Computationally Efficient Hybrid Downscaling of Surf Zone Hydrodynamics: Methodology and Evaluation

We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carr...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 2
Main Authors Echevarria, E. R., Contardo, S., Pérez‐Díaz, B., Hoeke, R. K., Leighton, B., Trenham, C., Cagigal, L., Méndez, F. J.
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings. Plain Language Summary This study presents an efficient and accurate approach to modeling nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building this surrogate model, which involves defining a set of representative conditions and training a machine learning model to capture the relationship between input forcings and output variables (gridded fields of selected parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic conditions (something that would be prohibitively expensive with the traditional numerical model), or the almost instantaneous production of nearshore forecasts. Key Points A hybrid XBeach model integrates numerical simulations with machine learning for efficient coastal predictions The surrogate model efficiently and accurately predicts nearshore wave and hydrodynamic parameters Data reduction via Empirical Orthogonal Functions provides enhanced efficiency with minimal accuracy loss
AbstractList Abstract We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings.
We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings. This study presents an efficient and accurate approach to modeling nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building this surrogate model, which involves defining a set of representative conditions and training a machine learning model to capture the relationship between input forcings and output variables (gridded fields of selected parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic conditions (something that would be prohibitively expensive with the traditional numerical model), or the almost instantaneous production of nearshore forecasts. A hybrid XBeach model integrates numerical simulations with machine learning for efficient coastal predictions The surrogate model efficiently and accurately predicts nearshore wave and hydrodynamic parameters Data reduction via Empirical Orthogonal Functions provides enhanced efficiency with minimal accuracy loss
We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of nearshore wave and hydrodynamic parameters with high computational efficiency. The approach involves defining representative forcing conditions, carrying out numerical model (XBeach) simulations for these cases, and training machine learning models capable of predicting selected model output variables. Data decomposition via Empirical Orthogonal Function analysis further simplifies the process, reducing the output data dimensionality, with minimal accuracy loss (with exception of certain wetting‐drying processes). Three machine learning approaches of increasing complexity are compared: a multi‐variate linear regression (LR), a Radial Basis Functions (RBF) interpolator and a Deep Neural Network (DNN). The LR model fails to account for the complex non‐linearities in coastal wave dynamics, which warrants the use of more complex machine learning techniques. Both the RBF interpolator and the DNN models demonstrate high levels of accuracy in the prediction of short wave heights, mean wavelength, and depth‐averaged currents, with slightly lower accuracy for long (infragravity) wave heights and fraction of breaking waves. The proposed surrogate model thus offers an efficient alternative to computationally expensive numerical model simulations, enabling rapid and reliable long‐period deterministic simulations (multi‐decadal hindcasts) and/or multi‐ensemble probabilistic scenario simulations of nearshore hydrodynamic conditions. We provide a comprehensive description of the implementation details and assess the surrogate model's performance in representing various wave and hydrodynamic parameters. We discuss potential use cases and limitations, noting that this hybrid modeling technique can be adapted for use with other numerical models in various settings. Plain Language Summary This study presents an efficient and accurate approach to modeling nearshore wave conditions, water levels and currents, by combining numerical model simulations with machine learning techniques. Traditional numerical models are computationally intensive, while the hybrid approach presented here is a much faster alternative. The study provides a comprehensive, step‐by‐step guide for building this surrogate model, which involves defining a set of representative conditions and training a machine learning model to capture the relationship between input forcings and output variables (gridded fields of selected parameters). To improve efficiency, an Empirical Orthogonal Function analysis is applied as a data reduction step, simplifying the process without substantially compromising accuracy. This surrogate model demonstrates high precision, and can be used to calculate long‐term climatologies of nearshore wave and hydrodynamic conditions (something that would be prohibitively expensive with the traditional numerical model), or the almost instantaneous production of nearshore forecasts. Key Points A hybrid XBeach model integrates numerical simulations with machine learning for efficient coastal predictions The surrogate model efficiently and accurately predicts nearshore wave and hydrodynamic parameters Data reduction via Empirical Orthogonal Functions provides enhanced efficiency with minimal accuracy loss
Author Pérez‐Díaz, B.
Méndez, F. J.
Echevarria, E. R.
Cagigal, L.
Contardo, S.
Hoeke, R. K.
Leighton, B.
Trenham, C.
Author_xml – sequence: 1
  givenname: E. R.
  orcidid: 0000-0003-1267-2587
  surname: Echevarria
  fullname: Echevarria, E. R.
  email: emilio.echevarria@csiro.au
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO)
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-2994-8789
  surname: Contardo
  fullname: Contardo, S.
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO)
– sequence: 3
  givenname: B.
  orcidid: 0000-0002-1987-2605
  surname: Pérez‐Díaz
  fullname: Pérez‐Díaz, B.
  organization: Universidad de Cantabria
– sequence: 4
  givenname: R. K.
  orcidid: 0000-0003-0576-9436
  surname: Hoeke
  fullname: Hoeke, R. K.
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO)
– sequence: 5
  givenname: B.
  surname: Leighton
  fullname: Leighton, B.
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO)
– sequence: 6
  givenname: C.
  orcidid: 0000-0003-4258-9936
  surname: Trenham
  fullname: Trenham, C.
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO)
– sequence: 7
  givenname: L.
  orcidid: 0000-0001-5384-6382
  surname: Cagigal
  fullname: Cagigal, L.
  organization: Universidad de Cantabria
– sequence: 8
  givenname: F. J.
  orcidid: 0000-0002-5005-1100
  surname: Méndez
  fullname: Méndez, F. J.
  organization: Universidad de Cantabria
BookMark eNp9kMtOAjEUhhuDiYjsfIA-gGgv05nWnUEEDMbEy8bNpNMLlpSWdAbJvL0jGMPK1Tk5_5fvJP856IUYDACXGF1jRMQNQSR7nCGEGKEnoE-EoCNGMOod7WdgWNerjqGUII6KPlDjuN5sG9m4GKT3LZxY65QzoYGztkpOw_u4C7WS3oUljBa-bpOFH93rLtcp6jbItVP1LXwyzWfU0cdlC2XQcPIl_XbvvQCnVvraDH_nALw_TN7Gs9HieTof3y1GCnOWjwimTFhTIYOJIdqKQgjGDGPMVhhlwhJOKskVM9RolQudIW65LWxemDzLJR2A-cGro1yVm-TWMrVllK7cH2JaljI1TnlTClVhQzWnnSXTOeO64pJbyTLLiClY57o6uFSKdZ2M_fNhVP70XR733eH0gO-cN-2_bPk4fcEFQllOvwFq1oPU
Cites_doi 10.1029/2021EF002285
10.1016/j.coastaleng.2017.03.005
10.1016/j.apor.2023.103496
10.1175/1520‐0426(2002)019<0183:EIMOBO>2.0.CO;2
10.1016/j.envsoft.2022.105532
10.24381/cds.67e8eeb7
10.1002/2013JC009430
10.1007/s00382‐012‐1653‐0
10.1016/j.coastaleng.2009.08.006
10.1002/gdj3.104
10.1016/j.ocemod.2023.102210
10.1177/0956247807076960
10.48550/arXiv.1412.6980
10.1088/1748‐9326/ad96ce
10.25919/dpsr‐rg31
10.1016/j.oceaneng.2023.116419
10.1038/s41598‐021‐87460‐z
10.5194/nhess‐19‐1415‐2019
10.25919/se4e‐g288
10.1016/j.coastaleng.2012.09.002
10.3390/jmse11061217
10.26748/KSOE.2022.007
10.1080/00401706.1979.1048975
10.1016/0893‐6080(89)90020‐8
10.1016/j.coastaleng.2012.08.001
10.1029/2020EF001882
10.1038/sdata.2016.24
10.1016/j.earscirev.2019.04.022
10.1029/2012JC008310
10.3390/jmse7110383
10.1016/j.coastaleng.2011.02.003
10.1016/j.envsoft.2022.105404
10.1016/j.coastaleng.2016.01.005
10.1038/s44304‐024‐00057‐0
10.1016/j.ecss.2024.108705
10.1016/j.coastaleng.2017.04.005
10.1016/j.csr.2015.02.007
10.1016/j.margeo.2018.03.008
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000523
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9cb1e3d839d44d658db8a8fa54f52e75
10_1029_2024JH000523
JGR170046
Genre researchArticle
GrantInformation_xml – fundername: Juan de la Cierva—Formacion
  funderid: FJC2021‐046933‐I/MCIN/AEI
– fundername: NextGenerationEU/ PRTR
– fundername: Bureau of Meteorology and CSIRO
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
AAYXX
CITATION
WIN
ID FETCH-LOGICAL-c1856-21359feb0e12e2df979955e555fb1049f282ba8c5e3edc69d408f8f7f67e646a3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Wed Aug 27 01:13:07 EDT 2025
Thu Jul 10 07:41:44 EDT 2025
Sun Jul 06 04:45:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1856-21359feb0e12e2df979955e555fb1049f282ba8c5e3edc69d408f8f7f67e646a3
ORCID 0000-0003-2994-8789
0000-0002-5005-1100
0000-0002-1987-2605
0000-0003-4258-9936
0000-0003-0576-9436
0000-0003-1267-2587
0000-0001-5384-6382
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000523
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_9cb1e3d839d44d658db8a8fa54f52e75
crossref_primary_10_1029_2024JH000523
wiley_primary_10_1029_2024JH000523_JGR170046
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2019; 7
1989; 2
2021; 8
2022; 153
2007; 19
2023; 11
2002; 19
2023; 184
2000; 42
2015; 98
2018; 400
2013; 71
2019; 19
2025; 2
2025
2011; 58
2024
1977; 366
2022; 157
2014; 42
2009; 56
2021; 11
2016; 3
2023
1997; 97
2021
2013; 72
2013; 118
2023; 133
2019
2022; 36
2016; 110
2024; 20
2024; 299
2014
2017; 124
2019; 194
2012; 117
2017; 125
2024; 291
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Phillips O. M. (e_1_2_10_25_1) 1977
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Björnsson H. (e_1_2_10_3_1) 1997; 97
Durrant T. (e_1_2_10_9_1) 2019
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – volume: 366
  year: 1977
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  end-page: 13
  article-title: A multi‐decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia
  publication-title: Scientific Data
– volume: 72
  start-page: 56
  year: 2013
  end-page: 68
  article-title: High resolution Downscaled Ocean Waves (DOW) reanalysis in coastal areas
  publication-title: Coastal Engineering
– volume: 19
  start-page: 17
  issue: 1
  year: 2007
  end-page: 37
  article-title: The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones
  publication-title: Environment and Urbanization
– volume: 118
  start-page: 7095
  issue: 12
  year: 2013
  end-page: 7106
  article-title: Infragravity response to variable wave forcing in the nearshore
  publication-title: Journal of Geophysical Research: Oceans
– year: 2025
  article-title: Secret Harbour XBeach surrogate model training and testing simulations
  publication-title: v1. CSIRO. Data Collection
– volume: 11
  issue: 1
  year: 2021
  article-title: Predicting regional coastal sea level changes with machine learning
  publication-title: Scientific Reports
– volume: 9
  issue: 12
  year: 2021
  article-title: Projecting climate dependent coastal flood risk with a hybrid statistical dynamical model
  publication-title: Earth's Future
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 8
  start-page: 24
  issue: 1
  year: 2021
  end-page: 33
  article-title: Global wave hindcast with Australian and Pacific Island Focus: From past to present
  publication-title: Geoscience Data Journal
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  end-page: 61
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 11
  issue: 6
  year: 2023
  article-title: Quantifying mechanisms responsible for extreme coastal water levels and flooding during severe tropical cyclone Harold in Tonga, Southwest Pacific
  publication-title: Journal of Marine Science and Engineering
– volume: 71
  start-page: 68
  year: 2013
  end-page: 77
  article-title: A simplified method to downscale wave dynamics on vertical breakwaters
  publication-title: Coastal Engineering
– volume: 36
  start-page: 194
  issue: 3
  year: 2022
  end-page: 210
  article-title: Review on applications of machine learning in coastal and ocean engineering
  publication-title: Journal of Ocean Engineering and Technology
– volume: 20
  issue: 1
  year: 2024
  article-title: A hybrid statistical–dynamical framework for compound coastal flooding analysis
  publication-title: Environmental Research Letters
– volume: 97
  start-page: 112
  issue: 1
  year: 1997
  end-page: 134
  article-title: A manual for EOF and SVD analyses of climatic data
  publication-title: CCGCR Report
– volume: 110
  start-page: 102
  year: 2016
  end-page: 110
  article-title: Morphological response of a sandy barrier island with a buried seawall during Hurricane Sandy
  publication-title: Coastal Engineering
– volume: 2
  issue: 1
  year: 2025
  article-title: Compound coastal flooding in San Francisco Bay under climate change
  publication-title: npj Natural Hazards
– volume: 153
  year: 2022
  article-title: Combining process‐based and data‐driven approaches to forecast beach and dune change
  publication-title: Environmental Modelling & Software
– volume: 194
  start-page: 97
  year: 2019
  end-page: 108
  article-title: A review of machine learning applications to coastal sediment transport and morphodynamics
  publication-title: Earth‐Science Reviews
– volume: 124
  start-page: 1
  year: 2017
  end-page: 11
  article-title: GOW2: A global wave hindcast for coastal applications
  publication-title: Coastal Engineering
– volume: 117
  issue: C11
  year: 2012
  article-title: The dynamics of infragravity wave transformation over a fringing reef
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 183
  issue: 2
  year: 2002
  end-page: 204
  article-title: Efficient inverse modeling of Barotropic Ocean tides
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 9
  issue: 7
  year: 2021
  article-title: Uncertainty and bias in global to regional scale assessments of current and future coastal flood risk
  publication-title: Earth's Future
– volume: 157
  year: 2022
  article-title: Computing efficiency of XBeach hydro‐and wave dynamics on Graphics Processing Units (GPUs)
  publication-title: Environmental Modelling & Software
– year: 2014
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– volume: 19
  start-page: 1415
  issue: 7
  year: 2019
  end-page: 1431
  article-title: What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along‐river water levels
  publication-title: Natural Hazards and Earth System Sciences
– year: 2024
  article-title: SWAN WAXA 500m wave hindcast. v2
  publication-title: CSIRO. Data Collection
– volume: 98
  start-page: 36
  year: 2015
  end-page: 53
  article-title: Directional wave climate and power variability along the Southeast Australian shelf
  publication-title: Continental Shelf Research
– volume: 56
  start-page: 1133
  issue: 11–12
  year: 2009
  end-page: 1152
  article-title: Modelling storm impacts on beaches, dunes and barrier islands
  publication-title: Coastal Engineering
– year: 2023
– volume: 42
  start-page: 139
  issue: 1–2
  year: 2014
  end-page: 157
  article-title: Estimating present day extreme water level exceedance probabilities around the coastline of Australia: Tropical cyclone‐induced storm surges
  publication-title: Climate Dynamics
– volume: 291
  year: 2024
  article-title: HySwash: A hybrid model for nearshore wave processes
  publication-title: Ocean Engineering
– volume: 125
  start-page: 28
  year: 2017
  end-page: 41
  article-title: Calibrating and assessing uncertainty in coastal numerical models
  publication-title: Coastal Engineering
– volume: 133
  year: 2023
  article-title: Rapid response data‐driven reconstructions for storm surge around New Zealand
  publication-title: Applied Ocean Research
– volume: 299
  year: 2024
  article-title: An efficient metamodel to downscale total water level in open beaches
  publication-title: Estuarine, Coastal and Shelf Science
– year: 2021
  article-title: ORAS5 global ocean reanalysis monthly data from 1958 to present
  publication-title: Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
– volume: 400
  start-page: 94
  year: 2018
  end-page: 106
  article-title: Shoreline variability at a low‐energy beach: Contributions of storms, Megacusps and sea‐breeze cycles
  publication-title: Marine Geology
– volume: 58
  start-page: 453
  issue: 6
  year: 2011
  end-page: 462
  article-title: Analysis of clustering and selection algorithms for the study of multivariate wave climate
  publication-title: Coastal Engineering
– volume: 7
  issue: 11
  year: 2019
  article-title: Infragravity wave energy partitioning in the surf zone in response to wind‐sea and swell forcing
  publication-title: Journal of Marine Science and Engineering
– year: 2019
– volume: 184
  year: 2023
  article-title: HyWaves: Hybrid downscaling of multimodal wave spectra to nearshore areas
  publication-title: Ocean Modelling
– ident: e_1_2_10_2_1
  doi: 10.1029/2021EF002285
– ident: e_1_2_10_24_1
  doi: 10.1016/j.coastaleng.2017.03.005
– ident: e_1_2_10_37_1
  doi: 10.1016/j.apor.2023.103496
– ident: e_1_2_10_11_1
  doi: 10.1175/1520‐0426(2002)019<0183:EIMOBO>2.0.CO;2
– ident: e_1_2_10_27_1
  doi: 10.1016/j.envsoft.2022.105532
– ident: e_1_2_10_8_1
  doi: 10.24381/cds.67e8eeb7
– ident: e_1_2_10_6_1
  doi: 10.1002/2013JC009430
– volume-title: The dynamics of the upper ocean
  year: 1977
  ident: e_1_2_10_25_1
– ident: e_1_2_10_14_1
  doi: 10.1007/s00382‐012‐1653‐0
– ident: e_1_2_10_30_1
  doi: 10.1016/j.coastaleng.2009.08.006
– ident: e_1_2_10_36_1
– ident: e_1_2_10_35_1
  doi: 10.1002/gdj3.104
– ident: e_1_2_10_29_1
  doi: 10.1016/j.ocemod.2023.102210
– ident: e_1_2_10_20_1
  doi: 10.1177/0956247807076960
– ident: e_1_2_10_19_1
  doi: 10.48550/arXiv.1412.6980
– ident: e_1_2_10_41_1
  doi: 10.1088/1748‐9326/ad96ce
– volume-title: CAWCR wave Hindcast—aggregated collection. v5
  year: 2019
  ident: e_1_2_10_9_1
– ident: e_1_2_10_10_1
  doi: 10.25919/dpsr‐rg31
– ident: e_1_2_10_28_1
  doi: 10.1016/j.oceaneng.2023.116419
– ident: e_1_2_10_23_1
  doi: 10.1038/s41598‐021‐87460‐z
– ident: e_1_2_10_32_1
  doi: 10.5194/nhess‐19‐1415‐2019
– ident: e_1_2_10_38_1
  doi: 10.25919/se4e‐g288
– ident: e_1_2_10_5_1
  doi: 10.1016/j.coastaleng.2012.09.002
– ident: e_1_2_10_40_1
  doi: 10.3390/jmse11061217
– ident: e_1_2_10_18_1
  doi: 10.26748/KSOE.2022.007
– ident: e_1_2_10_21_1
  doi: 10.1080/00401706.1979.1048975
– ident: e_1_2_10_16_1
  doi: 10.1016/0893‐6080(89)90020‐8
– ident: e_1_2_10_13_1
  doi: 10.1016/j.coastaleng.2012.08.001
– ident: e_1_2_10_15_1
  doi: 10.1029/2020EF001882
– ident: e_1_2_10_39_1
  doi: 10.1038/sdata.2016.24
– volume: 97
  start-page: 112
  issue: 1
  year: 1997
  ident: e_1_2_10_3_1
  article-title: A manual for EOF and SVD analyses of climatic data
  publication-title: CCGCR Report
– ident: e_1_2_10_12_1
  doi: 10.1016/j.earscirev.2019.04.022
– ident: e_1_2_10_26_1
  doi: 10.1029/2012JC008310
– ident: e_1_2_10_7_1
  doi: 10.3390/jmse7110383
– ident: e_1_2_10_4_1
  doi: 10.1016/j.coastaleng.2011.02.003
– ident: e_1_2_10_17_1
  doi: 10.1016/j.envsoft.2022.105404
– ident: e_1_2_10_34_1
  doi: 10.1016/j.coastaleng.2016.01.005
– ident: e_1_2_10_42_1
  doi: 10.1038/s44304‐024‐00057‐0
– ident: e_1_2_10_43_1
  doi: 10.1016/j.ecss.2024.108705
– ident: e_1_2_10_33_1
  doi: 10.1016/j.coastaleng.2017.04.005
– ident: e_1_2_10_22_1
  doi: 10.1016/j.csr.2015.02.007
– ident: e_1_2_10_31_1
  doi: 10.1016/j.margeo.2018.03.008
SSID ssj0003320807
Score 2.2935753
Snippet We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of...
Abstract We present a hybrid surf‐zone model that combines numerical simulations and statistical/machine learning techniques, enabling accurate calculations of...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms hybrid downscaling
machine learning
nearshore
surf‐zone
XBeach
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQNsRDR-Jmw8WqJKZQAqVSxRbJ8nlKI-hv57zk6o2gUW1iSSre-i--7O5-8IuVKpkRU6wURYLTFBybPEZEYngMmIs8Cl1eGi8OhFFWMxnMjJxqiv0BPWyAM3wN3m1qTAHfK4E8IhXzqTVZmvpPCSgY7qpch5G8lU8MGcMwyFdNvp3mN5SPLFsIgnW3yLg6JU_3ZoGrllsE_22qCQ3jebOSA7UB8S2wxcaIt1nyvaj2oPSBK0WIV7VvQpVIYRY2QfOvX0bTnz9GNaA7536BebWfPzOzqKU6Jj_ZxWtaP9tcL3ERkP-u-PRdKOREgsEqtKWMpl7sH0IGXAnA-HclKClNIbTKxyjxmUqTIrgYOzCjHrZT7z2isNSqiKH5NOjRs5CT1NDulauRx9pai0DSotDGNthe4PINVdcv0DUvnVKF-U8cSa5eUmmF3yEBBcfxP0quMDtGLZWrH8y4pdchPx_3Wlcvj8GuQEhTr9jzXPyC4Lw3xjSeWcdBazJVxghLEwl_Fn-gZAScuZ
  priority: 102
  providerName: Directory of Open Access Journals
Title Computationally Efficient Hybrid Downscaling of Surf Zone Hydrodynamics: Methodology and Evaluation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000523
https://doaj.org/article/9cb1e3d839d44d658db8a8fa54f52e75
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjyqDzARkTi2E7CxqMQVSpCQKWKJYpfLChFfQxd-O3cOSFqFySWDInlROf4vrvz3XeEnMtIiRKUYMB1IsBBydJApSoJLDgjRttY6AQLhYdPMh_xwViMm4Ab1sLU_BBtwA13htfXuMFLNWvIBpAjE7x2Psj9UVW8SbawuhZT-hh_bmMscczCumKaYZoaIFXY5L7DFFerE6yhkifvXzdWPdo87JKdxkykN_W67pENW-0TXbdgaMJ3n0va9_wPABs0X2LlFb3HWDFIHfCIThx9XUwdfZ9UFp4b0JR19_nZNR36vtE-ok7LytB-y_l9QEYP_be7PGiaJAQaoFYGLIpF5qwKbcQsMw6P6YSwQginwNXKHPhUqky1sLE1WmaGh6lLXeJkYiWXZXxIOhV8yBFmORkAcGkyECUvE428LQysbwkK0doo6ZKLXyEVXzUXRuHPsFlWrAqzS25Rgu0YZLD2NybTj6LZEEWmVWRjA_aZ4dyAHWRUWqauFNwJZhPRJZde_n--qRg8viDBIJfH_xt-QrYZNvL14ZRT0plPF_YMrIu56vlfqOd9c7gOv_s_RZPGyQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVYDnBBIECU1Qe4EdE4XhIkDiyFUChCLBLiEmJ7zAW1qAWhfhW_yNhJK7ggceCaWIk1tmfzzHuEbMtYixKVYMSNEhigZGmkU60iwGDEGkiEUb5RuHMl83vefhAPE-Rz1AtT4UOME27-ZAR97Q-4T0jXaAMeJBPDdt7Ow13ViL36AoYfGLMNDs5PcIF3GDtt3R3nUU0rEBk0TjJicSIyB7oJMQNmnb_YEgKEEE5jcJI5jEJ0mRoBCVgjM8ubqUudclKB5LJM8LuTZJpLpjxlAuPX46ROkrBm1aLNfF0cmsZmXWyPU977PuEfZjCwBfz0joN5O50nc7VfSg-rjbRAJqC7SEzF-VDnC1-GtBUAJ9BO0XzoW73oiU9O4zKjAaQ9R2_f-44-9rqA7y2q5orufrBPO4GoOqTwadm1tDUGGV8i9_8ivmUy1cWJrPiyKoseg7QZqmteKuOBYhi6-xI1MECsGmRnJKTitQLfKMKlOcuK78JskCMvwfEYD5kdHvT6z0V9AovM6BgSiw6h5dyi42V1WqauFNwJBko0yG6Q_69_KtpnNx7RkMvVvw3fIjP5XeeyuDy_ulgjs8yzCIdczjqZeuu_wwa6Nm96M2wnSp7-e_9-AbK2Acw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA9TQbyIouL8zMHdLK5pkraCB3Wbc1MZfoB4qU3y4kU2mRuyf8q_0Ze0G3oRPHhtQxteXt73-z1CDmSoRI5CMOA6FuigpEmgEhUHgM6I0RAJHbtG4esb2X7gnUfxWCGf016YAh9iFnBzN8PLa3fB34wtwQYcRiZ67bzT9qmq6fDqLkw-0GV7P7ls4PnWGGs178_bQTlVINCom2TAwkikFlQdQgbMWJfXEgKEEFahb5JadEJUnmgBERgtU8PriU1sbGUMkss8wu_OkQWXX3QlZIz3ZjGdKGL1okObubI41Iz1stYet3z0fcM_tKAfFvDTOPbarbVClkuzlJ4WfLRKKtBfI7oY-VCGC18ntOnxJlBN0fbEdXrRhotN4ymj_qMDS-_GQ0ufBn3A9wYlczHt_v2YXvs51T6CT_O-oc0Zxvg6efgX8m2Q-T5uZNNVVRk0GKRJUVrzPNYOJ4ahtS9RAAOEcZXUpkTK3grsjcznzFmafSdmlZw5Cs7WOMRs_2AwfMnKC5ilWoUQGbQHDecG7S6jkjyxueBWMIhFlRx6-v_6p6xzcesADbnc-tvyfbLYa7Syq8ub7jZZYm6GsI_k7JD50XAMu2jYjNSe5yZKnv-bfb8ACzkA_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Hybrid+Downscaling+of+Surf+Zone+Hydrodynamics%3A+Methodology+and+Evaluation&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Echevarria%2C+E.+R.&rft.au=Contardo%2C+S.&rft.au=P%C3%A9rez%E2%80%90D%C3%ADaz%2C+B.&rft.au=Hoeke%2C+R.+K.&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1029%2F2024JH000523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon