Mass-conserving weak solutions to the continuous nonlinear fragmentation equation in the presence of mass transfer
A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form Φ(x,y)=κ...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 85; p. 104381 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1468-1218 |
DOI | 10.1016/j.nonrwa.2025.104381 |
Cover
Loading…
Abstract | A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form Φ(x,y)=κ(xσ1yσ2+yσ1xσ2), κ>0, 0≤σ1≤σ2≤1, and σ1≠1 for (x,y)∈R+2, with integrable daughter distribution functions, thereby extending previous results obtained by Giri & Laurençot (2021). In particular, the existence of at least one global weak solution is shown when the collision kernel exhibits at least linear growth, and one local weak solution when the collision kernel exhibits sublinear growth. In both cases, finite superlinear moment bounds are obtained for positive times without requiring the finiteness of initial superlinear moments. Additionally, the uniqueness of solutions is confirmed in both cases. |
---|---|
AbstractList | A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form Φ(x,y)=κ(xσ1yσ2+yσ1xσ2), κ>0, 0≤σ1≤σ2≤1, and σ1≠1 for (x,y)∈R+2, with integrable daughter distribution functions, thereby extending previous results obtained by Giri & Laurençot (2021). In particular, the existence of at least one global weak solution is shown when the collision kernel exhibits at least linear growth, and one local weak solution when the collision kernel exhibits sublinear growth. In both cases, finite superlinear moment bounds are obtained for positive times without requiring the finiteness of initial superlinear moments. Additionally, the uniqueness of solutions is confirmed in both cases. |
ArticleNumber | 104381 |
Author | Giri, Ankik Kumar Jaiswal, Ram Gopal |
Author_xml | – sequence: 1 givenname: Ram Gopal orcidid: 0009-0003-8675-1517 surname: Jaiswal fullname: Jaiswal, Ram Gopal – sequence: 2 givenname: Ankik Kumar orcidid: 0000-0002-6339-4647 surname: Giri fullname: Giri, Ankik Kumar email: ankik.giri@ma.iitr.ac.in |
BookMark | eNp9UMtOwzAQ9KFItIU_4OAfSLETu0kuSKjiUamIC5wtx14Xl9YuttOKv8chnDntajQzuzMzNHHeAUI3lCwoocvb3SID4SwXJSl5hljV0AmaUrZsClrS5hLNYtwRQmta0SkKLzLGQnkXIZys2-IzyE8c_b5PNoM4eZw-AGdCsq73fcTZfm8dyIBNkNsDuCQHKoavflys-5UcA0RwCrA3-JCP4BSkiwbCFbowch_h-m_O0fvjw9vqudi8Pq1X95tC0YangmvOOqMU5VyDMR3rNAHZkpq1XJcd59CCrnWzJJw0lewUMFO2HHI0XnfSVHPERl8VfIwBjDgGe5DhW1Aihq7EToxdiaErMXaVZXejDPJvJwtBRGWHINoGUElob_83-AHKgHyu |
Cites_doi | 10.1103/PhysRevE.68.021102 10.1103/PhysRevLett.60.2450 10.1016/j.anihpc.2004.06.001 10.1016/j.jde.2024.05.020 10.1002/mma.1670110505 10.1016/j.physd.2006.07.025 10.1016/j.jcis.2006.08.005 10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2 10.1088/0305-4470/23/7/028 10.1137/20M1386852 10.1093/mnras/stae2039 10.1088/0305-4470/24/12/020 10.1016/j.jcis.2006.05.066 10.1137/23M159130X 10.1016/0009-2509(72)85079-6 10.1088/0305-4470/20/7/033 10.1175/1520-0469(1976)033<2007:EORSWC>2.0.CO;2 10.1002/mma.301 10.1016/S0246-0203(00)01073-6 10.1088/0305-4470/33/6/309 10.1016/S0304-4149(03)00045-0 10.3934/dcds.2020272 10.1016/j.jde.2021.01.043 10.1137/1106036 10.1142/S0218202504003325 10.1007/BF01012594 10.1103/PhysRevLett.58.892 10.1002/mma.310 10.1088/1751-8113/40/17/F03 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2025.104381 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_nonrwa_2025_104381 S1468121825000677 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABAOU ABEFU ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSW SSZ T5K XPP YQT ZMT ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c185t-5d54bfcc155deffb4bd0ea907495d2b55e9ed7d8605083abce4f295e00157baf3 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Tue Jul 01 05:01:44 EDT 2025 Sat May 24 17:05:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 35R09 Collision-induced breakage 35F20 Uniqueness 45K05 Nonlinear fragmentation Existence Conservation of mass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c185t-5d54bfcc155deffb4bd0ea907495d2b55e9ed7d8605083abce4f295e00157baf3 |
ORCID | 0009-0003-8675-1517 0000-0002-6339-4647 |
ParticipantIDs | crossref_primary_10_1016_j_nonrwa_2025_104381 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2025_104381 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2025 2025-10-00 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bertoin (b24) 2006; vol. 102 Banasiak (b17) 2004; 14 McGrady, Ziff (b14) 1987; 58 Krapivsky, Ben-Naim (b9) 2003; 68 Laurençot (b35) 2014 Filippov (b12) 1961; 6 Van Dongen (b30) 1987; 20 Biedrzycka, Tyran-Kaminska (b20) 2018; 23 Giri, Jaiswal, Laurençot (b25) 2024; 403 Escobedo, Mischler, Rodriguez Ricard (b21) 2005; 22 Kostoglou, Karabelas (b11) 2006; 303 Lombart, Bréhier, Hutchison, Lee (b28) 2024; 533 Banasiak (b18) 2006; 222 Barik, Giri (b33) 2020; 40 Banasiak (b16) 2002; 25 Ernst, Pagonabarraga (b8) 2007; 40 Stewart (b29) 1989; 11 Cheng, Redner (b6) 1988; 60 Bertoin (b22) 2002; 38 Giri, Laurençot (b5) 2021; 53 Safronov (b1) 1972 Ziff (b31) 1980; 23 Cheng, Redner (b7) 1990; 23 Jaiswal, Giri (b26) 2024 Ziff (b15) 1991; 24 Walker (b34) 2002; 25 List, Gillespie (b2) 1976; 33 Feingold, Tzivion, Leviv (b27) 1988; 45 Fonseca, Leoni (b37) 2007 Ali, Giri, Laurençot (b3) 2024; 56 Vigil, Vermeersch, Fox (b32) 2006; 302 Vrabie (b36) 1995 Kapur (b13) 1972; 27 Kostoglou, Karabelas (b10) 2000; 33 Banasiak, Lamb, Laurençot (b19) 2019 Giri, Laurençot (b4) 2021; 280 Haas (b23) 2003; 106 Banasiak (10.1016/j.nonrwa.2025.104381_b19) 2019 Vigil (10.1016/j.nonrwa.2025.104381_b32) 2006; 302 Haas (10.1016/j.nonrwa.2025.104381_b23) 2003; 106 Bertoin (10.1016/j.nonrwa.2025.104381_b24) 2006; vol. 102 Banasiak (10.1016/j.nonrwa.2025.104381_b17) 2004; 14 Stewart (10.1016/j.nonrwa.2025.104381_b29) 1989; 11 Ali (10.1016/j.nonrwa.2025.104381_b3) 2024; 56 Jaiswal (10.1016/j.nonrwa.2025.104381_b26) 2024 Biedrzycka (10.1016/j.nonrwa.2025.104381_b20) 2018; 23 Banasiak (10.1016/j.nonrwa.2025.104381_b18) 2006; 222 Bertoin (10.1016/j.nonrwa.2025.104381_b22) 2002; 38 Feingold (10.1016/j.nonrwa.2025.104381_b27) 1988; 45 Ernst (10.1016/j.nonrwa.2025.104381_b8) 2007; 40 Filippov (10.1016/j.nonrwa.2025.104381_b12) 1961; 6 Van Dongen (10.1016/j.nonrwa.2025.104381_b30) 1987; 20 Giri (10.1016/j.nonrwa.2025.104381_b5) 2021; 53 Ziff (10.1016/j.nonrwa.2025.104381_b15) 1991; 24 Vrabie (10.1016/j.nonrwa.2025.104381_b36) 1995 Kostoglou (10.1016/j.nonrwa.2025.104381_b11) 2006; 303 Lombart (10.1016/j.nonrwa.2025.104381_b28) 2024; 533 Barik (10.1016/j.nonrwa.2025.104381_b33) 2020; 40 Cheng (10.1016/j.nonrwa.2025.104381_b7) 1990; 23 Fonseca (10.1016/j.nonrwa.2025.104381_b37) 2007 McGrady (10.1016/j.nonrwa.2025.104381_b14) 1987; 58 Banasiak (10.1016/j.nonrwa.2025.104381_b16) 2002; 25 Cheng (10.1016/j.nonrwa.2025.104381_b6) 1988; 60 Walker (10.1016/j.nonrwa.2025.104381_b34) 2002; 25 Giri (10.1016/j.nonrwa.2025.104381_b4) 2021; 280 Krapivsky (10.1016/j.nonrwa.2025.104381_b9) 2003; 68 Safronov (10.1016/j.nonrwa.2025.104381_b1) 1972 Giri (10.1016/j.nonrwa.2025.104381_b25) 2024; 403 Ziff (10.1016/j.nonrwa.2025.104381_b31) 1980; 23 List (10.1016/j.nonrwa.2025.104381_b2) 1976; 33 Kapur (10.1016/j.nonrwa.2025.104381_b13) 1972; 27 Escobedo (10.1016/j.nonrwa.2025.104381_b21) 2005; 22 Laurençot (10.1016/j.nonrwa.2025.104381_b35) 2014 Kostoglou (10.1016/j.nonrwa.2025.104381_b10) 2000; 33 |
References_xml | – volume: 280 start-page: 690 year: 2021 end-page: 729 ident: b4 article-title: Weak solutions to the collision-induced breakage equation with dominating coagulation publication-title: J. Differential Equations – volume: 23 start-page: 13 year: 2018 end-page: 27 ident: b20 article-title: Self-similar solutions of fragmentation equations revisited publication-title: Discret. Contin. Dyn. Syst.-Ser. B – volume: 40 start-page: 6115 year: 2020 end-page: 6133 ident: b33 article-title: Weak solutions to the continuous coagulation model with collisional breakage publication-title: Discrete Contin. Dyn. Syst. – volume: 68 year: 2003 ident: b9 article-title: Shattering transitions in collision-induced fragmentation publication-title: Phys. Rev. E – volume: 53 start-page: 4605 year: 2021 end-page: 4636 ident: b5 article-title: Existence and nonexistence for the collision-induced breakage equation publication-title: SIAM J. Math. Anal. – volume: 302 start-page: 149 year: 2006 end-page: 158 ident: b32 article-title: Destructive aggregation: Aggregation with collision-induced breakage publication-title: J. Colloid Interface Sci. – volume: 533 start-page: 4410 year: 2024 end-page: 4434 ident: b28 article-title: General non-linear fragmentation with discontinuous Galerkin methods publication-title: Mon. Not. R. Astron. Soc. – volume: 11 start-page: 627 year: 1989 end-page: 648 ident: b29 article-title: A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels publication-title: Math. Methods Appl. Sci. – volume: 38 start-page: 319 year: 2002 end-page: 340 ident: b22 article-title: Self-similar fragmentations publication-title: Ann. Inst. Henri Poincaré, Probab. Stat. – volume: 20 start-page: 1889 year: 1987 ident: b30 article-title: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation publication-title: J. Phys. A: Math. Gen. – start-page: 199 year: 2014 end-page: 253 ident: b35 article-title: Weak compactness techniques and coagulation equations publication-title: Evolutionary Equations with Applications in Natural Sciences – year: 2019 ident: b19 article-title: Analytic Methods for Coagulation-Fragmentation Models – year: 2024 ident: b26 article-title: Mass-conserving self-similar solutions to collision-induced breakage equations – volume: 23 start-page: 1233 year: 1990 end-page: 1258 ident: b7 article-title: Kinetics of fragmentation publication-title: J. Phys. A: Math. Gen. – volume: vol. 102 year: 2006 ident: b24 article-title: Random fragmentation and coagulation processes publication-title: Camb. Stud. Adv. Math. – volume: 106 start-page: 245 year: 2003 end-page: 277 ident: b23 article-title: Loss of mass in deterministic and random fragmentations publication-title: Stochastic Process. Appl. – volume: 33 start-page: 1221 year: 2000 end-page: 1232 ident: b10 article-title: A study of the nonlinear breakage equation: analytical and asymptotic solutions publication-title: J. Phys. A: Math. Gen. – volume: 24 start-page: 2821 year: 1991 end-page: 2828 ident: b15 article-title: New solutions to the fragmentation equation publication-title: J. Phys. A: Math. Gen. – volume: 303 start-page: 419 year: 2006 end-page: 429 ident: b11 article-title: A study of the collisional fragmentation problem using the Gamma distribution approximation publication-title: J. Colloid Interface Sci. – volume: 60 start-page: 2450 year: 1988 end-page: 2453 ident: b6 article-title: Scaling theory of fragmentation publication-title: Phys. Rev. Lett. – volume: 14 start-page: 483 year: 2004 end-page: 501 ident: b17 article-title: Conservative and shattering solutions for some classes of fragmentation models publication-title: Math. Models Methods Appl. Sci. – volume: 33 start-page: 2007 year: 1976 end-page: 2013 ident: b2 article-title: Evolution of raindrop spectra with collision-induced breakup publication-title: J. Atmos. Sci. – volume: 40 start-page: F331 year: 2007 end-page: F337 ident: b8 article-title: The nonlinear fragmentation equation publication-title: J. Phys. A – volume: 56 start-page: 2915 year: 2024 end-page: 2937 ident: b3 article-title: The discrete collision-induced breakage equation with mass transfer: well-posedness and stationary solutions publication-title: SIAM J. Math. Anal. – volume: 222 start-page: 63 year: 2006 end-page: 72 ident: b18 article-title: Shattering and non-uniqueness in fragmentation models—an analytic approach publication-title: Phys. D: Nonlinear Phenom. – volume: 45 start-page: 3387 year: 1988 end-page: 3399 ident: b27 article-title: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments publication-title: J. Atmos. Sci. – volume: 25 start-page: 729 year: 2002 end-page: 748 ident: b34 article-title: Coalescence and breakage processes publication-title: Math. Methods Appl. Sci. – volume: 27 start-page: 425 year: 1972 end-page: 431 ident: b13 article-title: Self-preserving size spectra of comminuted particles publication-title: Chem. Eng. Sci. – year: 1995 ident: b36 publication-title: Compactness Methods for Nonlinear Evolutions – year: 1972 ident: b1 article-title: Evolution of the protoplanetary cloud and formation of the earth and the planets – volume: 6 start-page: 275 year: 1961 end-page: 294 ident: b12 article-title: On the distribution of the sizes of particles which undergo splitting publication-title: Theory Probab. Appl. – volume: 403 start-page: 235 year: 2024 end-page: 271 ident: b25 article-title: The continuous collision-induced nonlinear fragmentation equation with non-integrable fragment daughter distributions publication-title: J. Differential Equations – year: 2007 ident: b37 article-title: Modern Methods in the Calculus of Variations: – volume: 23 start-page: 241 year: 1980 end-page: 263 ident: b31 article-title: Kinetics of polymerization publication-title: J. Stat. Phys. – volume: 22 start-page: 99 year: 2005 end-page: 125 ident: b21 article-title: On self-similarity and stationary problem for fragmentation and coagulation models publication-title: Ann. Inst. Henri Poincaré Anal. Non Linéaire – volume: 58 start-page: 892 year: 1987 end-page: 895 ident: b14 article-title: “Shattering”transition in fragmentation publication-title: Phys. Rev. Lett. – volume: 25 start-page: 541 year: 2002 end-page: 556 ident: b16 article-title: On a non-uniqueness in fragmentation models publication-title: Math. Methods Appl. Sci. – volume: 68 issue: 2 year: 2003 ident: 10.1016/j.nonrwa.2025.104381_b9 article-title: Shattering transitions in collision-induced fragmentation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.021102 – volume: 60 start-page: 2450 issue: 24 year: 1988 ident: 10.1016/j.nonrwa.2025.104381_b6 article-title: Scaling theory of fragmentation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2450 – volume: 22 start-page: 99 issue: 1 year: 2005 ident: 10.1016/j.nonrwa.2025.104381_b21 article-title: On self-similarity and stationary problem for fragmentation and coagulation models publication-title: Ann. Inst. Henri Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2004.06.001 – volume: 403 start-page: 235 year: 2024 ident: 10.1016/j.nonrwa.2025.104381_b25 article-title: The continuous collision-induced nonlinear fragmentation equation with non-integrable fragment daughter distributions publication-title: J. Differential Equations doi: 10.1016/j.jde.2024.05.020 – volume: 11 start-page: 627 issue: 5 year: 1989 ident: 10.1016/j.nonrwa.2025.104381_b29 article-title: A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.1670110505 – volume: 222 start-page: 63 issue: 1–2 year: 2006 ident: 10.1016/j.nonrwa.2025.104381_b18 article-title: Shattering and non-uniqueness in fragmentation models—an analytic approach publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/j.physd.2006.07.025 – volume: 303 start-page: 419 issue: 2 year: 2006 ident: 10.1016/j.nonrwa.2025.104381_b11 article-title: A study of the collisional fragmentation problem using the Gamma distribution approximation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.08.005 – volume: 45 start-page: 3387 issue: 22 year: 1988 ident: 10.1016/j.nonrwa.2025.104381_b27 article-title: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2 – volume: 23 start-page: 1233 issue: 7 year: 1990 ident: 10.1016/j.nonrwa.2025.104381_b7 article-title: Kinetics of fragmentation publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/23/7/028 – volume: 53 start-page: 4605 issue: 4 year: 2021 ident: 10.1016/j.nonrwa.2025.104381_b5 article-title: Existence and nonexistence for the collision-induced breakage equation publication-title: SIAM J. Math. Anal. doi: 10.1137/20M1386852 – volume: 533 start-page: 4410 issue: 4 year: 2024 ident: 10.1016/j.nonrwa.2025.104381_b28 article-title: General non-linear fragmentation with discontinuous Galerkin methods publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stae2039 – year: 1972 ident: 10.1016/j.nonrwa.2025.104381_b1 – volume: 24 start-page: 2821 issue: 12 year: 1991 ident: 10.1016/j.nonrwa.2025.104381_b15 article-title: New solutions to the fragmentation equation publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/24/12/020 – volume: 302 start-page: 149 issue: 1 year: 2006 ident: 10.1016/j.nonrwa.2025.104381_b32 article-title: Destructive aggregation: Aggregation with collision-induced breakage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.05.066 – volume: 56 start-page: 2915 issue: 3 year: 2024 ident: 10.1016/j.nonrwa.2025.104381_b3 article-title: The discrete collision-induced breakage equation with mass transfer: well-posedness and stationary solutions publication-title: SIAM J. Math. Anal. doi: 10.1137/23M159130X – volume: 27 start-page: 425 issue: 2 year: 1972 ident: 10.1016/j.nonrwa.2025.104381_b13 article-title: Self-preserving size spectra of comminuted particles publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(72)85079-6 – volume: 20 start-page: 1889 issue: 7 year: 1987 ident: 10.1016/j.nonrwa.2025.104381_b30 article-title: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/20/7/033 – volume: 33 start-page: 2007 issue: 10 year: 1976 ident: 10.1016/j.nonrwa.2025.104381_b2 article-title: Evolution of raindrop spectra with collision-induced breakup publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1976)033<2007:EORSWC>2.0.CO;2 – volume: 25 start-page: 541 issue: 7 year: 2002 ident: 10.1016/j.nonrwa.2025.104381_b16 article-title: On a non-uniqueness in fragmentation models publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.301 – volume: 38 start-page: 319 issue: 3 year: 2002 ident: 10.1016/j.nonrwa.2025.104381_b22 article-title: Self-similar fragmentations publication-title: Ann. Inst. Henri Poincaré, Probab. Stat. doi: 10.1016/S0246-0203(00)01073-6 – year: 2007 ident: 10.1016/j.nonrwa.2025.104381_b37 – volume: 33 start-page: 1221 issue: 6 year: 2000 ident: 10.1016/j.nonrwa.2025.104381_b10 article-title: A study of the nonlinear breakage equation: analytical and asymptotic solutions publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/33/6/309 – volume: 106 start-page: 245 issue: 2 year: 2003 ident: 10.1016/j.nonrwa.2025.104381_b23 article-title: Loss of mass in deterministic and random fragmentations publication-title: Stochastic Process. Appl. doi: 10.1016/S0304-4149(03)00045-0 – volume: 40 start-page: 6115 issue: 11 year: 2020 ident: 10.1016/j.nonrwa.2025.104381_b33 article-title: Weak solutions to the continuous coagulation model with collisional breakage publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2020272 – volume: 280 start-page: 690 year: 2021 ident: 10.1016/j.nonrwa.2025.104381_b4 article-title: Weak solutions to the collision-induced breakage equation with dominating coagulation publication-title: J. Differential Equations doi: 10.1016/j.jde.2021.01.043 – year: 1995 ident: 10.1016/j.nonrwa.2025.104381_b36 – start-page: 199 year: 2014 ident: 10.1016/j.nonrwa.2025.104381_b35 article-title: Weak compactness techniques and coagulation equations – volume: 6 start-page: 275 issue: 3 year: 1961 ident: 10.1016/j.nonrwa.2025.104381_b12 article-title: On the distribution of the sizes of particles which undergo splitting publication-title: Theory Probab. Appl. doi: 10.1137/1106036 – volume: 23 start-page: 13 issue: 1 year: 2018 ident: 10.1016/j.nonrwa.2025.104381_b20 article-title: Self-similar solutions of fragmentation equations revisited publication-title: Discret. Contin. Dyn. Syst.-Ser. B – volume: 14 start-page: 483 issue: 04 year: 2004 ident: 10.1016/j.nonrwa.2025.104381_b17 article-title: Conservative and shattering solutions for some classes of fragmentation models publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202504003325 – volume: vol. 102 year: 2006 ident: 10.1016/j.nonrwa.2025.104381_b24 article-title: Random fragmentation and coagulation processes – volume: 23 start-page: 241 issue: 2 year: 1980 ident: 10.1016/j.nonrwa.2025.104381_b31 article-title: Kinetics of polymerization publication-title: J. Stat. Phys. doi: 10.1007/BF01012594 – volume: 58 start-page: 892 issue: 9 year: 1987 ident: 10.1016/j.nonrwa.2025.104381_b14 article-title: “Shattering”transition in fragmentation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.892 – volume: 25 start-page: 729 issue: 9 year: 2002 ident: 10.1016/j.nonrwa.2025.104381_b34 article-title: Coalescence and breakage processes publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.310 – volume: 40 start-page: F331 issue: 17 year: 2007 ident: 10.1016/j.nonrwa.2025.104381_b8 article-title: The nonlinear fragmentation equation publication-title: J. Phys. A doi: 10.1088/1751-8113/40/17/F03 – year: 2019 ident: 10.1016/j.nonrwa.2025.104381_b19 – year: 2024 ident: 10.1016/j.nonrwa.2025.104381_b26 |
SSID | ssj0017131 |
Score | 2.4218035 |
Snippet | A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 104381 |
SubjectTerms | Collision-induced breakage Conservation of mass Existence Nonlinear fragmentation Uniqueness |
Title | Mass-conserving weak solutions to the continuous nonlinear fragmentation equation in the presence of mass transfer |
URI | https://dx.doi.org/10.1016/j.nonrwa.2025.104381 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68rjWPzeNYiqU-WkQt9Bb2KVGa1pjSm7_dmTyKgnjwFBJmyTLZzHyz-b4JIRcxJoUoDhgqZplvjMskvEZMWc8LHB0EUYB659E4GE782ymftki_0cIgrbKO_VVML6N1faVbe7O7SNPuE4qGHGxAzsuYi4py3w9xlV9-rmkeDhRhTqMwQutGPldyvKDCzlfYfcjl-LHTi5zf09O3lDPYJTs1VqS9ajp7pGWyfbI9Wjda_Tgg-QjAL1NIic5xa4CujHij6_VEizkFa4qE9DRbQpVPs6o3hsipzcXLrJYeZdS8V02_aZqVQxalLkkZOrd0BjehRQlxTX5IJoPr5_6Q1b9RYAqSccG45r60SgFy0MZa6Ut9ZQQWxTHXruTcxEaHOoLCBvCYkMr41o25QTgVSmG9I7IBczPHhGouY6GEAIPId8BK60hJNw6FG1mAgm3CGu8li6pbRtLQyF6TytsJejupvN0mYePi5MdTTyCg_zny5N8jT8kWnlWEvDOyUeRLcw7AopCdcuV0yGav_3j_gMebu-H4C0Ic0us |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOiFWU1QeuVkkaZzlWFajQ5QJI3CKvqCBCCan6-8xkqUBCHLgmHsUaOzNv4nkvAJcJJYU4CTkxZnlgrc8VvkZcu14v9EwYxiHxnSfTcPgY3D2JpxYMGi4MtVXWsb-K6WW0rq90a29257NZ955IQx4JkIsy5kZrsE7qVKIN6_3b0XC6OkzAOsxrSEZk0DDoyjYvLLLzJQkQ-YLOO3ux93uG-pZ1bnZgu4aLrF_NaBdaNtuDrclKa_VzH_IJ4l-uqSs6p68DbGnlK1ttKVa8MxzNqCd9li2w0GdZJY8hc-Zy-fxWs48yZj8q3W82y0qTeUlN0pa9O_aGD2FFiXJtfgCPN9cPgyGv_6TANebjggsjAuW0RvBgrHMqUObKSqqLE2F8JYRNrIlMjLUNQjKptA2cnwhLiCpS0vUOoY1zs0fAjFCJ1FLigDjwcJQxsVZ-Ekk_dogGO8Ab76XzSjAjbTrJXtLK2yl5O6283YGocXH6Y-FTjOl_Wh7_2_ICNoYPk3E6vp2OTmCT7lT9eafQLvKFPUOcUajzeh99AePh1Ac |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass-conserving+weak+solutions+to+the+continuous+nonlinear+fragmentation+equation+in+the+presence+of+mass+transfer&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Jaiswal%2C+Ram+Gopal&rft.au=Giri%2C+Ankik+Kumar&rft.date=2025-10-01&rft.issn=1468-1218&rft.volume=85&rft.spage=104381&rft_id=info:doi/10.1016%2Fj.nonrwa.2025.104381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2025_104381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |