Mass-conserving weak solutions to the continuous nonlinear fragmentation equation in the presence of mass transfer

A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form Φ(x,y)=κ...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 85; p. 104381
Main Authors Jaiswal, Ram Gopal, Giri, Ankik Kumar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN1468-1218
DOI10.1016/j.nonrwa.2025.104381

Cover

Loading…
Abstract A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form Φ(x,y)=κ(xσ1yσ2+yσ1xσ2), κ>0, 0≤σ1≤σ2≤1, and σ1≠1 for (x,y)∈R+2, with integrable daughter distribution functions, thereby extending previous results obtained by Giri & Laurençot (2021). In particular, the existence of at least one global weak solution is shown when the collision kernel exhibits at least linear growth, and one local weak solution when the collision kernel exhibits sublinear growth. In both cases, finite superlinear moment bounds are obtained for positive times without requiring the finiteness of initial superlinear moments. Additionally, the uniqueness of solutions is confirmed in both cases.
AbstractList A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form Φ(x,y)=κ(xσ1yσ2+yσ1xσ2), κ>0, 0≤σ1≤σ2≤1, and σ1≠1 for (x,y)∈R+2, with integrable daughter distribution functions, thereby extending previous results obtained by Giri & Laurençot (2021). In particular, the existence of at least one global weak solution is shown when the collision kernel exhibits at least linear growth, and one local weak solution when the collision kernel exhibits sublinear growth. In both cases, finite superlinear moment bounds are obtained for positive times without requiring the finiteness of initial superlinear moments. Additionally, the uniqueness of solutions is confirmed in both cases.
ArticleNumber 104381
Author Giri, Ankik Kumar
Jaiswal, Ram Gopal
Author_xml – sequence: 1
  givenname: Ram Gopal
  orcidid: 0009-0003-8675-1517
  surname: Jaiswal
  fullname: Jaiswal, Ram Gopal
– sequence: 2
  givenname: Ankik Kumar
  orcidid: 0000-0002-6339-4647
  surname: Giri
  fullname: Giri, Ankik Kumar
  email: ankik.giri@ma.iitr.ac.in
BookMark eNp9UMtOwzAQ9KFItIU_4OAfSLETu0kuSKjiUamIC5wtx14Xl9YuttOKv8chnDntajQzuzMzNHHeAUI3lCwoocvb3SID4SwXJSl5hljV0AmaUrZsClrS5hLNYtwRQmta0SkKLzLGQnkXIZys2-IzyE8c_b5PNoM4eZw-AGdCsq73fcTZfm8dyIBNkNsDuCQHKoavflys-5UcA0RwCrA3-JCP4BSkiwbCFbowch_h-m_O0fvjw9vqudi8Pq1X95tC0YangmvOOqMU5VyDMR3rNAHZkpq1XJcd59CCrnWzJJw0lewUMFO2HHI0XnfSVHPERl8VfIwBjDgGe5DhW1Aihq7EToxdiaErMXaVZXejDPJvJwtBRGWHINoGUElob_83-AHKgHyu
Cites_doi 10.1103/PhysRevE.68.021102
10.1103/PhysRevLett.60.2450
10.1016/j.anihpc.2004.06.001
10.1016/j.jde.2024.05.020
10.1002/mma.1670110505
10.1016/j.physd.2006.07.025
10.1016/j.jcis.2006.08.005
10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2
10.1088/0305-4470/23/7/028
10.1137/20M1386852
10.1093/mnras/stae2039
10.1088/0305-4470/24/12/020
10.1016/j.jcis.2006.05.066
10.1137/23M159130X
10.1016/0009-2509(72)85079-6
10.1088/0305-4470/20/7/033
10.1175/1520-0469(1976)033<2007:EORSWC>2.0.CO;2
10.1002/mma.301
10.1016/S0246-0203(00)01073-6
10.1088/0305-4470/33/6/309
10.1016/S0304-4149(03)00045-0
10.3934/dcds.2020272
10.1016/j.jde.2021.01.043
10.1137/1106036
10.1142/S0218202504003325
10.1007/BF01012594
10.1103/PhysRevLett.58.892
10.1002/mma.310
10.1088/1751-8113/40/17/F03
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2025.104381
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_nonrwa_2025_104381
S1468121825000677
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c185t-5d54bfcc155deffb4bd0ea907495d2b55e9ed7d8605083abce4f295e00157baf3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 05:01:44 EDT 2025
Sat May 24 17:05:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords 35R09
Collision-induced breakage
35F20
Uniqueness
45K05
Nonlinear fragmentation
Existence
Conservation of mass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185t-5d54bfcc155deffb4bd0ea907495d2b55e9ed7d8605083abce4f295e00157baf3
ORCID 0009-0003-8675-1517
0000-0002-6339-4647
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2025_104381
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2025_104381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bertoin (b24) 2006; vol. 102
Banasiak (b17) 2004; 14
McGrady, Ziff (b14) 1987; 58
Krapivsky, Ben-Naim (b9) 2003; 68
Laurençot (b35) 2014
Filippov (b12) 1961; 6
Van Dongen (b30) 1987; 20
Biedrzycka, Tyran-Kaminska (b20) 2018; 23
Giri, Jaiswal, Laurençot (b25) 2024; 403
Escobedo, Mischler, Rodriguez Ricard (b21) 2005; 22
Kostoglou, Karabelas (b11) 2006; 303
Lombart, Bréhier, Hutchison, Lee (b28) 2024; 533
Banasiak (b18) 2006; 222
Barik, Giri (b33) 2020; 40
Banasiak (b16) 2002; 25
Ernst, Pagonabarraga (b8) 2007; 40
Stewart (b29) 1989; 11
Cheng, Redner (b6) 1988; 60
Bertoin (b22) 2002; 38
Giri, Laurençot (b5) 2021; 53
Safronov (b1) 1972
Ziff (b31) 1980; 23
Cheng, Redner (b7) 1990; 23
Jaiswal, Giri (b26) 2024
Ziff (b15) 1991; 24
Walker (b34) 2002; 25
List, Gillespie (b2) 1976; 33
Feingold, Tzivion, Leviv (b27) 1988; 45
Fonseca, Leoni (b37) 2007
Ali, Giri, Laurençot (b3) 2024; 56
Vigil, Vermeersch, Fox (b32) 2006; 302
Vrabie (b36) 1995
Kapur (b13) 1972; 27
Kostoglou, Karabelas (b10) 2000; 33
Banasiak, Lamb, Laurençot (b19) 2019
Giri, Laurençot (b4) 2021; 280
Haas (b23) 2003; 106
Banasiak (10.1016/j.nonrwa.2025.104381_b19) 2019
Vigil (10.1016/j.nonrwa.2025.104381_b32) 2006; 302
Haas (10.1016/j.nonrwa.2025.104381_b23) 2003; 106
Bertoin (10.1016/j.nonrwa.2025.104381_b24) 2006; vol. 102
Banasiak (10.1016/j.nonrwa.2025.104381_b17) 2004; 14
Stewart (10.1016/j.nonrwa.2025.104381_b29) 1989; 11
Ali (10.1016/j.nonrwa.2025.104381_b3) 2024; 56
Jaiswal (10.1016/j.nonrwa.2025.104381_b26) 2024
Biedrzycka (10.1016/j.nonrwa.2025.104381_b20) 2018; 23
Banasiak (10.1016/j.nonrwa.2025.104381_b18) 2006; 222
Bertoin (10.1016/j.nonrwa.2025.104381_b22) 2002; 38
Feingold (10.1016/j.nonrwa.2025.104381_b27) 1988; 45
Ernst (10.1016/j.nonrwa.2025.104381_b8) 2007; 40
Filippov (10.1016/j.nonrwa.2025.104381_b12) 1961; 6
Van Dongen (10.1016/j.nonrwa.2025.104381_b30) 1987; 20
Giri (10.1016/j.nonrwa.2025.104381_b5) 2021; 53
Ziff (10.1016/j.nonrwa.2025.104381_b15) 1991; 24
Vrabie (10.1016/j.nonrwa.2025.104381_b36) 1995
Kostoglou (10.1016/j.nonrwa.2025.104381_b11) 2006; 303
Lombart (10.1016/j.nonrwa.2025.104381_b28) 2024; 533
Barik (10.1016/j.nonrwa.2025.104381_b33) 2020; 40
Cheng (10.1016/j.nonrwa.2025.104381_b7) 1990; 23
Fonseca (10.1016/j.nonrwa.2025.104381_b37) 2007
McGrady (10.1016/j.nonrwa.2025.104381_b14) 1987; 58
Banasiak (10.1016/j.nonrwa.2025.104381_b16) 2002; 25
Cheng (10.1016/j.nonrwa.2025.104381_b6) 1988; 60
Walker (10.1016/j.nonrwa.2025.104381_b34) 2002; 25
Giri (10.1016/j.nonrwa.2025.104381_b4) 2021; 280
Krapivsky (10.1016/j.nonrwa.2025.104381_b9) 2003; 68
Safronov (10.1016/j.nonrwa.2025.104381_b1) 1972
Giri (10.1016/j.nonrwa.2025.104381_b25) 2024; 403
Ziff (10.1016/j.nonrwa.2025.104381_b31) 1980; 23
List (10.1016/j.nonrwa.2025.104381_b2) 1976; 33
Kapur (10.1016/j.nonrwa.2025.104381_b13) 1972; 27
Escobedo (10.1016/j.nonrwa.2025.104381_b21) 2005; 22
Laurençot (10.1016/j.nonrwa.2025.104381_b35) 2014
Kostoglou (10.1016/j.nonrwa.2025.104381_b10) 2000; 33
References_xml – volume: 280
  start-page: 690
  year: 2021
  end-page: 729
  ident: b4
  article-title: Weak solutions to the collision-induced breakage equation with dominating coagulation
  publication-title: J. Differential Equations
– volume: 23
  start-page: 13
  year: 2018
  end-page: 27
  ident: b20
  article-title: Self-similar solutions of fragmentation equations revisited
  publication-title: Discret. Contin. Dyn. Syst.-Ser. B
– volume: 40
  start-page: 6115
  year: 2020
  end-page: 6133
  ident: b33
  article-title: Weak solutions to the continuous coagulation model with collisional breakage
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 68
  year: 2003
  ident: b9
  article-title: Shattering transitions in collision-induced fragmentation
  publication-title: Phys. Rev. E
– volume: 53
  start-page: 4605
  year: 2021
  end-page: 4636
  ident: b5
  article-title: Existence and nonexistence for the collision-induced breakage equation
  publication-title: SIAM J. Math. Anal.
– volume: 302
  start-page: 149
  year: 2006
  end-page: 158
  ident: b32
  article-title: Destructive aggregation: Aggregation with collision-induced breakage
  publication-title: J. Colloid Interface Sci.
– volume: 533
  start-page: 4410
  year: 2024
  end-page: 4434
  ident: b28
  article-title: General non-linear fragmentation with discontinuous Galerkin methods
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 11
  start-page: 627
  year: 1989
  end-page: 648
  ident: b29
  article-title: A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels
  publication-title: Math. Methods Appl. Sci.
– volume: 38
  start-page: 319
  year: 2002
  end-page: 340
  ident: b22
  article-title: Self-similar fragmentations
  publication-title: Ann. Inst. Henri Poincaré, Probab. Stat.
– volume: 20
  start-page: 1889
  year: 1987
  ident: b30
  article-title: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation
  publication-title: J. Phys. A: Math. Gen.
– start-page: 199
  year: 2014
  end-page: 253
  ident: b35
  article-title: Weak compactness techniques and coagulation equations
  publication-title: Evolutionary Equations with Applications in Natural Sciences
– year: 2019
  ident: b19
  article-title: Analytic Methods for Coagulation-Fragmentation Models
– year: 2024
  ident: b26
  article-title: Mass-conserving self-similar solutions to collision-induced breakage equations
– volume: 23
  start-page: 1233
  year: 1990
  end-page: 1258
  ident: b7
  article-title: Kinetics of fragmentation
  publication-title: J. Phys. A: Math. Gen.
– volume: vol. 102
  year: 2006
  ident: b24
  article-title: Random fragmentation and coagulation processes
  publication-title: Camb. Stud. Adv. Math.
– volume: 106
  start-page: 245
  year: 2003
  end-page: 277
  ident: b23
  article-title: Loss of mass in deterministic and random fragmentations
  publication-title: Stochastic Process. Appl.
– volume: 33
  start-page: 1221
  year: 2000
  end-page: 1232
  ident: b10
  article-title: A study of the nonlinear breakage equation: analytical and asymptotic solutions
  publication-title: J. Phys. A: Math. Gen.
– volume: 24
  start-page: 2821
  year: 1991
  end-page: 2828
  ident: b15
  article-title: New solutions to the fragmentation equation
  publication-title: J. Phys. A: Math. Gen.
– volume: 303
  start-page: 419
  year: 2006
  end-page: 429
  ident: b11
  article-title: A study of the collisional fragmentation problem using the Gamma distribution approximation
  publication-title: J. Colloid Interface Sci.
– volume: 60
  start-page: 2450
  year: 1988
  end-page: 2453
  ident: b6
  article-title: Scaling theory of fragmentation
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 483
  year: 2004
  end-page: 501
  ident: b17
  article-title: Conservative and shattering solutions for some classes of fragmentation models
  publication-title: Math. Models Methods Appl. Sci.
– volume: 33
  start-page: 2007
  year: 1976
  end-page: 2013
  ident: b2
  article-title: Evolution of raindrop spectra with collision-induced breakup
  publication-title: J. Atmos. Sci.
– volume: 40
  start-page: F331
  year: 2007
  end-page: F337
  ident: b8
  article-title: The nonlinear fragmentation equation
  publication-title: J. Phys. A
– volume: 56
  start-page: 2915
  year: 2024
  end-page: 2937
  ident: b3
  article-title: The discrete collision-induced breakage equation with mass transfer: well-posedness and stationary solutions
  publication-title: SIAM J. Math. Anal.
– volume: 222
  start-page: 63
  year: 2006
  end-page: 72
  ident: b18
  article-title: Shattering and non-uniqueness in fragmentation models—an analytic approach
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 45
  start-page: 3387
  year: 1988
  end-page: 3399
  ident: b27
  article-title: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments
  publication-title: J. Atmos. Sci.
– volume: 25
  start-page: 729
  year: 2002
  end-page: 748
  ident: b34
  article-title: Coalescence and breakage processes
  publication-title: Math. Methods Appl. Sci.
– volume: 27
  start-page: 425
  year: 1972
  end-page: 431
  ident: b13
  article-title: Self-preserving size spectra of comminuted particles
  publication-title: Chem. Eng. Sci.
– year: 1995
  ident: b36
  publication-title: Compactness Methods for Nonlinear Evolutions
– year: 1972
  ident: b1
  article-title: Evolution of the protoplanetary cloud and formation of the earth and the planets
– volume: 6
  start-page: 275
  year: 1961
  end-page: 294
  ident: b12
  article-title: On the distribution of the sizes of particles which undergo splitting
  publication-title: Theory Probab. Appl.
– volume: 403
  start-page: 235
  year: 2024
  end-page: 271
  ident: b25
  article-title: The continuous collision-induced nonlinear fragmentation equation with non-integrable fragment daughter distributions
  publication-title: J. Differential Equations
– year: 2007
  ident: b37
  article-title: Modern Methods in the Calculus of Variations:
– volume: 23
  start-page: 241
  year: 1980
  end-page: 263
  ident: b31
  article-title: Kinetics of polymerization
  publication-title: J. Stat. Phys.
– volume: 22
  start-page: 99
  year: 2005
  end-page: 125
  ident: b21
  article-title: On self-similarity and stationary problem for fragmentation and coagulation models
  publication-title: Ann. Inst. Henri Poincaré Anal. Non Linéaire
– volume: 58
  start-page: 892
  year: 1987
  end-page: 895
  ident: b14
  article-title: “Shattering”transition in fragmentation
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 541
  year: 2002
  end-page: 556
  ident: b16
  article-title: On a non-uniqueness in fragmentation models
  publication-title: Math. Methods Appl. Sci.
– volume: 68
  issue: 2
  year: 2003
  ident: 10.1016/j.nonrwa.2025.104381_b9
  article-title: Shattering transitions in collision-induced fragmentation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.021102
– volume: 60
  start-page: 2450
  issue: 24
  year: 1988
  ident: 10.1016/j.nonrwa.2025.104381_b6
  article-title: Scaling theory of fragmentation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2450
– volume: 22
  start-page: 99
  issue: 1
  year: 2005
  ident: 10.1016/j.nonrwa.2025.104381_b21
  article-title: On self-similarity and stationary problem for fragmentation and coagulation models
  publication-title: Ann. Inst. Henri Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2004.06.001
– volume: 403
  start-page: 235
  year: 2024
  ident: 10.1016/j.nonrwa.2025.104381_b25
  article-title: The continuous collision-induced nonlinear fragmentation equation with non-integrable fragment daughter distributions
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2024.05.020
– volume: 11
  start-page: 627
  issue: 5
  year: 1989
  ident: 10.1016/j.nonrwa.2025.104381_b29
  article-title: A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1670110505
– volume: 222
  start-page: 63
  issue: 1–2
  year: 2006
  ident: 10.1016/j.nonrwa.2025.104381_b18
  article-title: Shattering and non-uniqueness in fragmentation models—an analytic approach
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/j.physd.2006.07.025
– volume: 303
  start-page: 419
  issue: 2
  year: 2006
  ident: 10.1016/j.nonrwa.2025.104381_b11
  article-title: A study of the collisional fragmentation problem using the Gamma distribution approximation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.08.005
– volume: 45
  start-page: 3387
  issue: 22
  year: 1988
  ident: 10.1016/j.nonrwa.2025.104381_b27
  article-title: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2
– volume: 23
  start-page: 1233
  issue: 7
  year: 1990
  ident: 10.1016/j.nonrwa.2025.104381_b7
  article-title: Kinetics of fragmentation
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/23/7/028
– volume: 53
  start-page: 4605
  issue: 4
  year: 2021
  ident: 10.1016/j.nonrwa.2025.104381_b5
  article-title: Existence and nonexistence for the collision-induced breakage equation
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/20M1386852
– volume: 533
  start-page: 4410
  issue: 4
  year: 2024
  ident: 10.1016/j.nonrwa.2025.104381_b28
  article-title: General non-linear fragmentation with discontinuous Galerkin methods
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stae2039
– year: 1972
  ident: 10.1016/j.nonrwa.2025.104381_b1
– volume: 24
  start-page: 2821
  issue: 12
  year: 1991
  ident: 10.1016/j.nonrwa.2025.104381_b15
  article-title: New solutions to the fragmentation equation
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/24/12/020
– volume: 302
  start-page: 149
  issue: 1
  year: 2006
  ident: 10.1016/j.nonrwa.2025.104381_b32
  article-title: Destructive aggregation: Aggregation with collision-induced breakage
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.05.066
– volume: 56
  start-page: 2915
  issue: 3
  year: 2024
  ident: 10.1016/j.nonrwa.2025.104381_b3
  article-title: The discrete collision-induced breakage equation with mass transfer: well-posedness and stationary solutions
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/23M159130X
– volume: 27
  start-page: 425
  issue: 2
  year: 1972
  ident: 10.1016/j.nonrwa.2025.104381_b13
  article-title: Self-preserving size spectra of comminuted particles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(72)85079-6
– volume: 20
  start-page: 1889
  issue: 7
  year: 1987
  ident: 10.1016/j.nonrwa.2025.104381_b30
  article-title: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/20/7/033
– volume: 33
  start-page: 2007
  issue: 10
  year: 1976
  ident: 10.1016/j.nonrwa.2025.104381_b2
  article-title: Evolution of raindrop spectra with collision-induced breakup
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1976)033<2007:EORSWC>2.0.CO;2
– volume: 25
  start-page: 541
  issue: 7
  year: 2002
  ident: 10.1016/j.nonrwa.2025.104381_b16
  article-title: On a non-uniqueness in fragmentation models
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.301
– volume: 38
  start-page: 319
  issue: 3
  year: 2002
  ident: 10.1016/j.nonrwa.2025.104381_b22
  article-title: Self-similar fragmentations
  publication-title: Ann. Inst. Henri Poincaré, Probab. Stat.
  doi: 10.1016/S0246-0203(00)01073-6
– year: 2007
  ident: 10.1016/j.nonrwa.2025.104381_b37
– volume: 33
  start-page: 1221
  issue: 6
  year: 2000
  ident: 10.1016/j.nonrwa.2025.104381_b10
  article-title: A study of the nonlinear breakage equation: analytical and asymptotic solutions
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/33/6/309
– volume: 106
  start-page: 245
  issue: 2
  year: 2003
  ident: 10.1016/j.nonrwa.2025.104381_b23
  article-title: Loss of mass in deterministic and random fragmentations
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/S0304-4149(03)00045-0
– volume: 40
  start-page: 6115
  issue: 11
  year: 2020
  ident: 10.1016/j.nonrwa.2025.104381_b33
  article-title: Weak solutions to the continuous coagulation model with collisional breakage
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2020272
– volume: 280
  start-page: 690
  year: 2021
  ident: 10.1016/j.nonrwa.2025.104381_b4
  article-title: Weak solutions to the collision-induced breakage equation with dominating coagulation
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2021.01.043
– year: 1995
  ident: 10.1016/j.nonrwa.2025.104381_b36
– start-page: 199
  year: 2014
  ident: 10.1016/j.nonrwa.2025.104381_b35
  article-title: Weak compactness techniques and coagulation equations
– volume: 6
  start-page: 275
  issue: 3
  year: 1961
  ident: 10.1016/j.nonrwa.2025.104381_b12
  article-title: On the distribution of the sizes of particles which undergo splitting
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1106036
– volume: 23
  start-page: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.nonrwa.2025.104381_b20
  article-title: Self-similar solutions of fragmentation equations revisited
  publication-title: Discret. Contin. Dyn. Syst.-Ser. B
– volume: 14
  start-page: 483
  issue: 04
  year: 2004
  ident: 10.1016/j.nonrwa.2025.104381_b17
  article-title: Conservative and shattering solutions for some classes of fragmentation models
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202504003325
– volume: vol. 102
  year: 2006
  ident: 10.1016/j.nonrwa.2025.104381_b24
  article-title: Random fragmentation and coagulation processes
– volume: 23
  start-page: 241
  issue: 2
  year: 1980
  ident: 10.1016/j.nonrwa.2025.104381_b31
  article-title: Kinetics of polymerization
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01012594
– volume: 58
  start-page: 892
  issue: 9
  year: 1987
  ident: 10.1016/j.nonrwa.2025.104381_b14
  article-title: “Shattering”transition in fragmentation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.892
– volume: 25
  start-page: 729
  issue: 9
  year: 2002
  ident: 10.1016/j.nonrwa.2025.104381_b34
  article-title: Coalescence and breakage processes
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.310
– volume: 40
  start-page: F331
  issue: 17
  year: 2007
  ident: 10.1016/j.nonrwa.2025.104381_b8
  article-title: The nonlinear fragmentation equation
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/40/17/F03
– year: 2019
  ident: 10.1016/j.nonrwa.2025.104381_b19
– year: 2024
  ident: 10.1016/j.nonrwa.2025.104381_b26
SSID ssj0017131
Score 2.4218035
Snippet A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104381
SubjectTerms Collision-induced breakage
Conservation of mass
Existence
Nonlinear fragmentation
Uniqueness
Title Mass-conserving weak solutions to the continuous nonlinear fragmentation equation in the presence of mass transfer
URI https://dx.doi.org/10.1016/j.nonrwa.2025.104381
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68rjWPzeNYiqU-WkQt9Bb2KVGa1pjSm7_dmTyKgnjwFBJmyTLZzHyz-b4JIRcxJoUoDhgqZplvjMskvEZMWc8LHB0EUYB659E4GE782ymftki_0cIgrbKO_VVML6N1faVbe7O7SNPuE4qGHGxAzsuYi4py3w9xlV9-rmkeDhRhTqMwQutGPldyvKDCzlfYfcjl-LHTi5zf09O3lDPYJTs1VqS9ajp7pGWyfbI9Wjda_Tgg-QjAL1NIic5xa4CujHij6_VEizkFa4qE9DRbQpVPs6o3hsipzcXLrJYeZdS8V02_aZqVQxalLkkZOrd0BjehRQlxTX5IJoPr5_6Q1b9RYAqSccG45r60SgFy0MZa6Ut9ZQQWxTHXruTcxEaHOoLCBvCYkMr41o25QTgVSmG9I7IBczPHhGouY6GEAIPId8BK60hJNw6FG1mAgm3CGu8li6pbRtLQyF6TytsJejupvN0mYePi5MdTTyCg_zny5N8jT8kWnlWEvDOyUeRLcw7AopCdcuV0yGav_3j_gMebu-H4C0Ic0us
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOiFWU1QeuVkkaZzlWFajQ5QJI3CKvqCBCCan6-8xkqUBCHLgmHsUaOzNv4nkvAJcJJYU4CTkxZnlgrc8VvkZcu14v9EwYxiHxnSfTcPgY3D2JpxYMGi4MtVXWsb-K6WW0rq90a29257NZ955IQx4JkIsy5kZrsE7qVKIN6_3b0XC6OkzAOsxrSEZk0DDoyjYvLLLzJQkQ-YLOO3ux93uG-pZ1bnZgu4aLrF_NaBdaNtuDrclKa_VzH_IJ4l-uqSs6p68DbGnlK1ttKVa8MxzNqCd9li2w0GdZJY8hc-Zy-fxWs48yZj8q3W82y0qTeUlN0pa9O_aGD2FFiXJtfgCPN9cPgyGv_6TANebjggsjAuW0RvBgrHMqUObKSqqLE2F8JYRNrIlMjLUNQjKptA2cnwhLiCpS0vUOoY1zs0fAjFCJ1FLigDjwcJQxsVZ-Ekk_dogGO8Ab76XzSjAjbTrJXtLK2yl5O6283YGocXH6Y-FTjOl_Wh7_2_ICNoYPk3E6vp2OTmCT7lT9eafQLvKFPUOcUajzeh99AePh1Ac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass-conserving+weak+solutions+to+the+continuous+nonlinear+fragmentation+equation+in+the+presence+of+mass+transfer&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Jaiswal%2C+Ram+Gopal&rft.au=Giri%2C+Ankik+Kumar&rft.date=2025-10-01&rft.issn=1468-1218&rft.volume=85&rft.spage=104381&rft_id=info:doi/10.1016%2Fj.nonrwa.2025.104381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2025_104381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon