A Machine Learning‐Based Observation Operator for FY‐4B GIIRS Brightness Temperatures Considering the Uncertainty of Label Data

The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical weather prediction (NWP) systems, has heightened the demand for computational efficiency and accuracy in radiative transfer models (RTM). Machine learni...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 1
Main Authors Li, Yonghui, Han, Wei, Duan, Wansuo, Li, Zeting, Li, Hao
Format Journal Article
LanguageEnglish
Published Wiley 01.03.2025
Online AccessGet full text

Cover

Loading…
Abstract The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical weather prediction (NWP) systems, has heightened the demand for computational efficiency and accuracy in radiative transfer models (RTM). Machine learning (ML) offers a promising approach, and numerous studies on ML‐based RTM have emerged recently. However, existing ML‐based RTMs for hyperspectral infrared were not end‐to‐end. Moreover, since the label data do not represent truth, models trained with loss functions like mean squared error (MSE) or mean absolute error (MAE) fail to account for its uncertainty. This limitation can lead to suboptimal model parameters, as training may assign higher weights to labels with larger errors. This study construct an end‐to‐end ML‐based RTM focused on clear sky conditions over the ocean for the FengYun‐4B satellite (FY‐4B) Geostationary Interferometric Infrared Sounder (GIIRS), using maximum likelihood estimation (MLE) and MSE for training, respectively. MLE accounts for the uncertainty of labels. The results indicate both models achieve high accuracy, with mean errors within 0.1 K (K) and standard deviation (STD) of errors within 0.04 K compared to the labels. The model trained with MLE exhibits a mean error closer to 0 and a STD similar to the error STD of labels, suggesting better parameter configurations to reflect the actual error distribution of the labels. Additionally, the temperature and water vapor Jacobian computed by both models are comparable to those obtained from RTTOV, highlighting their potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder. Plain Language Summary Satellite hyperspectral infrared data accounts for a significant portion of satellite data and is increasing annually. Moreover, numerical weather prediction requires real‐time monitoring of satellites, leading to increasingly higher demands for computational efficiency and accuracy in radiative transfer models. This article develops a machine learning‐based radiative transfer model specifically for hyperspectral infrared sounder. The model is trained using both maximum likelihood estimation and mean squared error. The former considers the uncertainty of the labels and both achieve high accuracy, with MLE exhibiting even higher accuracy and better parameter configurations. Additionally, by calculating the gradients of brightness temperature with respect to atmospheric profiles, that is, the inputs, it is found that the accuracy is similar to that of the traditional model RTTOV, demonstrating its potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder. Key Points An end‐to‐end machine learning‐based radiative transfer model for clear sky has been developed for FY‐4B GIIRS The model, trained using a likelihood‐based loss function that weights each channel differently, captures the uncertainty of labels The Jacobian matrix calculated by the constructed model resembles the results from the radiative transfer model RTTOV
AbstractList The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical weather prediction (NWP) systems, has heightened the demand for computational efficiency and accuracy in radiative transfer models (RTM). Machine learning (ML) offers a promising approach, and numerous studies on ML‐based RTM have emerged recently. However, existing ML‐based RTMs for hyperspectral infrared were not end‐to‐end. Moreover, since the label data do not represent truth, models trained with loss functions like mean squared error (MSE) or mean absolute error (MAE) fail to account for its uncertainty. This limitation can lead to suboptimal model parameters, as training may assign higher weights to labels with larger errors. This study construct an end‐to‐end ML‐based RTM focused on clear sky conditions over the ocean for the FengYun‐4B satellite (FY‐4B) Geostationary Interferometric Infrared Sounder (GIIRS), using maximum likelihood estimation (MLE) and MSE for training, respectively. MLE accounts for the uncertainty of labels. The results indicate both models achieve high accuracy, with mean errors within 0.1 K (K) and standard deviation (STD) of errors within 0.04 K compared to the labels. The model trained with MLE exhibits a mean error closer to 0 and a STD similar to the error STD of labels, suggesting better parameter configurations to reflect the actual error distribution of the labels. Additionally, the temperature and water vapor Jacobian computed by both models are comparable to those obtained from RTTOV, highlighting their potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder. Satellite hyperspectral infrared data accounts for a significant portion of satellite data and is increasing annually. Moreover, numerical weather prediction requires real‐time monitoring of satellites, leading to increasingly higher demands for computational efficiency and accuracy in radiative transfer models. This article develops a machine learning‐based radiative transfer model specifically for hyperspectral infrared sounder. The model is trained using both maximum likelihood estimation and mean squared error. The former considers the uncertainty of the labels and both achieve high accuracy, with MLE exhibiting even higher accuracy and better parameter configurations. Additionally, by calculating the gradients of brightness temperature with respect to atmospheric profiles, that is, the inputs, it is found that the accuracy is similar to that of the traditional model RTTOV, demonstrating its potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder. An end‐to‐end machine learning‐based radiative transfer model for clear sky has been developed for FY‐4B GIIRS The model, trained using a likelihood‐based loss function that weights each channel differently, captures the uncertainty of labels The Jacobian matrix calculated by the constructed model resembles the results from the radiative transfer model RTTOV
Abstract The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical weather prediction (NWP) systems, has heightened the demand for computational efficiency and accuracy in radiative transfer models (RTM). Machine learning (ML) offers a promising approach, and numerous studies on ML‐based RTM have emerged recently. However, existing ML‐based RTMs for hyperspectral infrared were not end‐to‐end. Moreover, since the label data do not represent truth, models trained with loss functions like mean squared error (MSE) or mean absolute error (MAE) fail to account for its uncertainty. This limitation can lead to suboptimal model parameters, as training may assign higher weights to labels with larger errors. This study construct an end‐to‐end ML‐based RTM focused on clear sky conditions over the ocean for the FengYun‐4B satellite (FY‐4B) Geostationary Interferometric Infrared Sounder (GIIRS), using maximum likelihood estimation (MLE) and MSE for training, respectively. MLE accounts for the uncertainty of labels. The results indicate both models achieve high accuracy, with mean errors within 0.1 K (K) and standard deviation (STD) of errors within 0.04 K compared to the labels. The model trained with MLE exhibits a mean error closer to 0 and a STD similar to the error STD of labels, suggesting better parameter configurations to reflect the actual error distribution of the labels. Additionally, the temperature and water vapor Jacobian computed by both models are comparable to those obtained from RTTOV, highlighting their potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder.
The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical weather prediction (NWP) systems, has heightened the demand for computational efficiency and accuracy in radiative transfer models (RTM). Machine learning (ML) offers a promising approach, and numerous studies on ML‐based RTM have emerged recently. However, existing ML‐based RTMs for hyperspectral infrared were not end‐to‐end. Moreover, since the label data do not represent truth, models trained with loss functions like mean squared error (MSE) or mean absolute error (MAE) fail to account for its uncertainty. This limitation can lead to suboptimal model parameters, as training may assign higher weights to labels with larger errors. This study construct an end‐to‐end ML‐based RTM focused on clear sky conditions over the ocean for the FengYun‐4B satellite (FY‐4B) Geostationary Interferometric Infrared Sounder (GIIRS), using maximum likelihood estimation (MLE) and MSE for training, respectively. MLE accounts for the uncertainty of labels. The results indicate both models achieve high accuracy, with mean errors within 0.1 K (K) and standard deviation (STD) of errors within 0.04 K compared to the labels. The model trained with MLE exhibits a mean error closer to 0 and a STD similar to the error STD of labels, suggesting better parameter configurations to reflect the actual error distribution of the labels. Additionally, the temperature and water vapor Jacobian computed by both models are comparable to those obtained from RTTOV, highlighting their potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder. Plain Language Summary Satellite hyperspectral infrared data accounts for a significant portion of satellite data and is increasing annually. Moreover, numerical weather prediction requires real‐time monitoring of satellites, leading to increasingly higher demands for computational efficiency and accuracy in radiative transfer models. This article develops a machine learning‐based radiative transfer model specifically for hyperspectral infrared sounder. The model is trained using both maximum likelihood estimation and mean squared error. The former considers the uncertainty of the labels and both achieve high accuracy, with MLE exhibiting even higher accuracy and better parameter configurations. Additionally, by calculating the gradients of brightness temperature with respect to atmospheric profiles, that is, the inputs, it is found that the accuracy is similar to that of the traditional model RTTOV, demonstrating its potential for application as observational operator in satellite data assimilation for hyperspectral infrared sounder. Key Points An end‐to‐end machine learning‐based radiative transfer model for clear sky has been developed for FY‐4B GIIRS The model, trained using a likelihood‐based loss function that weights each channel differently, captures the uncertainty of labels The Jacobian matrix calculated by the constructed model resembles the results from the radiative transfer model RTTOV
Author Han, Wei
Li, Zeting
Li, Yonghui
Duan, Wansuo
Li, Hao
Author_xml – sequence: 1
  givenname: Yonghui
  surname: Li
  fullname: Li, Yonghui
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-1966-446X
  surname: Han
  fullname: Han, Wei
  email: hanwei@cma.gov.cn
  organization: China Meteorological Administration
– sequence: 3
  givenname: Wansuo
  orcidid: 0000-0002-0122-2794
  surname: Duan
  fullname: Duan, Wansuo
  email: duanws@lasg.iap.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Zeting
  surname: Li
  fullname: Li, Zeting
  organization: Nanjing University of Information Science & Technology
– sequence: 5
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Shanghai Academy of Artificial Intelligence for Science (SAIS)
BookMark eNp9kUtOIzEQhi0EEs_dHMAHIFB-9MNLEiAEZRSJx2JWrWqnnBgFG9kNKDskLjBnnJNMD0EjVixKVfr16VvUv8-2QwzE2A8BJwKkOZUg9fUVAGhtttieNEYNCilg-8u9y45yfugZpSTUUO2x9zP-E-3SB-JTwhR8WPx5-z3ETHM-azOlF-x8DHz2RAm7mLjr5_JXz-ghH08mN7d8mPxi2QXKmd_R4wf3nCjzUQzZzyn1St4tid8HS6lDH7o1j45PsaUVP8cOD9mOw1Wmo899wO4vL-5GV4PpbDwZnU0HVtRFNShBC42uLRW0pZVCG1uTKAtSToNpS-00GiFA2NZWc1WAqXrEFLVQQKYu1QGbbLzziA_NU_KPmNZNRN98BDEtGkydtytqpBH9i7AtXVVpWQNKkoURLTirEG3du443Lptizoncf5-A5l8fzdc-elxt8Fe_ovW3bHM9vhEVgKjUX0x1jeM
Cites_doi 10.1175/jas‐d‐19‐0238.1
10.1016/j.jqsrt.2022.108088
10.3390/geosciences9070289
10.1029/90jd01945
10.1029/2024GL111136
10.1002/2014jd022443
10.1364/ao.45.000201
10.1175/1520‐0469(1972)029<0937:tiolsa>2.0.co;2
10.1002/qj.4473
10.1175/1520‐0469(2003)060<2633:sdainw>2.0.co;2
10.1256/smsqj.55614
10.5194/amt‐12‐4903‐2019
10.1016/j.jqsrt.2009.01.008
10.5194/acp‐9‐9121‐2009
10.1175/1520‐0469(1980)037<0630:tsatrt>2.0.co;2
10.1002/qj.3803
10.1007/s00376‐023‐2293‐5
10.1175/2008jas2711.1
10.1175/bams‐d‐16‐0065.1
10.1364/oe.493818
10.1007/978-3-031-40567-9_8
10.1016/0022‐4073(95)00006‐7
10.1016/j.jqsrt.2020.106928
10.1175/1520‐0469(1992)049<2139:otcdmf>2.0.co;2
10.1029/2008jd010960
10.1002/qj.4760
10.1175/jamc‐d‐11‐067.1
10.1029/2021gl093672
10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2
10.1175/mwr‐d‐13‐00170.1
10.1002/qj.3171
10.1029/2021ms002875
10.1109/IGARSS46834.2022.9884369
10.3390/rs14225710
10.1029/2019gl082781
10.1016/j.jqsrt.2007.02.011
10.1016/j.atmosres.2022.106391
10.1109/jstars.2022.3210491
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000449
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_291332ab6f774280a2e2591b0fc3aac8
10_1029_2024JH000449
JGR170017
Genre researchArticle
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2022YFC3004004
– fundername: National Natural Science Foundation of China
  funderid: U2442219
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
M~E
WIN
ID FETCH-LOGICAL-c1857-60414afb630b6c2149c8e165e3f409b64f4a91101cbc7d3509749c958130e9863
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Wed Aug 27 01:11:57 EDT 2025
Tue Aug 05 12:07:14 EDT 2025
Thu Mar 27 11:06:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1857-60414afb630b6c2149c8e165e3f409b64f4a91101cbc7d3509749c958130e9863
ORCID 0000-0002-1966-446X
0000-0002-0122-2794
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000449
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_291332ab6f774280a2e2591b0fc3aac8
crossref_primary_10_1029_2024JH000449
wiley_primary_10_1029_2024JH000449_JGR170017
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 8
1995; 53
2023; 31
2019; 9
2021; 48
2007; 107
1991; 96
2019; 12
2015; 120
2009
2009; 110
2024; 51
2023; 149
1999; 125
2020; 146
2020; 246
2020; 77
2024
2002; 718
1972; 29
2009; 114
1998; 37
1980; 37
2023; 40
2023
2006; 45
2022
2022; 280
2020
2019; 46
2017; 98
2011; 50
2009; 9
2022; 14
2022; 15
2008; 65
2015
2017; 143
1992; 49
2003; 60
2014; 142
2024; 150
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Cardinali C. (e_1_2_9_5_1) 2009
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
Xiao Y. (e_1_2_9_41_1) 2023
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Geer A. (e_1_2_9_10_1) 2019; 8
Bouttier F. (e_1_2_9_4_1) 2002; 718
Weng F. (e_1_2_9_40_1) 2020
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
Xu X. (e_1_2_9_42_1) 2024
e_1_2_9_27_1
Zhang S. (e_1_2_9_46_1) 2015
e_1_2_9_29_1
References_xml – year: 2009
– volume: 53
  start-page: 501
  issue: 5
  year: 1995
  end-page: 517
  article-title: The correlated k‐distribution technique as applied to the AVHRR channels
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 40
  start-page: 1844
  issue: 10
  year: 2023
  end-page: 1858
  article-title: A multi‐domain compression radiative transfer model for the fengyun‐4 geosynchronous interferometric infrared sounder (GIIRS)
  publication-title: Advances in Atmospheric Sciences
– volume: 14
  issue: 4
  year: 2022
  article-title: Exploring pathways to more accurate machine learning emulation of atmospheric radiative transfer
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 48
  issue: 15
  year: 2021
  article-title: Impact of high temporal resolution fy‐4a geostationary interferometric infrared sounder (GIIRS) radiance measurements on typhoon forecasts: Maria (2018) case with grapes global 4d‐var assimilation system
  publication-title: Geophysical Research Letters
– start-page: 6479
  year: 2022
  end-page: 6482
– volume: 60
  start-page: 2633
  issue: 21
  year: 2003
  end-page: 2646
  article-title: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres
  publication-title: Journal of the Atmospheric Sciences
– volume: 37
  start-page: 630
  issue: 3
  year: 1980
  end-page: 643
  article-title: Two‐stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement
  publication-title: Journal of the Atmospheric Sciences
– volume: 15
  start-page: 8819
  year: 2022
  end-page: 8833
  article-title: A deep‐learning‐based microwave radiative transfer emulator for data assimilation and remote sensing
  publication-title: Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– year: 2023
  article-title: Fengwu‐4dvar: Coupling the data‐driven weather forecasting model with 4D variational assimilation
  publication-title: arXiv preprint arXiv:2312.12455
– volume: 150
  start-page: 1
  issue: 763
  year: 2024
  end-page: 17
  article-title: Dynamic channel selection based on vertical sensitivities for the assimilation of fy‐4a geostationary interferometric infrared sounder targeted observations
  publication-title: Quarterly Journal of the Royal Meteorological Society
– start-page: 205
  year: 2023
  end-page: 216
– volume: 14
  issue: 22
  year: 2022
  article-title: Impacts of FY‐4A GIIRS water vapor channels data assimilation on the forecast of “21⋅ 7” extreme rainstorm in Henan, China with CMA‐MESO
  publication-title: Remote Sensing
– volume: 8
  start-page: 20
  year: 2019
  end-page: 25
  article-title: Recent progress in all‐sky radiance assimilation
  publication-title: ECMWF Newsl
– volume: 45
  start-page: 201
  issue: 1
  year: 2006
  end-page: 209
  article-title: Principal component‐based radiative transfer model for hyperspectral sensors: Theoretical concept
  publication-title: Applied Optics
– volume: 246
  year: 2020
  article-title: Application of machine learning to hyperspectral radiative transfer simulations
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 12
  start-page: 4903
  issue: 9
  year: 2019
  end-page: 4929
  article-title: All‐sky assimilation of infrared radiances sensitive to mid‐and upper‐tropospheric moisture and cloud
  publication-title: Atmospheric Measurement Techniques
– volume: 280
  year: 2022
  article-title: A deep learning approach to fast radiative transfer
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 110
  start-page: 435
  issue: 8
  year: 2009
  end-page: 451
  article-title: An improved treatment of overlapping absorption bands based on the correlated k distribution model for thermal infrared radiative transfer calculations
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 120
  start-page: 240
  issue: 1
  year: 2015
  end-page: 255
  article-title: A fast visible infrared imaging radiometer suite simulator for cloudy atmospheres
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 50
  start-page: 2283
  issue: 11
  year: 2011
  end-page: 2297
  article-title: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 718
  year: 2002
  article-title: Data assimilation concepts and methods march 1999. Meteorological training course lecture series
  publication-title: ECMWF
– volume: 65
  start-page: 3917
  issue: 12
  year: 2008
  end-page: 3934
  article-title: Infrared radiance modeling by optimal spectral sampling
  publication-title: Journal of the Atmospheric Sciences
– volume: 77
  start-page: 2055
  issue: 6
  year: 2020
  end-page: 2066
  article-title: A spectral data compression (SDCOMP) radiative transfer model for high‐spectral‐resolution radiation simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 142
  start-page: 634
  issue: 2
  year: 2014
  end-page: 646
  article-title: The role of satellite data in the forecasting of hurricane sandy
  publication-title: Monthly Weather Review
– volume: 51
  issue: 22
  year: 2024
  article-title: Fuxi‐en4dvar: An assimilation system based on machine learning weather forecasting model ensuring physical constraints
  publication-title: Geophysical Research Letters
– volume: 280
  year: 2022
  article-title: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the fengyun‐4a’s geostationary interferometric infrared sounder (GIIRS)
  publication-title: Atmospheric Research
– volume: 46
  start-page: 6138
  issue: 11
  year: 2019
  end-page: 6147
  article-title: Improved performance of ERA5 in arctic gateway relative to four global atmospheric reanalyses
  publication-title: Geophysical Research Letters
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
– volume: 49
  start-page: 2139
  issue: 22
  year: 1992
  end-page: 2156
  article-title: On the correlated k‐distribution method for radiative transfer in nonhomogeneous atmospheres
  publication-title: Journal of the Atmospheric Sciences
– volume: 31
  start-page: 28596
  issue: 17
  year: 2023
  end-page: 28610
  article-title: Physics constraint deep learning based radiative transfer model
  publication-title: Optics Express
– volume: 9
  start-page: 9121
  issue: 23
  year: 2009
  end-page: 9142
  article-title: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super‐channels
  publication-title: Atmospheric Chemistry and Physics
– volume: 114
  issue: D6
  year: 2009
  article-title: Implementation of the community radiative transfer model in advanced clear‐sky processor for oceans and validation against nighttime AVHRR radiances
  publication-title: Journal of Geophysical Research
– volume: 149
  start-page: 1612
  issue: 754
  year: 2023
  end-page: 1628
  article-title: Performances between the fy‐4a/GIIRS and fy‐4b/GIIRS long‐wave infrared (LWIR) channels under clear‐sky and all‐sky conditions
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 29
  start-page: 937
  issue: 5
  year: 1972
  end-page: 949
  article-title: The influence of line shape and band structure on temperatures in planetary atmospheres
  publication-title: Journal of the Atmospheric Sciences
– year: 2020
– year: 2024
  article-title: Fuxi‐da: A generalized deep learning data assimilation framework for assimilating satellite observations
  publication-title: arXiv preprint arXiv:2404.08522
– volume: 96
  start-page: 9027
  issue: D5
  year: 1991
  end-page: 9063
  article-title: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres
  publication-title: Journal of Geophysical Research
– volume: 37
  start-page: 1385
  issue: 11
  year: 1998
  end-page: 1397
  article-title: A neural network approach for a fast and accurate computation of a longwave radiative budget
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 125
  start-page: 1407
  issue: 556
  year: 1999
  end-page: 1425
  article-title: An improved fast radiative transfer model for assimilation of satellite radiance observations
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 9
  issue: 7
  year: 2019
  article-title: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies
  publication-title: Geosciences
– volume: 143
  start-page: 3177
  issue: 709
  year: 2017
  end-page: 3188
  article-title: The assimilation of cross‐track infrared sounder radiances at ECMWF
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 107
  start-page: 263
  issue: 2
  year: 2007
  end-page: 293
  article-title: A fast linearized pseudo‐spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering–absorbing media
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 98
  start-page: 1637
  issue: 8
  year: 2017
  end-page: 1658
  article-title: Introducing the new generation of Chinese geostationary weather satellites, fengyun‐4
  publication-title: Bulletin of the American Meteorological Society
– start-page: 73
  year: 2015
  end-page: 78
– ident: e_1_2_9_23_1
  doi: 10.1175/jas‐d‐19‐0238.1
– volume-title: Proceedings of the ECMWF workshop on diagnostics of data assimilation system performance (ECMWF, 2009)
  year: 2009
  ident: e_1_2_9_5_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jqsrt.2022.108088
– ident: e_1_2_9_36_1
  doi: 10.3390/geosciences9070289
– ident: e_1_2_9_16_1
  doi: 10.1029/90jd01945
– volume: 718
  year: 2002
  ident: e_1_2_9_4_1
  article-title: Data assimilation concepts and methods march 1999. Meteorological training course lecture series
  publication-title: ECMWF
– ident: e_1_2_9_19_1
  doi: 10.1029/2024GL111136
– ident: e_1_2_9_22_1
  doi: 10.1002/2014jd022443
– ident: e_1_2_9_25_1
  doi: 10.1364/ao.45.000201
– ident: e_1_2_9_2_1
  doi: 10.1175/1520‐0469(1972)029<0937:tiolsa>2.0.co;2
– ident: e_1_2_9_31_1
  doi: 10.1002/qj.4473
– ident: e_1_2_9_39_1
  doi: 10.1175/1520‐0469(2003)060<2633:sdainw>2.0.co;2
– year: 2023
  ident: e_1_2_9_41_1
  article-title: Fengwu‐4dvar: Coupling the data‐driven weather forecasting model with 4D variational assimilation
  publication-title: arXiv preprint arXiv:2312.12455
– ident: e_1_2_9_32_1
  doi: 10.1256/smsqj.55614
– ident: e_1_2_9_11_1
  doi: 10.5194/amt‐12‐4903‐2019
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jqsrt.2009.01.008
– ident: e_1_2_9_26_1
  doi: 10.5194/acp‐9‐9121‐2009
– ident: e_1_2_9_28_1
  doi: 10.1175/1520‐0469(1980)037<0630:tsatrt>2.0.co;2
– ident: e_1_2_9_14_1
  doi: 10.1002/qj.3803
– ident: e_1_2_9_35_1
  doi: 10.1007/s00376‐023‐2293‐5
– ident: e_1_2_9_29_1
  doi: 10.1175/2008jas2711.1
– ident: e_1_2_9_43_1
  doi: 10.1175/bams‐d‐16‐0065.1
– start-page: 73
  volume-title: Proceedings of the 29th pacific Asia conference on language, information and computation
  year: 2015
  ident: e_1_2_9_46_1
– ident: e_1_2_9_24_1
  doi: 10.1364/oe.493818
– ident: e_1_2_9_13_1
  doi: 10.1007/978-3-031-40567-9_8
– ident: e_1_2_9_15_1
  doi: 10.1016/0022‐4073(95)00006‐7
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jqsrt.2020.106928
– ident: e_1_2_9_9_1
  doi: 10.1175/1520‐0469(1992)049<2139:otcdmf>2.0.co;2
– ident: e_1_2_9_21_1
  doi: 10.1029/2008jd010960
– ident: e_1_2_9_18_1
  doi: 10.1002/qj.4760
– ident: e_1_2_9_38_1
  doi: 10.1175/jamc‐d‐11‐067.1
– ident: e_1_2_9_44_1
  doi: 10.1029/2021gl093672
– ident: e_1_2_9_6_1
  doi: 10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2
– ident: e_1_2_9_27_1
  doi: 10.1175/mwr‐d‐13‐00170.1
– volume-title: Advanced radiative transfer modeling system (arms): A new‐generation satellite observation operator developed for numerical weather prediction and remote sensing applications
  year: 2020
  ident: e_1_2_9_40_1
– ident: e_1_2_9_7_1
  doi: 10.1002/qj.3171
– ident: e_1_2_9_37_1
  doi: 10.1029/2021ms002875
– ident: e_1_2_9_3_1
  doi: 10.1109/IGARSS46834.2022.9884369
– ident: e_1_2_9_45_1
  doi: 10.3390/rs14225710
– ident: e_1_2_9_12_1
  doi: 10.1029/2019gl082781
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jqsrt.2007.02.011
– year: 2024
  ident: e_1_2_9_42_1
  article-title: Fuxi‐da: A generalized deep learning data assimilation framework for assimilating satellite observations
  publication-title: arXiv preprint arXiv:2404.08522
– ident: e_1_2_9_8_1
  doi: 10.1016/j.atmosres.2022.106391
– volume: 8
  start-page: 20
  year: 2019
  ident: e_1_2_9_10_1
  article-title: Recent progress in all‐sky radiance assimilation
  publication-title: ECMWF Newsl
– ident: e_1_2_9_20_1
  doi: 10.1109/jstars.2022.3210491
SSID ssj0003320807
Score 2.2842991
Snippet The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical weather...
Abstract The increasing volume of satellite data, particularly hyperspectral infrared data, combined with the real‐time monitoring requirements of numerical...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQJxYEAkT50w2wEeHYrlOPLdA_USqVVipTZDsOC7QVlIENiRfgGXkSzm5atQssZIzsOLqL7r7L3X1HyBmz1FIuct-xzCMhWRaphJrIIHxwiM9pZn03cvdOtoaiM6qMVkZ9-ZqwOT3wXHCXTGEUxbSROQIVVqWaOUTssaG55Vrb0OaLPm8lmPI2GLcgFEqKSnfKlA_yRacVEphqzQcFqv51aBp8S2ObbBWgEGrzl9khG268Sz5r0A2Vjg4KEtTH74-vOnqdDHpm-TMVelMXUuWA8BMaD7hG1KHZbvfvoR5Cb2_MYOCepwV_8isspnTiIwEBIAxR86EyYPYOkxxutXFPcK1neo8MGzeDq1ZUjEyIbCB1klTEQudGcmqkZRj-2KqLZcXxHAM5I0UuNJo3Gltjk4wjWkhwiapU0ZU5VZV8n5TGk7E7IODQTArtXIyY0LtxxR3TiVX-yhjXZXK-EGI6nTNjpCGjzVS6KuwyqXsJL9d4PutwA7WcFlpO_9JymVwE_fx6Utpp9j3dYJwc_seZR2ST-WG_oeDsmJRmL2_uBBHIzJyGj-0HsmrU2A
  priority: 102
  providerName: Directory of Open Access Journals
Title A Machine Learning‐Based Observation Operator for FY‐4B GIIRS Brightness Temperatures Considering the Uncertainty of Label Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000449
https://doaj.org/article/291332ab6f774280a2e2591b0fc3aac8
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjyqG6AjQjHdp1kJEApFQUErVSmyHacLtBWpQwsCIk_wG_kl3B2Q9UuSGTIEJ0cyY-7716fCTlkhhrKReE6lnkgJMuDJKI60AgfLOJzmhvXjdy-kc2uaPXqvTLg5nphpvwQs4CbOxleX7sDrvRLSTbgODLRaxetps9IJstkxXXXupI-Ju5mMRbOGZ12TDNXpoaWipa17zjEyfwAC1bJk_cvglVvbRrrZK2EiXA6XdcNsmQHm-TzFNq-9tFCSYva__74StEO5XCrZ-FVuB1ZnzwHBKTQeEQZkcLl1dX9A6TeGXfqDTr2eVQyKr_A772dOCQgJIQu7gVfKzB5g2EB10rbJzhXE7VFuo2LzlkzKC9RCIyneZJUhEIVWnKqpWHoEJnYhrJueYGunZaiEAoVHg2NNlHOET9EKJLUYzRuNokl3yaVwXBgdwhYVJxCWRsiSnSGPeGWqcgk7skZV1Vy9DuJ2WjKlZH5HDdLsvnJrpLUzfBMxjFc-w_DcT8rD0zGEvSemdKyQIDKYqqYRU8t1LQwXCkTV8mxX58__5S1Lu8dAWEY7f5PfI-sMnfRry822yeVyfjVHiD6mOia32I177vju_1-8QNEVNEc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VcoALAgEi5adzoDdWeG3Hu3vg0NCmSZq0qCRSOS22d7YXSKI2CPVWqS_Am_BOPAljZxO1FyQO3eNq5PXa45lv7PE3AG-lF14oXYcbyyrRRlZJkQmXOIYPxPhcVD7cRh4dmd5ED07bpxvwe3UXZskPsd5wCysj2uuwwMOGdMM2EEgyOWzXg148kiyarMpDuvzJMdvFh_4eT_COlN398cde0pQVSHwkPjJCp9rWzijhjJccIvicUtMmVXOw44yutWUTIFLvfFYp9qgZixTtnM09FblR3O49uM__lYWSCVJ_Wm_qKCXF8oq2DHlx7BpFk2zPXX5_s8O33GCsFnAbHUf31n0MjxpcirtLRXoCGzR9Cte7OIrJloQND-vZn6tfHXZ8FR679X4uHs8pntYjI2DsfmEZ3cGDfv_kM3Zi9B_sKY7p-7yhcL7AVaFQbhIZg-KElS8mJywucVbj0Dr6hnt2YZ_B5E6G9zlsTmdTegFIbKm1JUoZlgYkUSiSNvNFeCqpbAt2VoNYzpfkHGU8VJdFeXOwW9AJI7yWCZTa8cXs_KxsVmgpCw7XpXWmZkQsc2ElcWiYOlF7Za3PW_Auzs8_v1QODk4C42Gabf2f-DY86I1Hw3LYPzp8CQ9lqDIcM91ewebi_Ae9ZuizcG-iuiF8vWv9_gu3PwmX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVqq4ICpaEf46B3pjVa_teHcPHBpCmqS_Ko1UTovtne0FkqgNQr0h8QI8CQ_FkzB2NlF7qcShe1xZ3pU9nvnGM_MNwFvphRdK16FiWSXayCopMuESx_CBGJ-Lyodq5KNj0x_p4UX7YgX-LGph5vwQywu3cDKivg4HfFrVDdlA4Mhkr10P-zEiWTRJlQd084Ndtuv3gy7v746UvY_nH_pJ01Ug8ZH3yAidals7o4QzXrKH4HNKTZtUzb6OM7rWljWASL3zWaXYoGY8pGjnrO2pyI3ieR_BWogvhhQyqU-XdzpKSTGv0JYhLY4to2hy7fmXd2__8B0rGJsF3AXH0br1nsKTBpbi3lyONmCFxs_g1x4exVxLwoaG9fLvz98dtnsVnrjldS6eTCkG65EBMPY-8xjdwf3B4OwTdqLzH9QpntO3acPgfI2LPqE8JTIExRHLXsxNmN3gpMZD6-grdu3MbsLoQZZ3C1bHkzE9ByRW1NoSpYxKA5AoFEmb-SI8lVS2BTuLRSync26OMsbUZVHeXuwWdMIKL8cERu34YnJ1WTYHtJQFe-vSOlMzIJa5sJLYM0ydqL2y1ucteBf3594vlcP9s0B4mGYv_m_4Nqyfdnvl4eD44CU8lqHHcMxzewWrs6vv9JqBz8y9idKG8OWhxfsf-MIIyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning%E2%80%90Based+Observation+Operator+for+FY%E2%80%904B+GIIRS+Brightness+Temperatures+Considering+the+Uncertainty+of+Label+Data&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Li%2C+Yonghui&rft.au=Han%2C+Wei&rft.au=Duan%2C+Wansuo&rft.au=Li%2C+Zeting&rft.date=2025-03-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1029%2F2024JH000449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon