Sensor-Based Hand Gesture Recognition Using One-Dimensional Deep Convolutional and Residual Bidirectional Gated Recurrent Unit Neural Network

Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors in...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 46; no. 1; pp. 464 - 480
Main Authors Mekruksavanich, Sakorn, Phaphan, Wikanda, Jitpattanakul, Anuchit
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1995-0802
1818-9962
DOI10.1134/S1995080224608166

Cover

Loading…
Abstract Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors integrated with a sophisticated neural network architecture. We propose an integrated deep residual model called 1D-CNN-ResBiGRU, which amalgamates a one-dimensional convolutional neural network (CNN) with residual bidirectional gated recurrent units (ResBiGRU) to analyze data from wearable sensors to enhance the accuracy and robustness of hand gesture recognition. Our experimental findings indicate that this method attains exceptional accuracy rates of 93.03 and 98.49 on the GesHome and UWave datasets, respectively, in recognizing diverse hand motions. The achievement substantially surpasses current methodologies, exhibiting enhancements of up to 7.16 percentage points compared to state-of-the-art models. The suggested system demonstrates notable proficiency in managing intricate motions and ensuring uniformity across user demographics. It is appropriate for utilization in human-computer interaction, smart home management, and assistive technologies. Ablation experiments further confirm the efficacy of each component in our design, with the 1D-CNN blocks and ResBiGRU component greatly enhancing the model’s capability to accomplish.
AbstractList Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors integrated with a sophisticated neural network architecture. We propose an integrated deep residual model called 1D-CNN-ResBiGRU, which amalgamates a one-dimensional convolutional neural network (CNN) with residual bidirectional gated recurrent units (ResBiGRU) to analyze data from wearable sensors to enhance the accuracy and robustness of hand gesture recognition. Our experimental findings indicate that this method attains exceptional accuracy rates of 93.03 and 98.49 on the GesHome and UWave datasets, respectively, in recognizing diverse hand motions. The achievement substantially surpasses current methodologies, exhibiting enhancements of up to 7.16 percentage points compared to state-of-the-art models. The suggested system demonstrates notable proficiency in managing intricate motions and ensuring uniformity across user demographics. It is appropriate for utilization in human-computer interaction, smart home management, and assistive technologies. Ablation experiments further confirm the efficacy of each component in our design, with the 1D-CNN blocks and ResBiGRU component greatly enhancing the model’s capability to accomplish.
Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors integrated with a sophisticated neural network architecture. We propose an integrated deep residual model called 1D-CNN-ResBiGRU, which amalgamates a one-dimensional convolutional neural network (CNN) with residual bidirectional gated recurrent units (ResBiGRU) to analyze data from wearable sensors to enhance the accuracy and robustness of hand gesture recognition. Our experimental findings indicate that this method attains exceptional accuracy rates of 93.03 and 98.49 on the GesHome and UWave datasets, respectively, in recognizing diverse hand motions. The achievement substantially surpasses current methodologies, exhibiting enhancements of up to 7.16 percentage points compared to state-of-the-art models. The suggested system demonstrates notable proficiency in managing intricate motions and ensuring uniformity across user demographics. It is appropriate for utilization in human-computer interaction, smart home management, and assistive technologies. Ablation experiments further confirm the efficacy of each component in our design, with the 1D-CNN blocks and ResBiGRU component greatly enhancing the model’s capability to accomplish.
Author Jitpattanakul, Anuchit
Mekruksavanich, Sakorn
Phaphan, Wikanda
Author_xml – sequence: 1
  givenname: Sakorn
  surname: Mekruksavanich
  fullname: Mekruksavanich, Sakorn
  email: sakorn.me@up.ac.th
  organization: Department of Computer Engineering, School of Information and Communication Technology, University of Phayao
– sequence: 2
  givenname: Wikanda
  surname: Phaphan
  fullname: Phaphan, Wikanda
  email: wikanda.p@sci.kmutnb.ac.th
  organization: Research Group in Statistical Learning and Inference, Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok
– sequence: 3
  givenname: Anuchit
  surname: Jitpattanakul
  fullname: Jitpattanakul, Anuchit
  email: anuchit.j@sci.kmutnb.ac.th
  organization: Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok
BookMark eNp1kF9PwjAUxRuDiYB-AN-a-Dzt3Z9uexRQMCGQgDwvpbsjRWix3TR-CL-zXUbig_Gp7f2dc3J7BqSnjUZCboHdA0TxwxryPGEZC8OYsww4vyB9yCAL8pyHPX_3OGj5FRk4t2deyDnvk-81amdsMBIOSzoTuqRTdHVjka5Qmp1WtTKabpzSO7rUGEzU0Tv8TBzoBPFEx0Z_mENTd6M2YIVOlY1_jFSpLMozmooaWygba1HXdOOz6QIb69kC609j367JZSUODm_O55Bsnp9ex7Ngvpy-jB_ngYQs4UHFs3K75dswziVWTGSJSEXie0hAJoJDlUbbkuWcsSSFFLlgiWRxxSWPuKd5NCR3Xe7JmvfG_7fYm8b6JV0RhRADQBynXgWdSlrjnMWqOFl1FParAFa0rRd_WveesPM4r9U7tL_J_5t-AM7OhrM
Cites_doi 10.1109/TII.2017.2779814
10.1016/j.sna.2023.114877
10.1109/TBME.2019.2899927
10.1109/CVPR.2016.90
10.3390/math10244753
10.3390/s20102972
10.1016/j.displa.2018.08.001
10.1109/PERCOM.2009.4912759
10.3390/app12147276
10.1109/JSEN.2021.3074642
10.3115/v1/W14-4012
10.3390/electronics13163233
10.3390/s19183827
10.1109/JSEN.2023.3327999
10.1371/journal.pone.0227039
10.1109/BIGCOM.2018.00018
10.3390/s16010115
10.1109/TBCAS.2019.2940030
10.1109/TNSRE.2018.2829913
10.3390/jimaging6080073
10.1109/KSE.2019.8919419
10.1109/TMC.2021.3120475
10.1142/S0218488598000094
10.1109/ACCESS.2024.3421992
10.1109/JBHI.2022.3159792
10.1109/JSEN.2019.2904595
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1134/S1995080224608166
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 480
ExternalDocumentID 10_1134_S1995080224608166
GroupedDBID -Y2
-~9
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c1856-f68dbb6b249cef0a85a7a511351c5a61f73bd096005717e6a05c04f6c63661f93
IEDL.DBID AGYKE
ISSN 1995-0802
IngestDate Fri Jul 25 09:03:12 EDT 2025
Thu Jul 03 08:42:59 EDT 2025
Sat May 31 01:18:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords bidirectional gated recurrent unit neural network
wearable sensors
2010 Mathematics Subject Classification: 68T05, 68T07
convolutional neural network
hand gesture recognition
deep residual network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1856-f68dbb6b249cef0a85a7a511351c5a61f73bd096005717e6a05c04f6c63661f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3214111447
PQPubID 2044393
PageCount 17
ParticipantIDs proquest_journals_3214111447
crossref_primary_10_1134_S1995080224608166
springer_journals_10_1134_S1995080224608166
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References G. Li (8173_CR14) 2023; 23
S. Hochreiter (8173_CR24) 1998; 6
A. O. Hashi (8173_CR7) 2024; 12
T. Bao (8173_CR9) 2022; 26
Q. Gao (8173_CR17) 2020; 20
Y. Zhang (8173_CR10) 2019; 13
8173_CR5
F. J. Ordonez (8173_CR6) 2016; 16
8173_CR16
M. Oudah (8173_CR3) 2020; 6
8173_CR8
J. M. Kim (8173_CR23) 2022; 12
X. Yang (8173_CR15) 2018; 26
J. H. Kim (8173_CR20) 2018; 55
D. Zhang (8173_CR12) 2023; 22
8173_CR19
M. Kim (8173_CR11) 2019; 19
H. Jeon (8173_CR2) 2022; 10
M. Panwar (8173_CR18) 2019; 66
O. J. Yaseen (8173_CR1) 2024; 13
8173_CR22
X. Zhang (8173_CR4) 2019; 19
8173_CR25
8173_CR26
K. Nguyen-Trong (8173_CR21) 2021; 21
S. Jiang (8173_CR13) 2018; 14
References_xml – volume: 14
  start-page: 3376
  year: 2018
  ident: 8173_CR13
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2779814
– ident: 8173_CR8
  doi: 10.1016/j.sna.2023.114877
– volume: 66
  start-page: 3026
  year: 2019
  ident: 8173_CR18
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2899927
– ident: 8173_CR26
  doi: 10.1109/CVPR.2016.90
– volume: 10
  start-page: 4753
  year: 2022
  ident: 8173_CR2
  publication-title: Mathematics
  doi: 10.3390/math10244753
– volume: 20
  start-page: 2972
  year: 2020
  ident: 8173_CR17
  publication-title: Sensors
  doi: 10.3390/s20102972
– volume: 55
  start-page: 38
  year: 2018
  ident: 8173_CR20
  publication-title: Displays
  doi: 10.1016/j.displa.2018.08.001
– ident: 8173_CR22
  doi: 10.1109/PERCOM.2009.4912759
– volume: 12
  start-page: 7276
  year: 2022
  ident: 8173_CR23
  publication-title: Appl. Sci.
  doi: 10.3390/app12147276
– volume: 21
  start-page: 15065
  year: 2021
  ident: 8173_CR21
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3074642
– ident: 8173_CR25
  doi: 10.3115/v1/W14-4012
– volume: 13
  start-page: 3233
  year: 2024
  ident: 8173_CR1
  publication-title: Electronics
  doi: 10.3390/electronics13163233
– volume: 19
  start-page: 3827
  year: 2019
  ident: 8173_CR11
  publication-title: Sensors
  doi: 10.3390/s19183827
– volume: 23
  start-page: 31414
  year: 2023
  ident: 8173_CR14
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3327999
– ident: 8173_CR16
  doi: 10.1371/journal.pone.0227039
– ident: 8173_CR19
  doi: 10.1109/BIGCOM.2018.00018
– volume: 16
  start-page: 115
  year: 2016
  ident: 8173_CR6
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 13
  start-page: 1425
  year: 2019
  ident: 8173_CR10
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2940030
– volume: 26
  start-page: 1199
  year: 2018
  ident: 8173_CR15
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2829913
– volume: 6
  start-page: 73
  year: 2020
  ident: 8173_CR3
  publication-title: J. Imaging
  doi: 10.3390/jimaging6080073
– ident: 8173_CR5
  doi: 10.1109/KSE.2019.8919419
– volume: 22
  start-page: 2177
  year: 2023
  ident: 8173_CR12
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2021.3120475
– volume: 6
  start-page: 107
  year: 1998
  ident: 8173_CR24
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488598000094
– volume: 12
  start-page: 143599
  year: 2024
  ident: 8173_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3421992
– volume: 26
  start-page: 3822
  year: 2022
  ident: 8173_CR9
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3159792
– volume: 19
  start-page: 5775
  year: 2019
  ident: 8173_CR4
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2904595
SSID ssj0022666
Score 2.310496
Snippet Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 464
SubjectTerms Ablation
Accuracy
Algebra
Analysis
Artificial neural networks
Augmented reality
Geometry
Gesture recognition
Human-computer interaction
Human-computer interface
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Neural networks
Probability Theory and Stochastic Processes
Sensors
Smart buildings
Virtual reality
Wearable technology
Title Sensor-Based Hand Gesture Recognition Using One-Dimensional Deep Convolutional and Residual Bidirectional Gated Recurrent Unit Neural Network
URI https://link.springer.com/article/10.1134/S1995080224608166
https://www.proquest.com/docview/3214111447
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVEolQ-cQClp4jjpkRbaCtQisUjlFDleJISUoi4c-Af-mbGdgNgOvUWZyHIyE8979iwAx5SLWPKAehk6Hw_5Bl5pmXhKCZrJphYRNxv6gyHrP9CrUTQq8rinZbR7eSRpV2rXd4Se3ZlkYpsZSpnpFsGWYQXhh08rsHLee7y-_ORZ6HNsUpFNPk78oDjM_HOQ7-7oC2P-OBa13qa7AfflPF2QyXNjPssa4u1HCccFX2QT1gv0Sc6duWzBksq3YW3wWbp1ugPvd0hsxxOvje5Nkj7PJenhXOcTRW7LYKNxTmyoAbnJlXdh-gO42h7kQqkX0hnnr4VB4y0zwK2a2pwv0n5yLtSJzM6dEQpXI4oY_EtMtRCUDV14-i48dC_vO32v6NngCfT8zNMskVnGMmR1QmmfJxGPOYK6MGqi2llTx2EmDW1CnNiMFeN-JHyqmWAhIgXdCvegko9ztQ-E-jzwWyrQJjeXylaitGQ6CpCCMaUTVoWTUnXpiyvNkVpKE9L01zeuQq1Ublr8pdPUNGnCtZ7SuAqnpa6-xP8OdrDQ04ewGpimwXbfpgaV2WSujhDJzLI6Wm633R7WCwv-ACq26q8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZfeAECqSJ46THAoWytEhQJDhFjhcJIaVVFw78A__M2E5AFDhwizKR5WQmnvfsWQD2KRex5AH1MnQ-HvINvNIy8ZQSNJM1LSJuNvTbHdZ6oFeP0WORxz0so93LI0m7Uru-I_T43iQT28xQyky3CDYNMxQpOJr1TOPi6br5ybPQ59ikIpt8nPhBcZj56yDf3dEXxpw4FrXe5nwRuuU8XZDJy9F4lB2Jt4kSjv98kSVYKNAnaThzWYYpla_AfPuzdOtwFd7vkdj2Bt4JujdJWjyX5ALnOh4oclcGG_VyYkMNyG2uvDPTH8DV9iBnSvXJaS9_LQwab5kB7tTQ5nyRk2fnQp3I7NwZoXA1oojBv8RUC0FZx4Wnr8HDebN72vKKng2eQM_PPM0SmWUsQ1YnlPZ5EvGYI6gLoxqqndV0HGbS0CbEibVYMe5HwqeaCRYiUtD1cB0qeS9XG0CozwO_rgJtcnOprCdKS6ajACkYUzphVTgoVZf2XWmO1FKakKY_vnEVtkvlpsVfOkxNkyZc6ymNq3BY6upL_Odgm_96eg9mW932TXpz2bnegrnANBC2ezjbUBkNxmoHUc0o2y2s-AP5Rewi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFl9YETKJAmjpMegVIKhYJakOAUHC8SQkqrLhz4B_6ZcZxQsR0QtygTWU480Xtjz7wB2KVchJJ71EkQfByMN_BKy8hRStBEVrQIuNnQv2qxxh29uA_u8z6ngyLbvTiStDUNRqUpHR72pM57kNDDjikszqpEKTOdI9gkTFEjbVeCqaOzh-bpR8yF-JMVGGWFyJHr5QebPw7yGZrGfPPLEWmGPPV5eCzmbBNOng9Gw-RAvH6Rc_zHSy3AXM5KyZF1o0WYUOkSzF59SLoOluGtgwFvt-8cI-xJ0uCpJGc471FfkXaRhNRNSZaCQK5T5dRM3wCr-UFqSvXISTd9yR0db5kB2mqQ1YKR4ycLrdZkdvSMUVjtKGJ4MTEqImhr2bT1Fbirn96eNJy8l4MjkBEwR7NIJglLMNoTSrs8CnjIkez5QQXdgVV06CfShFPIHyuhYtwNhEs1E8xHBqGr_iqU0m6q1oBQl3tuVXna1OxSWY2UlkwHHoZmTOmIlWGvWMa4ZyU74izU8Wn87RuXYbNY6Dj_ewexad6EGEBpWIb9Yt3G5l8HW__T0zswfVOrx5fnreYGzHimr3C2tbMJpWF_pLaQ7AyT7dyh3wGMv_UG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor-Based+Hand+Gesture+Recognition+Using+One-Dimensional+Deep+Convolutional+and+Residual+Bidirectional+Gated+Recurrent+Unit+Neural+Network&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Mekruksavanich%2C+Sakorn&rft.au=Phaphan%2C+Wikanda&rft.au=Jitpattanakul%2C+Anuchit&rft.date=2025-01-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=464&rft.epage=480&rft_id=info:doi/10.1134%2FS1995080224608166&rft.externalDocID=10_1134_S1995080224608166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon