ident: 2023041304163408000_35.15.5990.21 doi: 10.1037/0735-7044.114.4.830 – ident: 2023041304163408000_35.15.5990.10 doi: 10.1016/j.neuroimage.2010.04.276 – ident: 2023041304163408000_35.15.5990.20 doi: 10.1016/j.pbb.2007.12.021 – ident: 2023041304163408000_35.15.5990.61 doi: 10.1016/j.bbr.2008.09.021 – ident: 2023041304163408000_35.15.5990.51 doi: 10.1097/00004647-200109000-00002 – ident: 2023041304163408000_35.15.5990.70 doi: 10.1007/BF00916508 – ident: 2023041304163408000_35.15.5990.15 doi: 10.1016/j.neuropsychologia.2013.01.014 – ident: 2023041304163408000_35.15.5990.32 doi: 10.1037/a0017185 – ident: 2023041304163408000_35.15.5990.55 doi: 10.1073/pnas.91.23.11271 – ident: 2023041304163408000_35.15.5990.38 doi: 10.1523/JNEUROSCI.4284-11.2012 – ident: 2023041304163408000_35.15.5990.78 doi: 10.1016/j.neuroimage.2010.02.006 – ident: 2023041304163408000_35.15.5990.75 doi: 10.1016/j.bandc.2012.09.010 – ident: 2023041304163408000_35.15.5990.66 doi: 10.1177/1087054708326110 – volume: 15 start-page: 5222 year: 1995 ident: 2023041304163408000_35.15.5990.40 article-title: Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-07-05222.1995 – ident: 2023041304163408000_35.15.5990.1 doi: 10.1097/00004647-200002000-00003 – ident: 2023041304163408000_35.15.5990.44 doi: 10.1111/nyas.12388 – ident: 2023041304163408000_35.15.5990.72 doi: 10.1111/j.1752-1688.2003.tb03687.x – ident: 2023041304163408000_35.15.5990.14 doi: 10.1016/j.neuroscience.2010.07.050 – ident: 2023041304163408000_35.15.5990.54 doi: 10.1016/0969-8051(94)00117-3 |
SSID | ssj0007017 |
Score | 2.4270058 |
Snippet | Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 5990 |
Title | Striatal D 1 - and D 2 -type Dopamine Receptors Are Linked to Motor Response Inhibition in Human Subjects |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCgIIoL_mAuEROE8feJMeoCyotrYTaSr1FduyIsN1stU0P8Nf4c8w4T9AKKJcoG8mz2Z1Pnm_G8yDkLZhENTdFwIw1CRNgAViacsXKqBQ21LzQrsL75HR-eCGOLuXlbPZjkrV022i_-L61ruR_tArPQK9YJXsHzQ5C4QHcg37hChqG6z_p-AxnbmA148ILPdZmFXvcYy6uugB3eIUcEpihvXZDdbKNRSd8CSQTKOfJGh5i_B6TZDGF8kulqz73sQ3uw7aCcZqbKYUdi8kcjZ00xBww0qZr3_QH-mh-lffJH2EI34RDnLrCoK_VGBevjb1a2i7DWG2WXjYsGyIG2araKO_Yn0YsQomHL23NZrex8RhcVtFO5_Ftt_Fyd9ITTnfmSE4RKCf7rEzbIaOdzYaP8VZ7IF1fiqNTTIs8O_joi0QGLMRYWifulwbcvxnGIV0RHSWQlA9ycpQDXlOOcu6R-xx8FJwbcvx5bFUfB27c8_Bju_J0kLO__X0mzGhCcc4fkYedUmnWAu0xmdn6CdnNatWsV9_oO-qyhd0xzC6peuzRBQ0po6A4uOPUYY_22KMD9kCqpS32aLOmDnu0xx4dsUermjrs0R57T8nFh_fnB4esG9vBCiB_DZjPIFLaAq83RqpYikjZUM5tmcbA5csEfAQelVxHmuOE2CSYmzQRVsaFSSNkwM_ITr2u7XNCrQ5MapNSzUUBzFkmRSBMbE2qS2kLke4R2f9ledH1tMfRKlf5n1W2R_aHdddtV5e_rHhx5xUvyYMR_K_ITrO5ta-BwDb6jQPKT9_xk2A |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Striatal+D+1+-+and+D+2+-type+Dopamine+Receptors+Are+Linked+to+Motor+Response+Inhibition+in+Human+Subjects&rft.jtitle=The+Journal+of+neuroscience&rft.au=Robertson%2C+Chelsea+L.&rft.au=Ishibashi%2C+Kenji&rft.au=Mandelkern%2C+Mark+A.&rft.au=Brown%2C+Amira+K.&rft.date=2015-04-15&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=35&rft.issue=15&rft.spage=5990&rft.epage=5997&rft_id=info:doi/10.1523%2FJNEUROSCI.4850-14.2015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_4850_14_2015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |