Computationally Efficient Hybrid Downscaling of Surf Zone Hydrodynamics: Methodology and Evaluation
We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carr...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings.
Plain Language Summary
This study presents an efficient and accurate approach to modeling nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building this surrogate model, which involves defining a set of representative conditions and training a machine learning model to capture the relationship between input forcings and output variables (gridded fields of selected parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic conditions (something that would be prohibitively expensive with the traditional numerical model), or the almost instantaneous production of nearshore forecasts.
Key Points
A hybrid XBeach model integrates numerical simulations with machine learning for efficient coastal predictions
The surrogate model efficiently and accurately predicts nearshore wave and hydrodynamic parameters
Data reduction via Empirical Orthogonal Functions provides enhanced efficiency with minimal accuracy loss |
---|---|
AbstractList | Abstract We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings. We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings. This study presents an efficient and accurate approach to modeling nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building this surrogate model, which involves defining a set of representative conditions and training a machine learning model to capture the relationship between input forcings and output variables (gridded fields of selected parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic conditions (something that would be prohibitively expensive with the traditional numerical model), or the almost instantaneous production of nearshore forecasts. A hybrid XBeach model integrates numerical simulations with machine learning for efficient coastal predictions The surrogate model efficiently and accurately predicts nearshore wave and hydrodynamic parameters Data reduction via Empirical Orthogonal Functions provides enhanced efficiency with minimal accuracy loss We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings. Plain Language Summary This study presents an efficient and accurate approach to modeling nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building this surrogate model, which involves defining a set of representative conditions and training a machine learning model to capture the relationship between input forcings and output variables (gridded fields of selected parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic conditions (something that would be prohibitively expensive with the traditional numerical model), or the almost instantaneous production of nearshore forecasts. Key Points A hybrid XBeach model integrates numerical simulations with machine learning for efficient coastal predictions The surrogate model efficiently and accurately predicts nearshore wave and hydrodynamic parameters Data reduction via Empirical Orthogonal Functions provides enhanced efficiency with minimal accuracy loss |
Author | Pérez‐Díaz, B. Méndez, F. J. Echevarria, E. R. Cagigal, L. Contardo, S. Hoeke, R. K. Leighton, B. Trenham, C. |
Author_xml | – sequence: 1 givenname: E. R. orcidid: 0000-0003-1267-2587 surname: Echevarria fullname: Echevarria, E. R. email: emilio.echevarria@csiro.au organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) – sequence: 2 givenname: S. orcidid: 0000-0003-2994-8789 surname: Contardo fullname: Contardo, S. organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) – sequence: 3 givenname: B. orcidid: 0000-0002-1987-2605 surname: Pérez‐Díaz fullname: Pérez‐Díaz, B. organization: Universidad de Cantabria – sequence: 4 givenname: R. K. orcidid: 0000-0003-0576-9436 surname: Hoeke fullname: Hoeke, R. K. organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) – sequence: 5 givenname: B. surname: Leighton fullname: Leighton, B. organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) – sequence: 6 givenname: C. orcidid: 0000-0003-4258-9936 surname: Trenham fullname: Trenham, C. organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) – sequence: 7 givenname: L. orcidid: 0000-0001-5384-6382 surname: Cagigal fullname: Cagigal, L. organization: Universidad de Cantabria – sequence: 8 givenname: F. J. orcidid: 0000-0002-5005-1100 surname: Méndez fullname: Méndez, F. J. organization: Universidad de Cantabria |
BookMark | eNp9kMtOAjEUhhuDiYjsfIA-gGgv05nWnUEEDMbEy8bNpNMLlpSWdAbJvL0jGMPK1Tk5_5fvJP856IUYDACXGF1jRMQNQSR7nCGEGKEnoE-EoCNGMOod7WdgWNerjqGUII6KPlDjuN5sG9m4GKT3LZxY65QzoYGztkpOw_u4C7WS3oUljBa-bpOFH93rLtcp6jbItVP1LXwyzWfU0cdlC2XQcPIl_XbvvQCnVvraDH_nALw_TN7Gs9HieTof3y1GCnOWjwimTFhTIYOJIdqKQgjGDGPMVhhlwhJOKskVM9RolQudIW65LWxemDzLJR2A-cGro1yVm-TWMrVllK7cH2JaljI1TnlTClVhQzWnnSXTOeO64pJbyTLLiClY57o6uFSKdZ2M_fNhVP70XR733eH0gO-cN-2_bPk4fcEFQllOvwFq1oPU |
Cites_doi | 10.1029/2021EF002285 10.1016/j.coastaleng.2017.03.005 10.1016/j.apor.2023.103496 10.1175/1520‐0426(2002)019<0183:EIMOBO>2.0.CO;2 10.1016/j.envsoft.2022.105532 10.24381/cds.67e8eeb7 10.1002/2013JC009430 10.1007/s00382‐012‐1653‐0 10.1016/j.coastaleng.2009.08.006 10.1002/gdj3.104 10.1016/j.ocemod.2023.102210 10.1177/0956247807076960 10.48550/arXiv.1412.6980 10.1088/1748‐9326/ad96ce 10.25919/dpsr‐rg31 10.1016/j.oceaneng.2023.116419 10.1038/s41598‐021‐87460‐z 10.5194/nhess‐19‐1415‐2019 10.25919/se4e‐g288 10.1016/j.coastaleng.2012.09.002 10.3390/jmse11061217 10.26748/KSOE.2022.007 10.1080/00401706.1979.1048975 10.1016/0893‐6080(89)90020‐8 10.1016/j.coastaleng.2012.08.001 10.1029/2020EF001882 10.1038/sdata.2016.24 10.1016/j.earscirev.2019.04.022 10.1029/2012JC008310 10.3390/jmse7110383 10.1016/j.coastaleng.2011.02.003 10.1016/j.envsoft.2022.105404 10.1016/j.coastaleng.2016.01.005 10.1038/s44304‐024‐00057‐0 10.1016/j.ecss.2024.108705 10.1016/j.coastaleng.2017.04.005 10.1016/j.csr.2015.02.007 10.1016/j.margeo.2018.03.008 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1029/2024JH000523 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9cb1e3d839d44d658db8a8fa54f52e75 10_1029_2024JH000523 JGR170046 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Juan de la Cierva—Formacion funderid: FJC2021‐046933‐I/MCIN/AEI – fundername: NextGenerationEU/ PRTR – fundername: Bureau of Meteorology and CSIRO |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E AAYXX CITATION WIN |
ID | FETCH-LOGICAL-c1856-21359feb0e12e2df979955e555fb1049f282ba8c5e3edc69d408f8f7f67e646a3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:13:07 EDT 2025 Thu Jul 10 07:41:44 EDT 2025 Sun Jul 06 04:45:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1856-21359feb0e12e2df979955e555fb1049f282ba8c5e3edc69d408f8f7f67e646a3 |
ORCID | 0000-0003-2994-8789 0000-0002-5005-1100 0000-0002-1987-2605 0000-0003-4258-9936 0000-0003-0576-9436 0000-0003-1267-2587 0000-0001-5384-6382 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000523 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cb1e3d839d44d658db8a8fa54f52e75 crossref_primary_10_1029_2024JH000523 wiley_primary_10_1029_2024JH000523_JGR170046 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2021; 9 2019; 7 1989; 2 2021; 8 2022; 153 2007; 19 2023; 11 2002; 19 2023; 184 2000; 42 2015; 98 2018; 400 2013; 71 2019; 19 2025; 2 2025 2011; 58 2024 1977; 366 2022; 157 2014; 42 2009; 56 2021; 11 2016; 3 2023 1997; 97 2021 2013; 72 2013; 118 2023; 133 2019 2022; 36 2016; 110 2024; 20 2024; 299 2014 2017; 124 2019; 194 2012; 117 2017; 125 2024; 291 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Phillips O. M. (e_1_2_10_25_1) 1977 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Björnsson H. (e_1_2_10_3_1) 1997; 97 Durrant T. (e_1_2_10_9_1) 2019 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_26_1 |
References_xml | – volume: 366 year: 1977 – volume: 3 start-page: 1 issue: 1 year: 2016 end-page: 13 article-title: A multi‐decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia publication-title: Scientific Data – volume: 72 start-page: 56 year: 2013 end-page: 68 article-title: High resolution Downscaled Ocean Waves (DOW) reanalysis in coastal areas publication-title: Coastal Engineering – volume: 19 start-page: 17 issue: 1 year: 2007 end-page: 37 article-title: The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones publication-title: Environment and Urbanization – volume: 118 start-page: 7095 issue: 12 year: 2013 end-page: 7106 article-title: Infragravity response to variable wave forcing in the nearshore publication-title: Journal of Geophysical Research: Oceans – year: 2025 article-title: Secret Harbour XBeach surrogate model training and testing simulations publication-title: v1. CSIRO. Data Collection – volume: 11 issue: 1 year: 2021 article-title: Predicting regional coastal sea level changes with machine learning publication-title: Scientific Reports – volume: 9 issue: 12 year: 2021 article-title: Projecting climate dependent coastal flood risk with a hybrid statistical dynamical model publication-title: Earth's Future – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – volume: 8 start-page: 24 issue: 1 year: 2021 end-page: 33 article-title: Global wave hindcast with Australian and Pacific Island Focus: From past to present publication-title: Geoscience Data Journal – volume: 42 start-page: 55 issue: 1 year: 2000 end-page: 61 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 11 issue: 6 year: 2023 article-title: Quantifying mechanisms responsible for extreme coastal water levels and flooding during severe tropical cyclone Harold in Tonga, Southwest Pacific publication-title: Journal of Marine Science and Engineering – volume: 71 start-page: 68 year: 2013 end-page: 77 article-title: A simplified method to downscale wave dynamics on vertical breakwaters publication-title: Coastal Engineering – volume: 36 start-page: 194 issue: 3 year: 2022 end-page: 210 article-title: Review on applications of machine learning in coastal and ocean engineering publication-title: Journal of Ocean Engineering and Technology – volume: 20 issue: 1 year: 2024 article-title: A hybrid statistical–dynamical framework for compound coastal flooding analysis publication-title: Environmental Research Letters – volume: 97 start-page: 112 issue: 1 year: 1997 end-page: 134 article-title: A manual for EOF and SVD analyses of climatic data publication-title: CCGCR Report – volume: 110 start-page: 102 year: 2016 end-page: 110 article-title: Morphological response of a sandy barrier island with a buried seawall during Hurricane Sandy publication-title: Coastal Engineering – volume: 2 issue: 1 year: 2025 article-title: Compound coastal flooding in San Francisco Bay under climate change publication-title: npj Natural Hazards – volume: 153 year: 2022 article-title: Combining process‐based and data‐driven approaches to forecast beach and dune change publication-title: Environmental Modelling & Software – volume: 194 start-page: 97 year: 2019 end-page: 108 article-title: A review of machine learning applications to coastal sediment transport and morphodynamics publication-title: Earth‐Science Reviews – volume: 124 start-page: 1 year: 2017 end-page: 11 article-title: GOW2: A global wave hindcast for coastal applications publication-title: Coastal Engineering – volume: 117 issue: C11 year: 2012 article-title: The dynamics of infragravity wave transformation over a fringing reef publication-title: Journal of Geophysical Research – volume: 19 start-page: 183 issue: 2 year: 2002 end-page: 204 article-title: Efficient inverse modeling of Barotropic Ocean tides publication-title: Journal of Atmospheric and Oceanic Technology – volume: 9 issue: 7 year: 2021 article-title: Uncertainty and bias in global to regional scale assessments of current and future coastal flood risk publication-title: Earth's Future – volume: 157 year: 2022 article-title: Computing efficiency of XBeach hydro‐and wave dynamics on Graphics Processing Units (GPUs) publication-title: Environmental Modelling & Software – year: 2014 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 – volume: 19 start-page: 1415 issue: 7 year: 2019 end-page: 1431 article-title: What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along‐river water levels publication-title: Natural Hazards and Earth System Sciences – year: 2024 article-title: SWAN WAXA 500m wave hindcast. v2 publication-title: CSIRO. Data Collection – volume: 98 start-page: 36 year: 2015 end-page: 53 article-title: Directional wave climate and power variability along the Southeast Australian shelf publication-title: Continental Shelf Research – volume: 56 start-page: 1133 issue: 11–12 year: 2009 end-page: 1152 article-title: Modelling storm impacts on beaches, dunes and barrier islands publication-title: Coastal Engineering – year: 2023 – volume: 42 start-page: 139 issue: 1–2 year: 2014 end-page: 157 article-title: Estimating present day extreme water level exceedance probabilities around the coastline of Australia: Tropical cyclone‐induced storm surges publication-title: Climate Dynamics – volume: 291 year: 2024 article-title: HySwash: A hybrid model for nearshore wave processes publication-title: Ocean Engineering – volume: 125 start-page: 28 year: 2017 end-page: 41 article-title: Calibrating and assessing uncertainty in coastal numerical models publication-title: Coastal Engineering – volume: 133 year: 2023 article-title: Rapid response data‐driven reconstructions for storm surge around New Zealand publication-title: Applied Ocean Research – volume: 299 year: 2024 article-title: An efficient metamodel to downscale total water level in open beaches publication-title: Estuarine, Coastal and Shelf Science – year: 2021 article-title: ORAS5 global ocean reanalysis monthly data from 1958 to present publication-title: Copernicus Climate Change Service (C3S) Climate Data Store (CDS) – volume: 400 start-page: 94 year: 2018 end-page: 106 article-title: Shoreline variability at a low‐energy beach: Contributions of storms, Megacusps and sea‐breeze cycles publication-title: Marine Geology – volume: 58 start-page: 453 issue: 6 year: 2011 end-page: 462 article-title: Analysis of clustering and selection algorithms for the study of multivariate wave climate publication-title: Coastal Engineering – volume: 7 issue: 11 year: 2019 article-title: Infragravity wave energy partitioning in the surf zone in response to wind‐sea and swell forcing publication-title: Journal of Marine Science and Engineering – year: 2019 – volume: 184 year: 2023 article-title: HyWaves: Hybrid downscaling of multimodal wave spectra to nearshore areas publication-title: Ocean Modelling – ident: e_1_2_10_2_1 doi: 10.1029/2021EF002285 – ident: e_1_2_10_24_1 doi: 10.1016/j.coastaleng.2017.03.005 – ident: e_1_2_10_37_1 doi: 10.1016/j.apor.2023.103496 – ident: e_1_2_10_11_1 doi: 10.1175/1520‐0426(2002)019<0183:EIMOBO>2.0.CO;2 – ident: e_1_2_10_27_1 doi: 10.1016/j.envsoft.2022.105532 – ident: e_1_2_10_8_1 doi: 10.24381/cds.67e8eeb7 – ident: e_1_2_10_6_1 doi: 10.1002/2013JC009430 – volume-title: The dynamics of the upper ocean year: 1977 ident: e_1_2_10_25_1 – ident: e_1_2_10_14_1 doi: 10.1007/s00382‐012‐1653‐0 – ident: e_1_2_10_30_1 doi: 10.1016/j.coastaleng.2009.08.006 – ident: e_1_2_10_36_1 – ident: e_1_2_10_35_1 doi: 10.1002/gdj3.104 – ident: e_1_2_10_29_1 doi: 10.1016/j.ocemod.2023.102210 – ident: e_1_2_10_20_1 doi: 10.1177/0956247807076960 – ident: e_1_2_10_19_1 doi: 10.48550/arXiv.1412.6980 – ident: e_1_2_10_41_1 doi: 10.1088/1748‐9326/ad96ce – volume-title: CAWCR wave Hindcast—aggregated collection. v5 year: 2019 ident: e_1_2_10_9_1 – ident: e_1_2_10_10_1 doi: 10.25919/dpsr‐rg31 – ident: e_1_2_10_28_1 doi: 10.1016/j.oceaneng.2023.116419 – ident: e_1_2_10_23_1 doi: 10.1038/s41598‐021‐87460‐z – ident: e_1_2_10_32_1 doi: 10.5194/nhess‐19‐1415‐2019 – ident: e_1_2_10_38_1 doi: 10.25919/se4e‐g288 – ident: e_1_2_10_5_1 doi: 10.1016/j.coastaleng.2012.09.002 – ident: e_1_2_10_40_1 doi: 10.3390/jmse11061217 – ident: e_1_2_10_18_1 doi: 10.26748/KSOE.2022.007 – ident: e_1_2_10_21_1 doi: 10.1080/00401706.1979.1048975 – ident: e_1_2_10_16_1 doi: 10.1016/0893‐6080(89)90020‐8 – ident: e_1_2_10_13_1 doi: 10.1016/j.coastaleng.2012.08.001 – ident: e_1_2_10_15_1 doi: 10.1029/2020EF001882 – ident: e_1_2_10_39_1 doi: 10.1038/sdata.2016.24 – volume: 97 start-page: 112 issue: 1 year: 1997 ident: e_1_2_10_3_1 article-title: A manual for EOF and SVD analyses of climatic data publication-title: CCGCR Report – ident: e_1_2_10_12_1 doi: 10.1016/j.earscirev.2019.04.022 – ident: e_1_2_10_26_1 doi: 10.1029/2012JC008310 – ident: e_1_2_10_7_1 doi: 10.3390/jmse7110383 – ident: e_1_2_10_4_1 doi: 10.1016/j.coastaleng.2011.02.003 – ident: e_1_2_10_17_1 doi: 10.1016/j.envsoft.2022.105404 – ident: e_1_2_10_34_1 doi: 10.1016/j.coastaleng.2016.01.005 – ident: e_1_2_10_42_1 doi: 10.1038/s44304‐024‐00057‐0 – ident: e_1_2_10_43_1 doi: 10.1016/j.ecss.2024.108705 – ident: e_1_2_10_33_1 doi: 10.1016/j.coastaleng.2017.04.005 – ident: e_1_2_10_22_1 doi: 10.1016/j.csr.2015.02.007 – ident: e_1_2_10_31_1 doi: 10.1016/j.margeo.2018.03.008 |
SSID | ssj0003320807 |
Score | 2.2935753 |
Snippet | We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of... Abstract We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | hybrid downscaling machine learning nearshore surf‐zone XBeach |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQNsRDR-Jmw8WqJKZQAqVSxRbJ8nlKI-hv57zk6o2gUW1iSSre-i--7O5-8IuVKpkRU6wURYLTFBybPEZEYngMmIs8Cl1eGi8OhFFWMxnMjJxqiv0BPWyAM3wN3m1qTAHfK4E8IhXzqTVZmvpPCSgY7qpch5G8lU8MGcMwyFdNvp3mN5SPLFsIgnW3yLg6JU_3ZoGrllsE_22qCQ3jebOSA7UB8S2wxcaIt1nyvaj2oPSBK0WIV7VvQpVIYRY2QfOvX0bTnz9GNaA7536BebWfPzOzqKU6Jj_ZxWtaP9tcL3ERkP-u-PRdKOREgsEqtKWMpl7sH0IGXAnA-HclKClNIbTKxyjxmUqTIrgYOzCjHrZT7z2isNSqiKH5NOjRs5CT1NDulauRx9pai0DSotDGNthe4PINVdcv0DUvnVKF-U8cSa5eUmmF3yEBBcfxP0quMDtGLZWrH8y4pdchPx_3Wlcvj8GuQEhTr9jzXPyC4Lw3xjSeWcdBazJVxghLEwl_Fn-gZAScuZ priority: 102 providerName: Directory of Open Access Journals |
Title | Computationally Efficient Hybrid Downscaling of Surf Zone Hydrodynamics: Methodology and Evaluation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000523 https://doaj.org/article/9cb1e3d839d44d658db8a8fa54f52e75 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjyqDzARkTi2E7CxqMQVSpCQKWKJYpfLChFfQxd-O3cOSFqFySWDInlROf4vrvz3XeEnMtIiRKUYMB1IsBBydJApSoJLDgjRttY6AQLhYdPMh_xwViMm4Ab1sLU_BBtwA13htfXuMFLNWvIBpAjE7x2Psj9UVW8SbawuhZT-hh_bmMscczCumKaYZoaIFXY5L7DFFerE6yhkifvXzdWPdo87JKdxkykN_W67pENW-0TXbdgaMJ3n0va9_wPABs0X2LlFb3HWDFIHfCIThx9XUwdfZ9UFp4b0JR19_nZNR36vtE-ok7LytB-y_l9QEYP_be7PGiaJAQaoFYGLIpF5qwKbcQsMw6P6YSwQginwNXKHPhUqky1sLE1WmaGh6lLXeJkYiWXZXxIOhV8yBFmORkAcGkyECUvE428LQysbwkK0doo6ZKLXyEVXzUXRuHPsFlWrAqzS25Rgu0YZLD2NybTj6LZEEWmVWRjA_aZ4dyAHWRUWqauFNwJZhPRJZde_n--qRg8viDBIJfH_xt-QrYZNvL14ZRT0plPF_YMrIu56vlfqOd9c7gOv_s_RZPGyQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVYDnBBIECU1Qe4EdE4XhIkDiyFUChCLBLiEmJ7zAW1qAWhfhW_yNhJK7ggceCaWIk1tmfzzHuEbMtYixKVYMSNEhigZGmkU60iwGDEGkiEUb5RuHMl83vefhAPE-Rz1AtT4UOME27-ZAR97Q-4T0jXaAMeJBPDdt7Ow13ViL36AoYfGLMNDs5PcIF3GDtt3R3nUU0rEBk0TjJicSIyB7oJMQNmnb_YEgKEEE5jcJI5jEJ0mRoBCVgjM8ubqUudclKB5LJM8LuTZJpLpjxlAuPX46ROkrBm1aLNfF0cmsZmXWyPU977PuEfZjCwBfz0joN5O50nc7VfSg-rjbRAJqC7SEzF-VDnC1-GtBUAJ9BO0XzoW73oiU9O4zKjAaQ9R2_f-44-9rqA7y2q5orufrBPO4GoOqTwadm1tDUGGV8i9_8ivmUy1cWJrPiyKoseg7QZqmteKuOBYhi6-xI1MECsGmRnJKTitQLfKMKlOcuK78JskCMvwfEYD5kdHvT6z0V9AovM6BgSiw6h5dyi42V1WqauFNwJBko0yG6Q_69_KtpnNx7RkMvVvw3fIjP5XeeyuDy_ulgjs8yzCIdczjqZeuu_wwa6Nm96M2wnSp7-e_9-AbK2Acw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA9TQbyIouL8zMHdLK5pkraCB3Wbc1MZfoB4qU3y4kU2mRuyf8q_0Ze0G3oRPHhtQxteXt73-z1CDmSoRI5CMOA6FuigpEmgEhUHgM6I0RAJHbtG4esb2X7gnUfxWCGf016YAh9iFnBzN8PLa3fB34wtwQYcRiZ67bzT9qmq6fDqLkw-0GV7P7ls4PnWGGs178_bQTlVINCom2TAwkikFlQdQgbMWJfXEgKEEFahb5JadEJUnmgBERgtU8PriU1sbGUMkss8wu_OkQWXX3QlZIz3ZjGdKGL1okObubI41Iz1stYet3z0fcM_tKAfFvDTOPbarbVClkuzlJ4WfLRKKtBfI7oY-VCGC18ntOnxJlBN0fbEdXrRhotN4ymj_qMDS-_GQ0ufBn3A9wYlczHt_v2YXvs51T6CT_O-oc0Zxvg6efgX8m2Q-T5uZNNVVRk0GKRJUVrzPNYOJ4ahtS9RAAOEcZXUpkTK3grsjcznzFmafSdmlZw5Cs7WOMRs_2AwfMnKC5ilWoUQGbQHDecG7S6jkjyxueBWMIhFlRx6-v_6p6xzcesADbnc-tvyfbLYa7Syq8ub7jZZYm6GsI_k7JD50XAMu2jYjNSe5yZKnv-bfb8ACzkA_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Hybrid+Downscaling+of+Surf+Zone+Hydrodynamics%3A+Methodology+and+Evaluation&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Echevarria%2C+E.+R.&rft.au=Contardo%2C+S.&rft.au=P%C3%A9rez%E2%80%90D%C3%ADaz%2C+B.&rft.au=Hoeke%2C+R.+K.&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1029%2F2024JH000523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |