Sensor-Based Hand Gesture Recognition Using One-Dimensional Deep Convolutional and Residual Bidirectional Gated Recurrent Unit Neural Network
Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors in...
Saved in:
Published in | Lobachevskii journal of mathematics Vol. 46; no. 1; pp. 464 - 480 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1995-0802 1818-9962 |
DOI | 10.1134/S1995080224608166 |
Cover
Loading…
Abstract | Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors integrated with a sophisticated neural network architecture. We propose an integrated deep residual model called 1D-CNN-ResBiGRU, which amalgamates a one-dimensional convolutional neural network (CNN) with residual bidirectional gated recurrent units (ResBiGRU) to analyze data from wearable sensors to enhance the accuracy and robustness of hand gesture recognition. Our experimental findings indicate that this method attains exceptional accuracy rates of 93.03 and 98.49
on the GesHome and UWave datasets, respectively, in recognizing diverse hand motions. The achievement substantially surpasses current methodologies, exhibiting enhancements of up to 7.16 percentage points compared to state-of-the-art models. The suggested system demonstrates notable proficiency in managing intricate motions and ensuring uniformity across user demographics. It is appropriate for utilization in human-computer interaction, smart home management, and assistive technologies. Ablation experiments further confirm the efficacy of each component in our design, with the 1D-CNN blocks and ResBiGRU component greatly enhancing the model’s capability to accomplish. |
---|---|
AbstractList | Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors integrated with a sophisticated neural network architecture. We propose an integrated deep residual model called 1D-CNN-ResBiGRU, which amalgamates a one-dimensional convolutional neural network (CNN) with residual bidirectional gated recurrent units (ResBiGRU) to analyze data from wearable sensors to enhance the accuracy and robustness of hand gesture recognition. Our experimental findings indicate that this method attains exceptional accuracy rates of 93.03 and 98.49 on the GesHome and UWave datasets, respectively, in recognizing diverse hand motions. The achievement substantially surpasses current methodologies, exhibiting enhancements of up to 7.16 percentage points compared to state-of-the-art models. The suggested system demonstrates notable proficiency in managing intricate motions and ensuring uniformity across user demographics. It is appropriate for utilization in human-computer interaction, smart home management, and assistive technologies. Ablation experiments further confirm the efficacy of each component in our design, with the 1D-CNN blocks and ResBiGRU component greatly enhancing the model’s capability to accomplish. Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual and augmented reality, and sign language interpretation. This research introduces an innovative method for HGR utilizing wearable sensors integrated with a sophisticated neural network architecture. We propose an integrated deep residual model called 1D-CNN-ResBiGRU, which amalgamates a one-dimensional convolutional neural network (CNN) with residual bidirectional gated recurrent units (ResBiGRU) to analyze data from wearable sensors to enhance the accuracy and robustness of hand gesture recognition. Our experimental findings indicate that this method attains exceptional accuracy rates of 93.03 and 98.49 on the GesHome and UWave datasets, respectively, in recognizing diverse hand motions. The achievement substantially surpasses current methodologies, exhibiting enhancements of up to 7.16 percentage points compared to state-of-the-art models. The suggested system demonstrates notable proficiency in managing intricate motions and ensuring uniformity across user demographics. It is appropriate for utilization in human-computer interaction, smart home management, and assistive technologies. Ablation experiments further confirm the efficacy of each component in our design, with the 1D-CNN blocks and ResBiGRU component greatly enhancing the model’s capability to accomplish. |
Author | Jitpattanakul, Anuchit Mekruksavanich, Sakorn Phaphan, Wikanda |
Author_xml | – sequence: 1 givenname: Sakorn surname: Mekruksavanich fullname: Mekruksavanich, Sakorn email: sakorn.me@up.ac.th organization: Department of Computer Engineering, School of Information and Communication Technology, University of Phayao – sequence: 2 givenname: Wikanda surname: Phaphan fullname: Phaphan, Wikanda email: wikanda.p@sci.kmutnb.ac.th organization: Research Group in Statistical Learning and Inference, Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok – sequence: 3 givenname: Anuchit surname: Jitpattanakul fullname: Jitpattanakul, Anuchit email: anuchit.j@sci.kmutnb.ac.th organization: Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok |
BookMark | eNp1kF9PwjAUxRuDiYB-AN-a-Dzt3Z9uexRQMCGQgDwvpbsjRWix3TR-CL-zXUbig_Gp7f2dc3J7BqSnjUZCboHdA0TxwxryPGEZC8OYsww4vyB9yCAL8pyHPX_3OGj5FRk4t2deyDnvk-81amdsMBIOSzoTuqRTdHVjka5Qmp1WtTKabpzSO7rUGEzU0Tv8TBzoBPFEx0Z_mENTd6M2YIVOlY1_jFSpLMozmooaWygba1HXdOOz6QIb69kC609j367JZSUODm_O55Bsnp9ex7Ngvpy-jB_ngYQs4UHFs3K75dswziVWTGSJSEXie0hAJoJDlUbbkuWcsSSFFLlgiWRxxSWPuKd5NCR3Xe7JmvfG_7fYm8b6JV0RhRADQBynXgWdSlrjnMWqOFl1FParAFa0rRd_WveesPM4r9U7tL_J_5t-AM7OhrM |
Cites_doi | 10.1109/TII.2017.2779814 10.1016/j.sna.2023.114877 10.1109/TBME.2019.2899927 10.1109/CVPR.2016.90 10.3390/math10244753 10.3390/s20102972 10.1016/j.displa.2018.08.001 10.1109/PERCOM.2009.4912759 10.3390/app12147276 10.1109/JSEN.2021.3074642 10.3115/v1/W14-4012 10.3390/electronics13163233 10.3390/s19183827 10.1109/JSEN.2023.3327999 10.1371/journal.pone.0227039 10.1109/BIGCOM.2018.00018 10.3390/s16010115 10.1109/TBCAS.2019.2940030 10.1109/TNSRE.2018.2829913 10.3390/jimaging6080073 10.1109/KSE.2019.8919419 10.1109/TMC.2021.3120475 10.1142/S0218488598000094 10.1109/ACCESS.2024.3421992 10.1109/JBHI.2022.3159792 10.1109/JSEN.2019.2904595 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1995080224608166 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1818-9962 |
EndPage | 480 |
ExternalDocumentID | 10_1134_S1995080224608166 |
GroupedDBID | -Y2 -~9 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB YLTOR ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c1856-f68dbb6b249cef0a85a7a511351c5a61f73bd096005717e6a05c04f6c63661f93 |
IEDL.DBID | AGYKE |
ISSN | 1995-0802 |
IngestDate | Fri Jul 25 09:03:12 EDT 2025 Thu Jul 03 08:42:59 EDT 2025 Sat May 31 01:18:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | bidirectional gated recurrent unit neural network wearable sensors 2010 Mathematics Subject Classification: 68T05, 68T07 convolutional neural network hand gesture recognition deep residual network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1856-f68dbb6b249cef0a85a7a511351c5a61f73bd096005717e6a05c04f6c63661f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3214111447 |
PQPubID | 2044393 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3214111447 crossref_primary_10_1134_S1995080224608166 springer_journals_10_1134_S1995080224608166 |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Lobachevskii journal of mathematics |
PublicationTitleAbbrev | Lobachevskii J Math |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | G. Li (8173_CR14) 2023; 23 S. Hochreiter (8173_CR24) 1998; 6 A. O. Hashi (8173_CR7) 2024; 12 T. Bao (8173_CR9) 2022; 26 Q. Gao (8173_CR17) 2020; 20 Y. Zhang (8173_CR10) 2019; 13 8173_CR5 F. J. Ordonez (8173_CR6) 2016; 16 8173_CR16 M. Oudah (8173_CR3) 2020; 6 8173_CR8 J. M. Kim (8173_CR23) 2022; 12 X. Yang (8173_CR15) 2018; 26 J. H. Kim (8173_CR20) 2018; 55 D. Zhang (8173_CR12) 2023; 22 8173_CR19 M. Kim (8173_CR11) 2019; 19 H. Jeon (8173_CR2) 2022; 10 M. Panwar (8173_CR18) 2019; 66 O. J. Yaseen (8173_CR1) 2024; 13 8173_CR22 X. Zhang (8173_CR4) 2019; 19 8173_CR25 8173_CR26 K. Nguyen-Trong (8173_CR21) 2021; 21 S. Jiang (8173_CR13) 2018; 14 |
References_xml | – volume: 14 start-page: 3376 year: 2018 ident: 8173_CR13 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2779814 – ident: 8173_CR8 doi: 10.1016/j.sna.2023.114877 – volume: 66 start-page: 3026 year: 2019 ident: 8173_CR18 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2899927 – ident: 8173_CR26 doi: 10.1109/CVPR.2016.90 – volume: 10 start-page: 4753 year: 2022 ident: 8173_CR2 publication-title: Mathematics doi: 10.3390/math10244753 – volume: 20 start-page: 2972 year: 2020 ident: 8173_CR17 publication-title: Sensors doi: 10.3390/s20102972 – volume: 55 start-page: 38 year: 2018 ident: 8173_CR20 publication-title: Displays doi: 10.1016/j.displa.2018.08.001 – ident: 8173_CR22 doi: 10.1109/PERCOM.2009.4912759 – volume: 12 start-page: 7276 year: 2022 ident: 8173_CR23 publication-title: Appl. Sci. doi: 10.3390/app12147276 – volume: 21 start-page: 15065 year: 2021 ident: 8173_CR21 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3074642 – ident: 8173_CR25 doi: 10.3115/v1/W14-4012 – volume: 13 start-page: 3233 year: 2024 ident: 8173_CR1 publication-title: Electronics doi: 10.3390/electronics13163233 – volume: 19 start-page: 3827 year: 2019 ident: 8173_CR11 publication-title: Sensors doi: 10.3390/s19183827 – volume: 23 start-page: 31414 year: 2023 ident: 8173_CR14 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3327999 – ident: 8173_CR16 doi: 10.1371/journal.pone.0227039 – ident: 8173_CR19 doi: 10.1109/BIGCOM.2018.00018 – volume: 16 start-page: 115 year: 2016 ident: 8173_CR6 publication-title: Sensors doi: 10.3390/s16010115 – volume: 13 start-page: 1425 year: 2019 ident: 8173_CR10 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2940030 – volume: 26 start-page: 1199 year: 2018 ident: 8173_CR15 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2829913 – volume: 6 start-page: 73 year: 2020 ident: 8173_CR3 publication-title: J. Imaging doi: 10.3390/jimaging6080073 – ident: 8173_CR5 doi: 10.1109/KSE.2019.8919419 – volume: 22 start-page: 2177 year: 2023 ident: 8173_CR12 publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2021.3120475 – volume: 6 start-page: 107 year: 1998 ident: 8173_CR24 publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. doi: 10.1142/S0218488598000094 – volume: 12 start-page: 143599 year: 2024 ident: 8173_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3421992 – volume: 26 start-page: 3822 year: 2022 ident: 8173_CR9 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3159792 – volume: 19 start-page: 5775 year: 2019 ident: 8173_CR4 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2904595 |
SSID | ssj0022666 |
Score | 2.310496 |
Snippet | Hand gesture recognition (HGR) is a crucial domain of study within human-computer interaction (HCI), encompassing applications such as drone operation, virtual... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 464 |
SubjectTerms | Ablation Accuracy Algebra Analysis Artificial neural networks Augmented reality Geometry Gesture recognition Human-computer interaction Human-computer interface Mathematical Logic and Foundations Mathematics Mathematics and Statistics Neural networks Probability Theory and Stochastic Processes Sensors Smart buildings Virtual reality Wearable technology |
Title | Sensor-Based Hand Gesture Recognition Using One-Dimensional Deep Convolutional and Residual Bidirectional Gated Recurrent Unit Neural Network |
URI | https://link.springer.com/article/10.1134/S1995080224608166 https://www.proquest.com/docview/3214111447 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVEolQ-cQClp4jjpkRbaCtQisUjlFDleJISUoi4c-Af-mbGdgNgOvUWZyHIyE8979iwAx5SLWPKAehk6Hw_5Bl5pmXhKCZrJphYRNxv6gyHrP9CrUTQq8rinZbR7eSRpV2rXd4Se3ZlkYpsZSpnpFsGWYQXhh08rsHLee7y-_ORZ6HNsUpFNPk78oDjM_HOQ7-7oC2P-OBa13qa7AfflPF2QyXNjPssa4u1HCccFX2QT1gv0Sc6duWzBksq3YW3wWbp1ugPvd0hsxxOvje5Nkj7PJenhXOcTRW7LYKNxTmyoAbnJlXdh-gO42h7kQqkX0hnnr4VB4y0zwK2a2pwv0n5yLtSJzM6dEQpXI4oY_EtMtRCUDV14-i48dC_vO32v6NngCfT8zNMskVnGMmR1QmmfJxGPOYK6MGqi2llTx2EmDW1CnNiMFeN-JHyqmWAhIgXdCvegko9ztQ-E-jzwWyrQJjeXylaitGQ6CpCCMaUTVoWTUnXpiyvNkVpKE9L01zeuQq1Ublr8pdPUNGnCtZ7SuAqnpa6-xP8OdrDQ04ewGpimwXbfpgaV2WSujhDJzLI6Wm633R7WCwv-ACq26q8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZfeAECqSJ46THAoWytEhQJDhFjhcJIaVVFw78A__M2E5AFDhwizKR5WQmnvfsWQD2KRex5AH1MnQ-HvINvNIy8ZQSNJM1LSJuNvTbHdZ6oFeP0WORxz0so93LI0m7Uru-I_T43iQT28xQyky3CDYNMxQpOJr1TOPi6br5ybPQ59ikIpt8nPhBcZj56yDf3dEXxpw4FrXe5nwRuuU8XZDJy9F4lB2Jt4kSjv98kSVYKNAnaThzWYYpla_AfPuzdOtwFd7vkdj2Bt4JujdJWjyX5ALnOh4oclcGG_VyYkMNyG2uvDPTH8DV9iBnSvXJaS9_LQwab5kB7tTQ5nyRk2fnQp3I7NwZoXA1oojBv8RUC0FZx4Wnr8HDebN72vKKng2eQM_PPM0SmWUsQ1YnlPZ5EvGYI6gLoxqqndV0HGbS0CbEibVYMe5HwqeaCRYiUtD1cB0qeS9XG0CozwO_rgJtcnOprCdKS6ajACkYUzphVTgoVZf2XWmO1FKakKY_vnEVtkvlpsVfOkxNkyZc6ymNq3BY6upL_Odgm_96eg9mW932TXpz2bnegrnANBC2ezjbUBkNxmoHUc0o2y2s-AP5Rewi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFl9YETKJAmjpMegVIKhYJakOAUHC8SQkqrLhz4B_6ZcZxQsR0QtygTWU480Xtjz7wB2KVchJJ71EkQfByMN_BKy8hRStBEVrQIuNnQv2qxxh29uA_u8z6ngyLbvTiStDUNRqUpHR72pM57kNDDjikszqpEKTOdI9gkTFEjbVeCqaOzh-bpR8yF-JMVGGWFyJHr5QebPw7yGZrGfPPLEWmGPPV5eCzmbBNOng9Gw-RAvH6Rc_zHSy3AXM5KyZF1o0WYUOkSzF59SLoOluGtgwFvt-8cI-xJ0uCpJGc471FfkXaRhNRNSZaCQK5T5dRM3wCr-UFqSvXISTd9yR0db5kB2mqQ1YKR4ycLrdZkdvSMUVjtKGJ4MTEqImhr2bT1Fbirn96eNJy8l4MjkBEwR7NIJglLMNoTSrs8CnjIkez5QQXdgVV06CfShFPIHyuhYtwNhEs1E8xHBqGr_iqU0m6q1oBQl3tuVXna1OxSWY2UlkwHHoZmTOmIlWGvWMa4ZyU74izU8Wn87RuXYbNY6Dj_ewexad6EGEBpWIb9Yt3G5l8HW__T0zswfVOrx5fnreYGzHimr3C2tbMJpWF_pLaQ7AyT7dyh3wGMv_UG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor-Based+Hand+Gesture+Recognition+Using+One-Dimensional+Deep+Convolutional+and+Residual+Bidirectional+Gated+Recurrent+Unit+Neural+Network&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Mekruksavanich%2C+Sakorn&rft.au=Phaphan%2C+Wikanda&rft.au=Jitpattanakul%2C+Anuchit&rft.date=2025-01-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=464&rft.epage=480&rft_id=info:doi/10.1134%2FS1995080224608166&rft.externalDocID=10_1134_S1995080224608166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |