Striatal D 1 - and D 2 -type Dopamine Receptors Are Linked to Motor Response Inhibition in Human Subjects

Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D 1 - and D 2 -type receptors are unclear. Although evidence supports dissociable contributions of D 1 - and D 2 -type receptors to response...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 35; no. 15; pp. 5990 - 5997
Main Authors Robertson, Chelsea L., Ishibashi, Kenji, Mandelkern, Mark A., Brown, Amira K., Ghahremani, Dara G., Sabb, Fred, Bilder, Robert, Cannon, Tyrone, Borg, Jacqueline, London, Edythe D.
Format Journal Article
LanguageEnglish
Published 15.04.2015
Online AccessGet full text
ISSN0270-6474
1529-2401
DOI10.1523/JNEUROSCI.4850-14.2015

Cover

Loading…
Abstract Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D 1 - and D 2 -type receptors are unclear. Although evidence supports dissociable contributions of D 1 - and D 2 -type receptors to response inhibition in rats and associations of D 2 -type receptors to response inhibition in humans, the relationship between D 1 -type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D 1 - and D 2 -type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D 1 - and D 2 -type receptor availability [binding potential referred to nondisplaceable uptake (BP ND )], measured using positron emission tomography with [ 11 C]NNC-112 and [ 18 F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D 1 - and D 2 -type BP ND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D 1 - and D 2 -type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D 1 - and D 2 -type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition.
AbstractList Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D 1 - and D 2 -type receptors are unclear. Although evidence supports dissociable contributions of D 1 - and D 2 -type receptors to response inhibition in rats and associations of D 2 -type receptors to response inhibition in humans, the relationship between D 1 -type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D 1 - and D 2 -type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D 1 - and D 2 -type receptor availability [binding potential referred to nondisplaceable uptake (BP ND )], measured using positron emission tomography with [ 11 C]NNC-112 and [ 18 F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D 1 - and D 2 -type BP ND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D 1 - and D 2 -type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D 1 - and D 2 -type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition.
Author Sabb, Fred
Cannon, Tyrone
Borg, Jacqueline
Mandelkern, Mark A.
Ishibashi, Kenji
Bilder, Robert
London, Edythe D.
Ghahremani, Dara G.
Robertson, Chelsea L.
Brown, Amira K.
Author_xml – sequence: 1
  givenname: Chelsea L.
  surname: Robertson
  fullname: Robertson, Chelsea L.
– sequence: 2
  givenname: Kenji
  surname: Ishibashi
  fullname: Ishibashi, Kenji
– sequence: 3
  givenname: Mark A.
  surname: Mandelkern
  fullname: Mandelkern, Mark A.
– sequence: 4
  givenname: Amira K.
  surname: Brown
  fullname: Brown, Amira K.
– sequence: 5
  givenname: Dara G.
  surname: Ghahremani
  fullname: Ghahremani, Dara G.
– sequence: 6
  givenname: Fred
  surname: Sabb
  fullname: Sabb, Fred
– sequence: 7
  givenname: Robert
  surname: Bilder
  fullname: Bilder, Robert
– sequence: 8
  givenname: Tyrone
  surname: Cannon
  fullname: Cannon, Tyrone
– sequence: 9
  givenname: Jacqueline
  surname: Borg
  fullname: Borg, Jacqueline
– sequence: 10
  givenname: Edythe D.
  surname: London
  fullname: London, Edythe D.
BookMark eNqFkNFOwjAUhhuDiYC-gukLFE-7dt0SbwigYFASkOul27pYhHZpywVv7xaNF954df6cP99JzjdCA-usRuiewoQKljy8vC32281utprwTAChfMKAiis07NqcMA50gIbAJJCUS36DRiEcAEAClUNkdtEbFdURzzHFBCtbd4lhEi-txnPXqpOxGm91pdvofMBTr_Ha2E9d4-jwq-uWXRtaZ4PGK_thShONs9hYvDyflMW7c3nQVQy36LpRx6DvfuYY7Z8W77MlWW-eV7PpmlQ0E5HkFBJVasbSuhZKCp4oTUWqm1yCyJtMcGBJw8qkZMAgyyCt84xrIas6TyBNkzFKv-9W3oXgdVO03pyUvxQUil5Y8Sus6IUVlBe9sA58_ANWJqr-meiVOf6HfwEyzHLT
CitedBy_id crossref_primary_10_1038_s41380_020_0784_7
crossref_primary_10_1016_j_nbas_2023_100079
crossref_primary_10_1016_j_cobeha_2018_07_002
crossref_primary_10_1038_tp_2017_18
crossref_primary_10_1152_jn_00125_2017
crossref_primary_10_3389_fpsyg_2018_01765
crossref_primary_10_1016_j_concog_2016_02_014
crossref_primary_10_1007_s11682_021_00491_y
crossref_primary_10_1038_s41531_017_0024_2
crossref_primary_10_1523_JNEUROSCI_0968_21_2021
crossref_primary_10_1016_j_neulet_2018_03_007
crossref_primary_10_1016_j_biomaterials_2019_119704
crossref_primary_10_1016_j_neuroimage_2019_04_021
crossref_primary_10_3389_fnbeh_2022_791749
crossref_primary_10_1016_j_cortex_2019_12_007
crossref_primary_10_1016_j_neuroimage_2017_05_062
crossref_primary_10_3390_ijms241713238
crossref_primary_10_1007_s00213_019_05420_y
crossref_primary_10_1016_j_ijpsycho_2022_10_001
crossref_primary_10_1016_j_neubiorev_2021_04_023
crossref_primary_10_1038_mp_2015_223
crossref_primary_10_3390_biom12050723
crossref_primary_10_1080_15592294_2019_1583032
crossref_primary_10_1038_nrn_2017_8
crossref_primary_10_1093_ijnp_pyy030
crossref_primary_10_1098_rstb_2017_0153
crossref_primary_10_1093_ijnp_pyaa084
crossref_primary_10_1523_JNEUROSCI_0621_23_2024
crossref_primary_10_1002_adfm_202204732
crossref_primary_10_1016_j_jpsychires_2024_12_020
crossref_primary_10_1124_jpet_119_260794
crossref_primary_10_1016_j_cub_2022_06_067
crossref_primary_10_1093_braincomms_fcad350
crossref_primary_10_1016_j_neuroimage_2017_06_015
crossref_primary_10_1038_npp_2015_331
crossref_primary_10_1038_s41380_023_02123_x
crossref_primary_10_1038_s41598_019_47662_y
crossref_primary_10_1093_scan_nsab045
crossref_primary_10_1016_j_neuropharm_2020_108278
crossref_primary_10_1016_j_pbb_2023_173557
crossref_primary_10_1007_s00221_016_4764_8
crossref_primary_10_1016_j_tics_2017_03_009
crossref_primary_10_1093_psyrad_kkad016
crossref_primary_10_1002_hbm_24959
crossref_primary_10_1523_JNEUROSCI_1984_18_2018
crossref_primary_10_3389_fpsyt_2022_868804
crossref_primary_10_1038_s41598_021_88429_8
crossref_primary_10_1016_j_neubiorev_2023_105317
crossref_primary_10_1038_s41386_018_0065_1
crossref_primary_10_1016_j_cortex_2024_02_008
crossref_primary_10_1111_adb_12903
crossref_primary_10_14336_AD_2024_0124_1
crossref_primary_10_1371_journal_pone_0174219
crossref_primary_10_1038_npp_2017_61
crossref_primary_10_1016_j_neuroimage_2021_118269
crossref_primary_10_1016_j_yhbeh_2025_105697
crossref_primary_10_1016_j_neuroimage_2023_120415
crossref_primary_10_1016_j_neubiorev_2017_05_019
crossref_primary_10_1016_j_bbi_2022_08_016
crossref_primary_10_1016_j_neurobiolaging_2018_02_003
Cites_doi 10.1007/s11307-007-0077-4
10.1016/S1053-8119(02)91132-8
10.3389/fpsyg.2012.00037
10.1038/jcbfm.2013.55
10.1146/annurev-neuro-061010-113641
10.1016/j.ijpsycho.2011.05.007
10.1523/JNEUROSCI.1894-10.2010
10.1016/S0001-6918(02)00079-3
10.1162/jocn.2008.20100
10.1016/j.neuroscience.2009.01.027
10.1146/annurev.ne.06.030183.000355
10.1038/sj.npp.1380111
10.1016/j.neuropsychologia.2013.12.027
10.1016/j.neuroscience.2011.08.018
10.1016/S1361-8415(01)00036-6
10.1016/S0006-3223(03)00609-7
10.1016/j.tins.2007.03.008
10.1038/sj.npp.1301278
10.1037/0096-1523.10.2.276
10.1006/nimg.2000.0685
10.1007/s00213-004-1830-x
10.1002/mds.870090613
10.1126/science.1121218
10.1016/j.bbr.2003.09.022
10.1080/00952990701522724
10.1016/j.drugalcdep.2005.02.002
10.1006/nimg.1996.0066
10.1371/journal.pone.0036781
10.1523/JNEUROSCI.6182-10.2011
10.1016/j.neubiorev.2009.07.003
10.1016/S0306-4522(98)00604-6
10.1016/0166-2236(90)90107-L
10.1016/j.neuroimage.2014.12.070
10.1016/j.neuroscience.2014.07.021
10.1007/s00213-008-1127-6
10.1073/pnas.95.24.14494
10.1097/00004647-200212000-00004
10.1162/0898929052880093
10.1016/j.neuroimage.2011.02.046
10.1016/j.bbr.2013.06.001
10.1007/s00213-014-3686-z
10.1523/JNEUROSCI.3765-09.2009
10.1038/sj.jcbfm.9600468
10.1016/j.paid.2005.03.024
10.1037/1064-1297.16.2.124
10.1007/s00213-007-0701-7
10.1016/S0301-0082(96)00042-1
10.1037/0735-7044.117.6.1302
10.1037/a0033659
10.1016/j.tics.2013.12.003
10.1016/j.neuroimage.2011.02.070
10.1016/S0376-8716(01)00206-X
10.1126/science.1185778
10.2310/7290.2013.00065
10.1007/s00213-013-3141-6
10.1016/0014-2999(92)90578-R
10.1016/j.biopsych.2008.05.015
10.1023/A:1023285614844
10.1162/jocn_a_00327
10.1523/JNEUROSCI.2423-08.2008
10.1037/0735-7044.114.4.830
10.1016/j.neuroimage.2010.04.276
10.1016/j.pbb.2007.12.021
10.1016/j.bbr.2008.09.021
10.1097/00004647-200109000-00002
10.1007/BF00916508
10.1016/j.neuropsychologia.2013.01.014
10.1037/a0017185
10.1073/pnas.91.23.11271
10.1523/JNEUROSCI.4284-11.2012
10.1016/j.neuroimage.2010.02.006
10.1016/j.bandc.2012.09.010
10.1177/1087054708326110
10.1523/JNEUROSCI.15-07-05222.1995
10.1097/00004647-200002000-00003
10.1111/nyas.12388
10.1111/j.1752-1688.2003.tb03687.x
10.1016/j.neuroscience.2010.07.050
10.1016/0969-8051(94)00117-3
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1523/JNEUROSCI.4850-14.2015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 5997
ExternalDocumentID 10_1523_JNEUROSCI_4850_14_2015
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
ID FETCH-LOGICAL-c185t-9103abe226dd5a7543ae156ef97059f854023f2b3b20208806d984e57cd930663
ISSN 0270-6474
IngestDate Tue Jul 01 03:47:22 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c185t-9103abe226dd5a7543ae156ef97059f854023f2b3b20208806d984e57cd930663
PageCount 8
ParticipantIDs crossref_primary_10_1523_JNEUROSCI_4850_14_2015
crossref_citationtrail_10_1523_JNEUROSCI_4850_14_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-15
PublicationDateYYYYMMDD 2015-04-15
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-15
  day: 15
PublicationDecade 2010
PublicationTitle The Journal of neuroscience
PublicationYear 2015
References 2023041304163408000_35.15.5990.50
2023041304163408000_35.15.5990.51
2023041304163408000_35.15.5990.10
2023041304163408000_35.15.5990.54
2023041304163408000_35.15.5990.11
2023041304163408000_35.15.5990.55
2023041304163408000_35.15.5990.52
2023041304163408000_35.15.5990.53
2023041304163408000_35.15.5990.14
2023041304163408000_35.15.5990.58
2023041304163408000_35.15.5990.15
2023041304163408000_35.15.5990.59
2023041304163408000_35.15.5990.12
2023041304163408000_35.15.5990.56
2023041304163408000_35.15.5990.13
2023041304163408000_35.15.5990.57
2023041304163408000_35.15.5990.18
2023041304163408000_35.15.5990.19
2023041304163408000_35.15.5990.16
2023041304163408000_35.15.5990.17
2023041304163408000_35.15.5990.61
2023041304163408000_35.15.5990.62
2023041304163408000_35.15.5990.60
2023041304163408000_35.15.5990.21
2023041304163408000_35.15.5990.65
2023041304163408000_35.15.5990.22
2023041304163408000_35.15.5990.66
2023041304163408000_35.15.5990.63
2023041304163408000_35.15.5990.20
2023041304163408000_35.15.5990.64
2023041304163408000_35.15.5990.25
2023041304163408000_35.15.5990.69
2023041304163408000_35.15.5990.26
2023041304163408000_35.15.5990.23
2023041304163408000_35.15.5990.67
2023041304163408000_35.15.5990.24
2023041304163408000_35.15.5990.68
2023041304163408000_35.15.5990.29
Fujita (2023041304163408000_35.15.5990.36) 2006; 47
2023041304163408000_35.15.5990.27
2023041304163408000_35.15.5990.28
2023041304163408000_35.15.5990.72
2023041304163408000_35.15.5990.73
2023041304163408000_35.15.5990.70
2023041304163408000_35.15.5990.71
2023041304163408000_35.15.5990.32
2023041304163408000_35.15.5990.76
2023041304163408000_35.15.5990.33
2023041304163408000_35.15.5990.77
2023041304163408000_35.15.5990.30
2023041304163408000_35.15.5990.74
2023041304163408000_35.15.5990.31
Hersch (2023041304163408000_35.15.5990.40) 1995; 15
2023041304163408000_35.15.5990.75
2023041304163408000_35.15.5990.37
2023041304163408000_35.15.5990.34
2023041304163408000_35.15.5990.78
2023041304163408000_35.15.5990.35
2023041304163408000_35.15.5990.79
2023041304163408000_35.15.5990.38
2023041304163408000_35.15.5990.39
2023041304163408000_35.15.5990.43
2023041304163408000_35.15.5990.44
2023041304163408000_35.15.5990.41
2023041304163408000_35.15.5990.42
2023041304163408000_35.15.5990.80
2023041304163408000_35.15.5990.3
2023041304163408000_35.15.5990.4
2023041304163408000_35.15.5990.5
2023041304163408000_35.15.5990.6
2023041304163408000_35.15.5990.1
2023041304163408000_35.15.5990.2
2023041304163408000_35.15.5990.47
2023041304163408000_35.15.5990.48
2023041304163408000_35.15.5990.45
2023041304163408000_35.15.5990.46
2023041304163408000_35.15.5990.7
2023041304163408000_35.15.5990.8
2023041304163408000_35.15.5990.9
2023041304163408000_35.15.5990.49
References_xml – ident: 2023041304163408000_35.15.5990.31
  doi: 10.1007/s11307-007-0077-4
– ident: 2023041304163408000_35.15.5990.43
  doi: 10.1016/S1053-8119(02)91132-8
– ident: 2023041304163408000_35.15.5990.17
  doi: 10.3389/fpsyg.2012.00037
– ident: 2023041304163408000_35.15.5990.23
  doi: 10.1038/jcbfm.2013.55
– ident: 2023041304163408000_35.15.5990.37
  doi: 10.1146/annurev-neuro-061010-113641
– ident: 2023041304163408000_35.15.5990.63
  doi: 10.1016/j.ijpsycho.2011.05.007
– ident: 2023041304163408000_35.15.5990.22
  doi: 10.1523/JNEUROSCI.1894-10.2010
– ident: 2023041304163408000_35.15.5990.6
  doi: 10.1016/S0001-6918(02)00079-3
– ident: 2023041304163408000_35.15.5990.79
  doi: 10.1162/jocn.2008.20100
– ident: 2023041304163408000_35.15.5990.9
  doi: 10.1016/j.neuroscience.2009.01.027
– ident: 2023041304163408000_35.15.5990.19
  doi: 10.1146/annurev.ne.06.030183.000355
– ident: 2023041304163408000_35.15.5990.39
  doi: 10.1038/sj.npp.1380111
– ident: 2023041304163408000_35.15.5990.16
  doi: 10.1016/j.neuropsychologia.2013.12.027
– ident: 2023041304163408000_35.15.5990.46
  doi: 10.1016/j.neuroscience.2011.08.018
– ident: 2023041304163408000_35.15.5990.42
  doi: 10.1016/S1361-8415(01)00036-6
– ident: 2023041304163408000_35.15.5990.4
  doi: 10.1016/S0006-3223(03)00609-7
– ident: 2023041304163408000_35.15.5990.68
  doi: 10.1016/j.tins.2007.03.008
– ident: 2023041304163408000_35.15.5990.35
  doi: 10.1038/sj.npp.1301278
– ident: 2023041304163408000_35.15.5990.50
  doi: 10.1037/0096-1523.10.2.276
– ident: 2023041304163408000_35.15.5990.62
  doi: 10.1006/nimg.2000.0685
– ident: 2023041304163408000_35.15.5990.64
  doi: 10.1007/s00213-004-1830-x
– ident: 2023041304163408000_35.15.5990.73
  doi: 10.1002/mds.870090613
– ident: 2023041304163408000_35.15.5990.13
  doi: 10.1126/science.1121218
– ident: 2023041304163408000_35.15.5990.26
  doi: 10.1016/j.bbr.2003.09.022
– ident: 2023041304163408000_35.15.5990.48
  doi: 10.1080/00952990701522724
– ident: 2023041304163408000_35.15.5990.53
  doi: 10.1016/j.drugalcdep.2005.02.002
– volume: 47
  start-page: 282P
  year: 2006
  ident: 2023041304163408000_35.15.5990.36
  article-title: Test retest reproducibility and influence of dopamine levels on [18F]fallypride PET quantification
  publication-title: J Nucl Med
– ident: 2023041304163408000_35.15.5990.47
  doi: 10.1006/nimg.1996.0066
– ident: 2023041304163408000_35.15.5990.11
  doi: 10.1371/journal.pone.0036781
– ident: 2023041304163408000_35.15.5990.30
  doi: 10.1523/JNEUROSCI.6182-10.2011
– ident: 2023041304163408000_35.15.5990.25
  doi: 10.1016/j.neubiorev.2009.07.003
– ident: 2023041304163408000_35.15.5990.80
  doi: 10.1016/S0306-4522(98)00604-6
– ident: 2023041304163408000_35.15.5990.2
  doi: 10.1016/0166-2236(90)90107-L
– ident: 2023041304163408000_35.15.5990.18
  doi: 10.1016/j.neuroimage.2014.12.070
– ident: 2023041304163408000_35.15.5990.45
  doi: 10.1016/j.neuroscience.2014.07.021
– ident: 2023041304163408000_35.15.5990.29
  doi: 10.1007/s00213-008-1127-6
– ident: 2023041304163408000_35.15.5990.71
  doi: 10.1073/pnas.95.24.14494
– ident: 2023041304163408000_35.15.5990.76
  doi: 10.1097/00004647-200212000-00004
– ident: 2023041304163408000_35.15.5990.34
  doi: 10.1162/0898929052880093
– ident: 2023041304163408000_35.15.5990.57
  doi: 10.1016/j.neuroimage.2011.02.046
– ident: 2023041304163408000_35.15.5990.67
  doi: 10.1016/j.bbr.2013.06.001
– ident: 2023041304163408000_35.15.5990.58
  doi: 10.1007/s00213-014-3686-z
– ident: 2023041304163408000_35.15.5990.49
  doi: 10.1523/JNEUROSCI.3765-09.2009
– ident: 2023041304163408000_35.15.5990.65
  doi: 10.1038/sj.jcbfm.9600468
– ident: 2023041304163408000_35.15.5990.59
  doi: 10.1016/j.paid.2005.03.024
– ident: 2023041304163408000_35.15.5990.60
  doi: 10.1037/1064-1297.16.2.124
– ident: 2023041304163408000_35.15.5990.28
  doi: 10.1007/s00213-007-0701-7
– ident: 2023041304163408000_35.15.5990.52
  doi: 10.1016/S0301-0082(96)00042-1
– ident: 2023041304163408000_35.15.5990.27
  doi: 10.1037/0735-7044.117.6.1302
– ident: 2023041304163408000_35.15.5990.74
  doi: 10.1037/a0033659
– ident: 2023041304163408000_35.15.5990.5
  doi: 10.1016/j.tics.2013.12.003
– ident: 2023041304163408000_35.15.5990.69
  doi: 10.1016/j.neuroimage.2011.02.070
– ident: 2023041304163408000_35.15.5990.33
  doi: 10.1016/S0376-8716(01)00206-X
– ident: 2023041304163408000_35.15.5990.12
  doi: 10.1126/science.1185778
– ident: 2023041304163408000_35.15.5990.41
  doi: 10.2310/7290.2013.00065
– ident: 2023041304163408000_35.15.5990.7
  doi: 10.1007/s00213-013-3141-6
– ident: 2023041304163408000_35.15.5990.3
  doi: 10.1016/0014-2999(92)90578-R
– ident: 2023041304163408000_35.15.5990.24
  doi: 10.1016/j.biopsych.2008.05.015
– ident: 2023041304163408000_35.15.5990.8
  doi: 10.1023/A:1023285614844
– ident: 2023041304163408000_35.15.5990.56
  doi: 10.1162/jocn_a_00327
– ident: 2023041304163408000_35.15.5990.77
  doi: 10.1523/JNEUROSCI.2423-08.2008
– ident: 2023041304163408000_35.15.5990.21
  doi: 10.1037/0735-7044.114.4.830
– ident: 2023041304163408000_35.15.5990.10
  doi: 10.1016/j.neuroimage.2010.04.276
– ident: 2023041304163408000_35.15.5990.20
  doi: 10.1016/j.pbb.2007.12.021
– ident: 2023041304163408000_35.15.5990.61
  doi: 10.1016/j.bbr.2008.09.021
– ident: 2023041304163408000_35.15.5990.51
  doi: 10.1097/00004647-200109000-00002
– ident: 2023041304163408000_35.15.5990.70
  doi: 10.1007/BF00916508
– ident: 2023041304163408000_35.15.5990.15
  doi: 10.1016/j.neuropsychologia.2013.01.014
– ident: 2023041304163408000_35.15.5990.32
  doi: 10.1037/a0017185
– ident: 2023041304163408000_35.15.5990.55
  doi: 10.1073/pnas.91.23.11271
– ident: 2023041304163408000_35.15.5990.38
  doi: 10.1523/JNEUROSCI.4284-11.2012
– ident: 2023041304163408000_35.15.5990.78
  doi: 10.1016/j.neuroimage.2010.02.006
– ident: 2023041304163408000_35.15.5990.75
  doi: 10.1016/j.bandc.2012.09.010
– ident: 2023041304163408000_35.15.5990.66
  doi: 10.1177/1087054708326110
– volume: 15
  start-page: 5222
  year: 1995
  ident: 2023041304163408000_35.15.5990.40
  article-title: Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-07-05222.1995
– ident: 2023041304163408000_35.15.5990.1
  doi: 10.1097/00004647-200002000-00003
– ident: 2023041304163408000_35.15.5990.44
  doi: 10.1111/nyas.12388
– ident: 2023041304163408000_35.15.5990.72
  doi: 10.1111/j.1752-1688.2003.tb03687.x
– ident: 2023041304163408000_35.15.5990.14
  doi: 10.1016/j.neuroscience.2010.07.050
– ident: 2023041304163408000_35.15.5990.54
  doi: 10.1016/0969-8051(94)00117-3
SSID ssj0007017
Score 2.4270058
Snippet Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 5990
Title Striatal D 1 - and D 2 -type Dopamine Receptors Are Linked to Motor Response Inhibition in Human Subjects
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCgIIoL_mAuEROE8feJMeoCyotrYTaSr1FduyIsN1stU0P8Nf4c8w4T9AKKJcoG8mz2Z1Pnm_G8yDkLZhENTdFwIw1CRNgAViacsXKqBQ21LzQrsL75HR-eCGOLuXlbPZjkrV022i_-L61ruR_tArPQK9YJXsHzQ5C4QHcg37hChqG6z_p-AxnbmA148ILPdZmFXvcYy6uugB3eIUcEpihvXZDdbKNRSd8CSQTKOfJGh5i_B6TZDGF8kulqz73sQ3uw7aCcZqbKYUdi8kcjZ00xBww0qZr3_QH-mh-lffJH2EI34RDnLrCoK_VGBevjb1a2i7DWG2WXjYsGyIG2araKO_Yn0YsQomHL23NZrex8RhcVtFO5_Ftt_Fyd9ITTnfmSE4RKCf7rEzbIaOdzYaP8VZ7IF1fiqNTTIs8O_joi0QGLMRYWifulwbcvxnGIV0RHSWQlA9ycpQDXlOOcu6R-xx8FJwbcvx5bFUfB27c8_Bju_J0kLO__X0mzGhCcc4fkYedUmnWAu0xmdn6CdnNatWsV9_oO-qyhd0xzC6peuzRBQ0po6A4uOPUYY_22KMD9kCqpS32aLOmDnu0xx4dsUermjrs0R57T8nFh_fnB4esG9vBCiB_DZjPIFLaAq83RqpYikjZUM5tmcbA5csEfAQelVxHmuOE2CSYmzQRVsaFSSNkwM_ITr2u7XNCrQ5MapNSzUUBzFkmRSBMbE2qS2kLke4R2f9ledH1tMfRKlf5n1W2R_aHdddtV5e_rHhx5xUvyYMR_K_ITrO5ta-BwDb6jQPKT9_xk2A
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Striatal+D+1+-+and+D+2+-type+Dopamine+Receptors+Are+Linked+to+Motor+Response+Inhibition+in+Human+Subjects&rft.jtitle=The+Journal+of+neuroscience&rft.au=Robertson%2C+Chelsea+L.&rft.au=Ishibashi%2C+Kenji&rft.au=Mandelkern%2C+Mark+A.&rft.au=Brown%2C+Amira+K.&rft.date=2015-04-15&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=35&rft.issue=15&rft.spage=5990&rft.epage=5997&rft_id=info:doi/10.1523%2FJNEUROSCI.4850-14.2015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_4850_14_2015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon