Enhanced Hardrock Seismic Imaging Through Multi‐Scale Information‐Guided Unsupervised Learning

In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger surface waves and noncoherent noise are observed including high‐frequency scattering noise, which seriously covers the useful reflection signal. Therefore...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 2
Main Authors Yang, Liuqing, Malehmir, Alireza, Markovic, Magdalena
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2025
Subjects
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2025JH000627

Cover

Loading…
Abstract In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger surface waves and noncoherent noise are observed including high‐frequency scattering noise, which seriously covers the useful reflection signal. Therefore, imaging of hardrock seismic data with a low signal‐to‐noise ratio (S/N) is challenging and requires tailored and cumbersome processing workflows. In this study, we propose an unsupervised learning‐based framework with frequency‐guided constraints for pre‐stack seismic data denoising. The proposed label‐free framework contains two input channels, noisy and time‐frequency‐domain data conditioned through a continuous wavelet transform (CWT) filter. The CWT filtered data provide richer feature representations guiding better the reconstruction of seismic signals. The proposed framework consists of several feature attention blocks with the soft attention mechanism to extract the spatial relationship between noisy and CWT filtered data and assign higher weights to significant features. To improve the denoising performance, we designed a hybrid loss function containing the log‐cosh function, amplitude‐weighted constraint, and frequency‐dynamic weighted constraint. We use one synthetic and two real pre‐stack seismic data sets from two mineral‐endowed regions in Sweden and Canada to test the effectiveness of the proposed network. Compared with the three benchmarks, our proposed framework shows stronger reflection signal recovery and is capable of better attenuating the complex noise. The proposed denoising workflow allows improved delineation of near‐surface structures and the mineral deposits targeted in one of the data sets. Plain Language Summary Seismic reflection signals are highly susceptible to environmental and anthropogenic noise during the data acquisition, degrading the seismic data's subsequent imaging quality. This issue is particularly pronounced in complex near‐surface conditions, hardrock seismic exploration, and deep reservoir investigations. Real‐world seismic data often present challenges such as low S/N and overlapping frequency bands between useful reflections and noise. We propose an unsupervised learning‐based pre‐stack seismic data processing framework to recover weak signals obscured by complex noise, enhancing seismic imaging quality. We evaluate the network's performance in signal recovery and strong noise attenuation using two field data from different countries. The experimental results confirmed the network's stability and reliability. Compared to the conventional seismic data processing workflow, the proposed framework produces post‐stack data with clearer and produces more continuous geological structures, particularly in the target mineralization layer, significantly enhancing the resolution and S/N of the post‐stack data. This method shows great potential as an effective tool in pre‐stack seismic data processing, offering researchers improved accuracy in subsequent seismic data imaging and interpretation. Key Points We developed an unsupervised learning‐based network to enhance seismic imaging quality in hardrock environments The proposed method uses time‐frequency domain data as guidance to improve signal‐to‐noise ratio in common reflection point gathers We designed a hybrid loss function incorporating amplitude‐weighted and frequency‐dynamic weighting constraints to improve signal recovery
AbstractList Abstract In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger surface waves and noncoherent noise are observed including high‐frequency scattering noise, which seriously covers the useful reflection signal. Therefore, imaging of hardrock seismic data with a low signal‐to‐noise ratio (S/N) is challenging and requires tailored and cumbersome processing workflows. In this study, we propose an unsupervised learning‐based framework with frequency‐guided constraints for pre‐stack seismic data denoising. The proposed label‐free framework contains two input channels, noisy and time‐frequency‐domain data conditioned through a continuous wavelet transform (CWT) filter. The CWT filtered data provide richer feature representations guiding better the reconstruction of seismic signals. The proposed framework consists of several feature attention blocks with the soft attention mechanism to extract the spatial relationship between noisy and CWT filtered data and assign higher weights to significant features. To improve the denoising performance, we designed a hybrid loss function containing the log‐cosh function, amplitude‐weighted constraint, and frequency‐dynamic weighted constraint. We use one synthetic and two real pre‐stack seismic data sets from two mineral‐endowed regions in Sweden and Canada to test the effectiveness of the proposed network. Compared with the three benchmarks, our proposed framework shows stronger reflection signal recovery and is capable of better attenuating the complex noise. The proposed denoising workflow allows improved delineation of near‐surface structures and the mineral deposits targeted in one of the data sets.
In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger surface waves and noncoherent noise are observed including high‐frequency scattering noise, which seriously covers the useful reflection signal. Therefore, imaging of hardrock seismic data with a low signal‐to‐noise ratio (S/N) is challenging and requires tailored and cumbersome processing workflows. In this study, we propose an unsupervised learning‐based framework with frequency‐guided constraints for pre‐stack seismic data denoising. The proposed label‐free framework contains two input channels, noisy and time‐frequency‐domain data conditioned through a continuous wavelet transform (CWT) filter. The CWT filtered data provide richer feature representations guiding better the reconstruction of seismic signals. The proposed framework consists of several feature attention blocks with the soft attention mechanism to extract the spatial relationship between noisy and CWT filtered data and assign higher weights to significant features. To improve the denoising performance, we designed a hybrid loss function containing the log‐cosh function, amplitude‐weighted constraint, and frequency‐dynamic weighted constraint. We use one synthetic and two real pre‐stack seismic data sets from two mineral‐endowed regions in Sweden and Canada to test the effectiveness of the proposed network. Compared with the three benchmarks, our proposed framework shows stronger reflection signal recovery and is capable of better attenuating the complex noise. The proposed denoising workflow allows improved delineation of near‐surface structures and the mineral deposits targeted in one of the data sets. Seismic reflection signals are highly susceptible to environmental and anthropogenic noise during the data acquisition, degrading the seismic data's subsequent imaging quality. This issue is particularly pronounced in complex near‐surface conditions, hardrock seismic exploration, and deep reservoir investigations. Real‐world seismic data often present challenges such as low S/N and overlapping frequency bands between useful reflections and noise. We propose an unsupervised learning‐based pre‐stack seismic data processing framework to recover weak signals obscured by complex noise, enhancing seismic imaging quality. We evaluate the network's performance in signal recovery and strong noise attenuation using two field data from different countries. The experimental results confirmed the network's stability and reliability. Compared to the conventional seismic data processing workflow, the proposed framework produces post‐stack data with clearer and produces more continuous geological structures, particularly in the target mineralization layer, significantly enhancing the resolution and S/N of the post‐stack data. This method shows great potential as an effective tool in pre‐stack seismic data processing, offering researchers improved accuracy in subsequent seismic data imaging and interpretation. We developed an unsupervised learning‐based network to enhance seismic imaging quality in hardrock environments The proposed method uses time‐frequency domain data as guidance to improve signal‐to‐noise ratio in common reflection point gathers We designed a hybrid loss function incorporating amplitude‐weighted and frequency‐dynamic weighting constraints to improve signal recovery
In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger surface waves and noncoherent noise are observed including high‐frequency scattering noise, which seriously covers the useful reflection signal. Therefore, imaging of hardrock seismic data with a low signal‐to‐noise ratio (S/N) is challenging and requires tailored and cumbersome processing workflows. In this study, we propose an unsupervised learning‐based framework with frequency‐guided constraints for pre‐stack seismic data denoising. The proposed label‐free framework contains two input channels, noisy and time‐frequency‐domain data conditioned through a continuous wavelet transform (CWT) filter. The CWT filtered data provide richer feature representations guiding better the reconstruction of seismic signals. The proposed framework consists of several feature attention blocks with the soft attention mechanism to extract the spatial relationship between noisy and CWT filtered data and assign higher weights to significant features. To improve the denoising performance, we designed a hybrid loss function containing the log‐cosh function, amplitude‐weighted constraint, and frequency‐dynamic weighted constraint. We use one synthetic and two real pre‐stack seismic data sets from two mineral‐endowed regions in Sweden and Canada to test the effectiveness of the proposed network. Compared with the three benchmarks, our proposed framework shows stronger reflection signal recovery and is capable of better attenuating the complex noise. The proposed denoising workflow allows improved delineation of near‐surface structures and the mineral deposits targeted in one of the data sets. Plain Language Summary Seismic reflection signals are highly susceptible to environmental and anthropogenic noise during the data acquisition, degrading the seismic data's subsequent imaging quality. This issue is particularly pronounced in complex near‐surface conditions, hardrock seismic exploration, and deep reservoir investigations. Real‐world seismic data often present challenges such as low S/N and overlapping frequency bands between useful reflections and noise. We propose an unsupervised learning‐based pre‐stack seismic data processing framework to recover weak signals obscured by complex noise, enhancing seismic imaging quality. We evaluate the network's performance in signal recovery and strong noise attenuation using two field data from different countries. The experimental results confirmed the network's stability and reliability. Compared to the conventional seismic data processing workflow, the proposed framework produces post‐stack data with clearer and produces more continuous geological structures, particularly in the target mineralization layer, significantly enhancing the resolution and S/N of the post‐stack data. This method shows great potential as an effective tool in pre‐stack seismic data processing, offering researchers improved accuracy in subsequent seismic data imaging and interpretation. Key Points We developed an unsupervised learning‐based network to enhance seismic imaging quality in hardrock environments The proposed method uses time‐frequency domain data as guidance to improve signal‐to‐noise ratio in common reflection point gathers We designed a hybrid loss function incorporating amplitude‐weighted and frequency‐dynamic weighting constraints to improve signal recovery
Author Malehmir, Alireza
Yang, Liuqing
Markovic, Magdalena
Author_xml – sequence: 1
  givenname: Liuqing
  orcidid: 0009-0008-4589-2627
  surname: Yang
  fullname: Yang, Liuqing
  email: liuqing.yang@geo.uu.se
  organization: Uppsala University
– sequence: 2
  givenname: Alireza
  orcidid: 0000-0003-1241-2988
  surname: Malehmir
  fullname: Malehmir, Alireza
  organization: Uppsala University
– sequence: 3
  givenname: Magdalena
  surname: Markovic
  fullname: Markovic, Magdalena
  organization: Uppsala University
BookMark eNp9kEtOAkEURSsGExWduYBegOirT1PdQ0OQTzAmfsadVz8obKpINWiYuQTX6EpsxRhHjt59NydncE9IJ8RgCTmncEmBlVcMWD4dA0CfyQNyzMqS93JGofMnH5Gzplm2DOcMCpDHRA3DAoO2JhtjMinq5-zB-mbldTZZ4dyHefa4SHE7X2S323rjP97eHzTWNpsEF9MKNz6GthttvWkdT6HZrm168U37zCym0ApOyaHDurFnP7dLnm6Gj4Nxb3Y3mgyuZz1Ni7zsKdEvHThrBAU0hlEnuXRUCSkEl5QjGGMK7ixXhTHOUqG4c9xhW6DUJe-Syd5rIi6rdfIrTLsqoq--i5jmFaaN17WtGC-ZtnnBlbMCuSgoMpkDKJ0rBca2rou9S6fYNMm6Xx-F6mvu6u_cLc73-Kuv7e5ftpqO7qkEECX_BHhPhhM
Cites_doi 10.1190/1.2840373
10.1111/1365‐2478.13648
10.1190/geo2021‐0785.1
10.1111/1365‐2478.13242
10.1093/gji/ggaa184
10.1190/geo2023‐0150.1
10.5281/zenodo.15319891
10.5194/se‐9‐1469‐2018
10.1016/j.cageo.2023.105440
10.1190/geo2015‐0598.1
10.1109/TGRS.2022.3226404
10.1111/1365‐2478.12499
10.1109/TGRS.2021.3108
10.48550/arXiv.1711.10925
10.1190/geo2017‐0225.1
10.1190/image2024-4087480.1
10.1109/TGRS.2021.3084612
10.1111/1365‐2478.12855
10.1109/TGRS.2024.3425913
10.1190/geo2023‐0195.1
10.1190/geo2020‐0169.1
10.1111/1365‐2478.13159
10.1190/geo2023‐0592.1
10.1190/geo2018‐0738.1
10.1109/TGRS.2023.3262
10.1046/j.1365‐2478.1997.00347.x
10.1190/geo2022‐0717.1
10.1190/geo2024‐0109.1
10.1016/j.oregeorev.2010.08.002
10.1109/TGRS.2022.3216660
10.1111/1365‐2478.13186
10.1190/geo2022‐0608.1
10.1016/j.oregeorev.2017.10.012
10.1190/geo2023‐0656.1
10.1111/1365‐2478.13062
10.1109/LGRS.2021.3123955
10.1109/TGRS.2022.3157064
10.1002/nsg.12269
10.1109/TGRS.2024.3487306
10.1190/geo2013‐0221.1
10.1016/j.jappgeo.2022.104558
10.1190/geo2022‐0138.1
10.1109/tgrs.2022.3197231
10.5194/se‐12‐483‐2021
10.1190/geo2014‐0525.1
10.1109/TGRS.2024.3435560
10.1190/geo2023‐0096.1
10.1190/geo2021‐0654.1
10.1190/geo2022‐0232.1
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2025JH000627
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2392ce583bfe4a3481a27500bc5bb0de
10_1029_2025JH000627
JGR170049
Genre researchArticle
GrantInformation_xml – fundername: Swedish Foundation for Strategic Research
  funderid: CMM22‐0003
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
AAYXX
CITATION
WIN
ID FETCH-LOGICAL-c1859-b469f0fed410add21f737f1b47443713a0ddd83fe3b8ddfe14b3ff3fae3ba7c93
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:13:10 EDT 2025
Thu Jul 10 07:40:33 EDT 2025
Sun Jul 06 04:45:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1859-b469f0fed410add21f737f1b47443713a0ddd83fe3b8ddfe14b3ff3fae3ba7c93
ORCID 0000-0003-1241-2988
0009-0008-4589-2627
OpenAccessLink https://doaj.org/article/2392ce583bfe4a3481a27500bc5bb0de
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_2392ce583bfe4a3481a27500bc5bb0de
crossref_primary_10_1029_2025JH000627
wiley_primary_10_1029_2025JH000627_JGR170049
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2022; 199
2021; 69
2010; 38
2021; 86
2023; 180
2022; 70
2021; 222
1997; 45
2009
2024; 73
2020; 128
2006
2011; 12
2022; 87
2018; 83
2025
2024
2018; 66
2023; 61
2021; 70
2023; 21
2018; 9
2017; 90
2019; 84
2023; 88
2021; 12
2019; 62
2023; 89
2022; 60
2024b; 62
2013; 78
2008; 27
2024; 62
2018
2020; 68
2016; 81
2024; 89
2014
2021; 60
2023; 71
2022; 19
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Stephens M. B. (e_1_2_8_47_1) 2009
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Pedregosa F. (e_1_2_8_39_1) 2011; 12
e_1_2_8_51_1
e_1_2_8_30_1
Wang Y. (e_1_2_8_50_1) 2019; 62
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Proakis J. G. (e_1_2_8_41_1) 2006
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – volume: 60
  start-page: 1
  year: 2022
  end-page: 12
  article-title: Incorporating structural constraint into the machine learning high‐resolution seismic reconstruction
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 89
  start-page: V263
  issue: 3
  year: 2024
  end-page: V280
  article-title: Random noise attenuation of 3D multicomponent seismic data using a fast adaptive prediction filter
  publication-title: Geophysics
– volume: 87
  start-page: V381
  issue: 4
  year: 2022
  end-page: V396
  article-title: Erratic and random noise attenuation using adaptive local orthogonalization
  publication-title: Geophysics
– volume: 81
  start-page: V103
  issue: 2
  year: 2016
  end-page: V116
  article-title: Double‐sparsity dictionary for seismic noise attenuation
  publication-title: Geophysics
– volume: 62
  start-page: 1
  year: 2024b
  end-page: 11
  article-title: Joint reconstruction and multiple attenuation using one‐step randomized‐order damped rank reduction method
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– year: 2024
– volume: 222
  start-page: 1717
  issue: 3
  year: 2021
  end-page: 1727
  article-title: Fast dictionary learning for noise attenuation of multidimensional seismic data
  publication-title: Geophysical Journal International
– volume: 81
  start-page: V341
  issue: 4
  year: 2016
  end-page: V355
  article-title: Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform
  publication-title: Geophysics
– volume: 60
  start-page: 1
  year: 2022
  end-page: 12
  article-title: LOUD: Local orthogonalization constrained unsupervised deep learning denoiser
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 27
  start-page: 240
  issue: 2
  year: 2008
  end-page: 248
  article-title: Coherent and random noise attenuation using the curvelet transform
  publication-title: The Leading Edge
– year: 2018
– year: 2014
– volume: 71
  start-page: 1132
  issue: 7
  year: 2023
  end-page: 1151
  article-title: 3D reflection seismic imaging of the Zinkgruvan mineral‐bearing structures in the south‐eastern Bergslagen mineral district (Sweden)
  publication-title: Geophysical Prospecting
– volume: 69
  start-page: 709
  issue: 4
  year: 2021
  end-page: 726
  article-title: A fully unsupervised and highly generalized deep learning approach for random noise suppression
  publication-title: Geophysical Prospecting
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  article-title: Low‐frequency extrapolation of prestack viscoacoustic seismic data based on dense convolutional network
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 89
  start-page: V573
  issue: 6
  year: 2024
  end-page: V587
  article-title: Noise attenuation in distributed acoustic sensing data using a guided unsupervised deep learning network
  publication-title: Geophysical Prospecting
– start-page: 1978
  year: 2024
  end-page: 1982
– volume: 70
  start-page: 677
  issue: 4
  year: 2022
  end-page: 701
  article-title: Warped mapping‐based blind deconvolution for resolution improvement
  publication-title: Geophysical Prospecting
– year: 2025
– volume: 180
  year: 2023
  article-title: DRR: An open‐source multi‐platform package for the damped rank‐reduction method and its applications in seismology
  publication-title: Computers & Geosciences
– volume: 68
  start-page: 7
  issue: 1
  year: 2020
  end-page: 23
  article-title: Deep reflection seismic imaging of iron‐oxide deposits in the ludvika mining area of central Sweden
  publication-title: Geophysical Prospecting
– volume: 62
  start-page: 1
  year: 2024
  end-page: 9
  article-title: Warped‐mapping‐based multigather joint prestack Q estimation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 9
  start-page: 1469
  issue: 6
  year: 2018
  end-page: 1485
  article-title: Seismic imaging of dyke swarms within the Sorgenfrei‐Tornquist Zone (Sweden) and implications for thermal energy storage
  publication-title: Solid Earth
– volume: 89
  start-page: WA323
  issue: 1
  year: 2024
  end-page: WA335
  article-title: Deep learning for high‐resolution multichannel seismic impedance inversion
  publication-title: Geophysics
– year: 2009
  article-title: Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian shield, south‐Central Sweden
  publication-title: Sveriges geologiska undersökning (SGU)
– volume: 84
  start-page: V295
  issue: 5
  year: 2019
  end-page: V305
  article-title: Prestack Q compensation with sparse tau‐p operators
  publication-title: Geophysics
– volume: 88
  start-page: V361
  issue: 5
  year: 2023
  end-page: V370
  article-title: Multichannel joint resolution enhancement for nonstationary prestack data with adaptive structure regularization
  publication-title: Geophysics
– volume: 45
  start-page: 269
  issue: 2
  year: 1997
  end-page: 302
  article-title: Improving the performance of f‐x prediction filtering at low signal‐to‐noise ratios
  publication-title: Geophysical Prospecting
– volume: 89
  start-page: R109
  issue: 2
  year: 2023
  end-page: R120
  article-title: Robust Q‐compensated multidimensional impedance inversion using seislet‐domain shaping regularization
  publication-title: Geophysics
– volume: 78
  start-page: O69
  issue: 6
  year: 2013
  end-page: O76
  article-title: Seismic data decomposition into spectral components using regularized nonstationary autoregression
  publication-title: Geophysics
– volume: 21
  start-page: 458
  issue: 6
  year: 2023
  end-page: 472
  article-title: High‐resolution P‐ and S‐wavefield seismic investigations of a quick‐clay site in southwest of Sweden
  publication-title: Near Surface Geophysics
– volume: 89
  start-page: V589
  issue: 6
  year: 2024
  end-page: V604
  article-title: An effective self‐supervised learning method for attenuating various types of seismic noise
  publication-title: Geophysics
– volume: 86
  start-page: V233
  issue: 3
  year: 2021
  end-page: V244
  article-title: Robust singular value decomposition filtering for low signal‐to‐noise ratio seismic data
  publication-title: Journal of Geophysics and Engineering
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  article-title: Deep learning‐based low‐frequency extrapolation and impedance inversion of seismic data
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 38
  start-page: 319
  issue: 4
  year: 2010
  end-page: 333
  article-title: Reflection seismic imaging and physical properties of base‐metal and associated iron deposits in the Bathurst Mining Camp, New Brunswick, Canada
  publication-title: Ore Geology Reviews
– volume: 60
  start-page: 1
  year: 2021
  end-page: 10
  article-title: Fast high‐resolution hyperbolic radon transform
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 128
  start-page: 1867
  issue: 7
  year: 2020
  end-page: 1888
  article-title: Deep image prior
  publication-title: International Journal of Computer Vision
– volume: 66
  start-page: 478
  issue: 3
  year: 2018
  end-page: 497
  article-title: Seismic data interpolation using frequency‐domain complex nonstationary autoregression
  publication-title: Geophysical Prospecting
– volume: 88
  start-page: WA91
  issue: 1
  year: 2023
  end-page: WA104
  article-title: Denoising of distributed acoustic sensing data using supervised deep learning
  publication-title: Geophysics
– volume: 199
  year: 2022
  article-title: PDN: An effective denoising network for land prestack seismic data
  publication-title: Journal of Applied Geophysics
– volume: 90
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Downhole physical property logging for iron‐oxide exploration, rock quality, and mining: An example from central Sweden
  publication-title: Ore Geology Reviews
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  article-title: StorSeismic: A new paradigm in deep learning for seismic processing
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 61
  start-page: 1
  year: 2023
  end-page: 16
  article-title: Deep learning with fault prior for 3‐D seismic data super‐resolution
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 62
  start-page: 1
  year: 2024
  end-page: 11
  article-title: Unsupervised learning with waveform multibranch attention mechanism for erratic noise attenuation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 70
  start-page: 79
  issue: 1
  year: 2021
  end-page: 94
  article-title: Broadband seismic source data acquisition and processing to delineate iron oxide deposits in the Blotberget mine‐central Sweden
  publication-title: Geophysical Prospecting
– volume: 73
  start-page: 80
  issue: 1
  year: 2024
  end-page: 95
  article-title: Broadband seismic data acquisition and processing of iron oxide deposits in Blötberget, Sweden
  publication-title: Geophysical Prospecting
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  article-title: Self‐attention deep image prior network for unsupervised 3‐D seismic data enhancement
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 88
  start-page: WA189
  issue: 1
  year: 2023
  end-page: WA200
  article-title: Unsupervised deep learning for 3D interpolation of highly incomplete data
  publication-title: Geophysics
– volume: 89
  start-page: V503
  issue: 6
  year: 2024
  end-page: V520
  article-title: Ground‐truth‐free deep learning for 3D seismic denoising and reconstruction with channel attention mechanism
  publication-title: Geophysics
– year: 2006
– volume: 89
  start-page: WA179
  issue: 1
  year: 2024
  end-page: WA193
  article-title: Deep learning with soft attention mechanism for small‐scale ground roll attenuation
  publication-title: Geophysics
– volume: 62
  start-page: 421
  year: 2019
  end-page: 433
  article-title: Random seismic noise attenuation based on data augmentation and CNN
  publication-title: Chinese Journal of Geophysics
– volume: 12
  start-page: 483
  issue: 2
  year: 2021
  end-page: 502
  article-title: Sparse 3D reflection seismic survey for deep‐targeting iron oxide deposits and their host rocks, Ludvika Mines, Sweden
  publication-title: Solid Earth
– volume: 83
  start-page: B33
  issue: 2
  year: 2018
  end-page: B46
  article-title: Why 3D seismic data are an asset for exploration and mine planning? Velocity tomography of weakness zones in the Kevitsa Ni‐Cu‐PGE mine, northern Finland
  publication-title: Geophysics
– volume: 87
  start-page: V505
  issue: 5
  year: 2022
  end-page: V519
  article-title: Accelerating seismic scattered noise attenuation in offset‐vector tile domain: Application of deep learning
  publication-title: Geophysics
– ident: e_1_2_8_36_1
  doi: 10.1190/1.2840373
– volume-title: Digital signal processing
  year: 2006
  ident: e_1_2_8_41_1
– ident: e_1_2_8_17_1
  doi: 10.1111/1365‐2478.13648
– ident: e_1_2_8_37_1
  doi: 10.1190/geo2021‐0785.1
– ident: e_1_2_8_16_1
  doi: 10.1111/1365‐2478.13242
– ident: e_1_2_8_4_1
  doi: 10.1093/gji/ggaa184
– ident: e_1_2_8_55_1
  doi: 10.1190/geo2023‐0150.1
– ident: e_1_2_8_53_1
  doi: 10.5281/zenodo.15319891
– ident: e_1_2_8_30_1
  doi: 10.5194/se‐9‐1469‐2018
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cageo.2023.105440
– ident: e_1_2_8_35_1
  doi: 10.1190/geo2015‐0598.1
– ident: e_1_2_8_15_1
  doi: 10.1109/TGRS.2022.3226404
– ident: e_1_2_8_28_1
  doi: 10.1111/1365‐2478.12499
– ident: e_1_2_8_44_1
  doi: 10.1109/TGRS.2021.3108
– ident: e_1_2_8_48_1
  doi: 10.48550/arXiv.1711.10925
– ident: e_1_2_8_32_1
  doi: 10.1190/geo2017‐0225.1
– ident: e_1_2_8_7_1
  doi: 10.1190/image2024-4087480.1
– ident: e_1_2_8_3_1
  doi: 10.1109/TGRS.2021.3084612
– ident: e_1_2_8_34_1
  doi: 10.1111/1365‐2478.12855
– ident: e_1_2_8_24_1
  doi: 10.1109/TGRS.2024.3425913
– ident: e_1_2_8_52_1
  doi: 10.1190/geo2023‐0195.1
– ident: e_1_2_8_49_1
  doi: 10.1190/geo2020‐0169.1
– ident: e_1_2_8_40_1
  doi: 10.1111/1365‐2478.13159
– ident: e_1_2_8_9_1
  doi: 10.1190/geo2023‐0592.1
– ident: e_1_2_8_2_1
  doi: 10.1190/geo2018‐0738.1
– ident: e_1_2_8_57_1
  doi: 10.1109/TGRS.2023.3262
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_39_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_18_1
  doi: 10.1046/j.1365‐2478.1997.00347.x
– ident: e_1_2_8_25_1
  doi: 10.1190/geo2022‐0717.1
– ident: e_1_2_8_45_1
  doi: 10.1190/geo2024‐0109.1
– ident: e_1_2_8_20_1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.oregeorev.2010.08.002
– ident: e_1_2_8_19_1
  doi: 10.1109/TGRS.2022.3216660
– ident: e_1_2_8_22_1
  doi: 10.1111/1365‐2478.13186
– volume: 62
  start-page: 421
  year: 2019
  ident: e_1_2_8_50_1
  article-title: Random seismic noise attenuation based on data augmentation and CNN
  publication-title: Chinese Journal of Geophysics
– ident: e_1_2_8_26_1
  doi: 10.1190/geo2022‐0608.1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.oregeorev.2017.10.012
– ident: e_1_2_8_21_1
– ident: e_1_2_8_8_1
  doi: 10.1190/geo2023‐0656.1
– ident: e_1_2_8_42_1
  doi: 10.1111/1365‐2478.13062
– year: 2009
  ident: e_1_2_8_47_1
  article-title: Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian shield, south‐Central Sweden
  publication-title: Sveriges geologiska undersökning (SGU)
– ident: e_1_2_8_56_1
  doi: 10.1109/LGRS.2021.3123955
– ident: e_1_2_8_14_1
  doi: 10.1109/TGRS.2022.3157064
– ident: e_1_2_8_38_1
  doi: 10.1002/nsg.12269
– ident: e_1_2_8_12_1
  doi: 10.1109/TGRS.2024.3487306
– ident: e_1_2_8_11_1
  doi: 10.1190/geo2013‐0221.1
– ident: e_1_2_8_46_1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jappgeo.2022.104558
– ident: e_1_2_8_54_1
  doi: 10.1190/geo2022‐0138.1
– ident: e_1_2_8_51_1
  doi: 10.1109/tgrs.2022.3197231
– ident: e_1_2_8_31_1
  doi: 10.5194/se‐12‐483‐2021
– ident: e_1_2_8_6_1
  doi: 10.1190/geo2014‐0525.1
– ident: e_1_2_8_23_1
  doi: 10.1109/TGRS.2024.3435560
– ident: e_1_2_8_13_1
  doi: 10.1190/geo2023‐0096.1
– ident: e_1_2_8_27_1
  doi: 10.1190/geo2021‐0654.1
– ident: e_1_2_8_43_1
  doi: 10.1190/geo2022‐0232.1
SSID ssj0003320807
Score 2.2930405
Snippet In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger surface waves...
Abstract In hardrock or crystalline rock geological settings, due to low impedance contrast, reflected energy is usually weak. In addition, often stronger...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms deep learning
seismic imaging
weak signal recovery
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL15EUbG-yEFvLmaTbHf3qNKHBUVsC70tySbRIt2WPu7-BH-jv8SZ7Frai-BxsyGBSTLzzWTmCyFXAAni0KUsUFrzQHLDAwWwPFAObGcCGFp5noKn50ZnILvDaFgF3LAWpuSHWAXc8GR4fY0HXOl5RTaAHJngtUfdDqpbHm-THayuRe58Ll9WMRYhOCsrpjmmqYGlYlXuOwxxuz7AhlXy5P2bYNVbm9Y-2atgIr0r1_WAbNnikOhm8e4v7Cnet4Pl-aA9O5qPRzl9HPvXhmi_fHaH-rra78-vHiyBpVXNEa4BtLWXIwNjDIr5coqaYg4fFc3q2xEZtJr9h05QvZEQ5GBp00CDe-uYs0aGDFQVD10sYhdqGUspwAFVzBiTCGeFToxxNpRaOCecggYV56k4JrViUtgTQhMBYEfEech0LhumkUY-iY0rQHgq0WGdXP_KKJuWVBiZv8LmabYuyzq5RwGu-iCBtW-YzN6y6jxkHHBZbqNEaGelwmpghUzzMHWkNTO2Tm68-P-cKeu2X5FfUKan_-t-RnbxR5nydU5qi9nSXgC4WOhLv4N-AMPzxp8
  priority: 102
  providerName: Wiley-Blackwell
Title Enhanced Hardrock Seismic Imaging Through Multi‐Scale Information‐Guided Unsupervised Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025JH000627
https://doaj.org/article/2392ce583bfe4a3481a27500bc5bb0de
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB20KzeiqFgfZRa6M5h5pEmWKn1YqIhtobswk5nRIsZi2634CX6jX-K9kyhxoxs3gQxhEs6Ee85l7pxLyAlIgpi5NAyU1jyQ3PBAgSwPlAPuTEBDK-9TMLxp9ydyMI2mtVZfWBNW2gOXwJ1zIPDcRonQzkqFx0YVWpKHOo-0Do3F6AucV0umMAYLwUEKxVWle8hTTPKjQR-jMzaQqXGQt-r_KU09t3S3yGYlCulF-THbZM0WO0R3ige_PU9xdx145pGO7GzxNMvp9ZPvLUTHZZMd6k_Rfry9jwBwS6sTRog4jPVWMwNzTIrFao5xYQE3lanq_S6ZdDvjq35QdUQIcuDVNNCQzLrQWSNZCIGJMxeL2DEtYykFpJsqNMYkwlmhE2OcZVIL54RTMKDiPBV7pFE8F3af0ESAtBFxzgBJ2TbtNPIla1yBnlOJZk1y-oVRNi-NLzK_Yc3TrI5lk1wigN_PoF21H4BFzKpFzP5axCY58_D_-qZs0LtDN0GZHvzHOw_JBs5eln0dkcbyZWWPQWAsdYusc3nb8n8UXIevnU9eoc9B
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDKMwNsRCS20yQjoD5pK0RbiS2yY7tUqGnVx85P4DfyS7hzQtUuSExRLMuWzr67z_bdd4TcACQIfRN7rpCSupwq6gqA5a4w4DsjwNDC8hR0upXGgLfegreizinmwuT8EKsLN9QMa69RwfFCumAbQJJMOLYHrQbaWxpukx0OH9RMyl9WlyyMUS9PmaYYpwauyiuC32GI-_UBNtySZe_fRKvW3dQOyH6BE52HfGEPyZbOjoisZu_2xd7BB3dwPR9OT4_m41HqNMe23JDTz-vuODax9vvzqwdroJ0i6QgXAdrqy5GCMQbZfDlFUzGHn4JndXhMBrVq_6nhFkUS3BRcbexKON8az2jFfQ9sFfVNyELjSx5yzuAEKjylVMSMZjJSymifS2YMMwIaRJjG7ISUskmmT4kTMUA7LEx9T6a8oipxYKPYqACIJyLpl8ntr4ySac6Fkdg3bBon67Isk0cU4KoPMljbhslsmBQKkVAAZqkOIiaN5gLTgQVSzcPUgZSe0mVyZ8X_50xJq_6KBIM8Pvtf92uy2-h32km72X0-J3vYKY__uiClxWypLwFpLOSV3U0_kIPKCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIomJ95qA3F3eTbHf36KNPtRTbgrcl2SS1SLelj7s_wd_oL3GSjaW9CB53CAlMNjNfMjPfIHQFkCAKdOJ7XAjiMSKJxwGWe1yD74wBQ3PLU_DSrjT6rPUWvrkHN1MLU_BDLB_czMmw9toc8InUjmzAcGTCrT1sNYy5JdEm2rLxPsPszDrLNxZKiV9UTBOTpgaeyne57zDF7eoEa17Jkvevg1XrbWp7aNfBRHxX7Os-2lD5ARLV_N0G7LGJt4Pn-cBdNZyNhhlujmy3Idwr2u5gW1f7_fnVhS1Q2NUcmT0AWX0xlDBHP58tJsZSzODD0awODlG_Vu09NDzXI8HLwNMmnoDrrfa1kizwwVSRQEc00oFgEWMULqDcl1LGVCsqYim1CpigWlPNQcCjLKFHqJSPc3WMcEwB7NAoC3yRsYqsJKFNYiMcEB6PRVBG1786SicFFUZqQ9gkSVd1WUb3RoHLMYbA2grG00HqzkNKAJdlKoyp0IpxUw3MDdM8LB0K4UtVRjdW_X-ulLbqr4ZfkCUn_xt-ibY7j7X0udl-OkU7ZkyR_XWGSvPpQp0DzpiLC_sz_QCNWMk9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Hardrock+Seismic+Imaging+Through+Multi%E2%80%90Scale+Information%E2%80%90Guided+Unsupervised+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Yang%2C+Liuqing&rft.au=Malehmir%2C+Alireza&rft.au=Markovic%2C+Magdalena&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1029%2F2025JH000627&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon