On the Spectrum of the Two-Particle Schrödinger Operator with Point Potential: Two Dimensional Case

In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is de...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 46; no. 1; pp. 456 - 463
Main Author Kuljanov, U. N.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1995-0802
1818-9962
DOI10.1134/S1995080224608105

Cover

Loading…
Abstract In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is described. The existence of unique eigenvalue of the Schrödinger operator is proved and corresponding eigenfunction to this eigenvalue is found.
AbstractList In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is described. The existence of unique eigenvalue of the Schrödinger operator is proved and corresponding eigenfunction to this eigenvalue is found.
In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is described. The existence of unique eigenvalue of the Schrödinger operator is proved and corresponding eigenfunction to this eigenvalue is found.
Author Kuljanov, U. N.
Author_xml – sequence: 1
  givenname: U. N.
  surname: Kuljanov
  fullname: Kuljanov, U. N.
  email: uquljonov@bk.ru
  organization: Sharof Rashidov Samarkand State University, Samarkand Branch of Tashkent State University of Economics
BookMark eNp1kN9KwzAYxYNMcE4fwLuA19V8bZO23sn8C4MNNq9L0iYuo0tqkjF8MV_AFzN1ghfiTZKP8zuHL-cUjYw1EqELIFcAWX69hKqipCRpmjNSAqFHaAwllElVsXQU31FOBv0EnXq_IRFkjI1ROzc4rCVe9rIJbrfFVn3Pq71NFtwF3XRRbNbu86PV5lU6PO-l48E6vNdhjRdWmxDPIE3QvLsZjPhOb6Xx2hre4Sn38gwdK955ef5zT9DLw_1q-pTM5o_P09tZ0kBJaQJSqVw1raCCZ0Wa84wXbcoFpxlvGGVt2RaSQPwcoaypgEshCqFSyKUSopTZBF0ecntn33bSh3pjdy5u4essUgCQE4gUHKjGWe-dVHXv9Ja79xpIPZRZ_ykzetKDx0d2qOE3-X_TFw1FeVQ
Cites_doi 10.1134/S1995080221030161
10.1134/S1995080222060257
10.1016/0022-1236(80)90085-3
10.1134/S1995080222140074
10.1016/S0034-4877(13)60004-X
10.1007/s00220-005-1454-y
10.1007/s11232-008-0064-1
10.1134/S1995080222150173
10.1007/978-3-642-66282-9
10.1088/1751-8121/abfcf4
10.1016/0003-4916(76)90038-5
10.1134/S1995080222150161
10.1134/S1995080222150112
10.1016/S0034-4877(10)00004-2
10.1103/RevModPhys.58.361
10.1134/S1995080222150082
10.1016/0003-4916(77)90015-X
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1134/S1995080224608105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 463
ExternalDocumentID 10_1134_S1995080224608105
GroupedDBID -Y2
-~9
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c1855-1eff4fcdb5ba3724a3a7d2aba53ac656d8d7e01105056c91aebb7bf214efbb8e3
IEDL.DBID AGYKE
ISSN 1995-0802
IngestDate Fri Jul 25 09:02:16 EDT 2025
Thu Jul 03 08:42:58 EDT 2025
Sat May 31 01:18:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords symmetric Laplace operator
energy operator
two-particle quantum system
2010 Mathematics Subject Classification: 81Q10, 35P20, 47N50
eigenvalue
eigenfunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1855-1eff4fcdb5ba3724a3a7d2aba53ac656d8d7e01105056c91aebb7bf214efbb8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3214111401
PQPubID 2044393
PageCount 8
ParticipantIDs proquest_journals_3214111401
crossref_primary_10_1134_S1995080224608105
springer_journals_10_1134_S1995080224608105
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Z. E. Muminov (8172_CR21) 2021; 42
D. C. Mattis (8172_CR6) 1986; 58
F. A. Berezin (8172_CR14) 1961; 137
N. I. Akhiezer (8172_CR20) 1993
U. N. Kuljanov (8172_CR30) 2023; 14
B. Simon (8172_CR3) 1976; 97
S. Lakaev (8172_CR11) 2021; 54
R. A. Minlos (8172_CR15) 1961; 141
S. Albeverio (8172_CR9) 2006; 262
T. Kato (8172_CR5) 1995
S. N. Lakaev (8172_CR10) 2008; 155
J. Rauch (8172_CR2) 1980; 35
I. N. Bozorov (8172_CR13) 2022; 43
S. Fassari (8172_CR22) 2012; 69
M. Klaus (8172_CR4) 1977; 108
R. A. Minlos (8172_CR16) 1961; 14
R. A. Minlos (8172_CR18) 1989; 6
Z. E. Muminov (8172_CR28) 2022; 43
A. T. Boltaev (8172_CR29) 2022; 43
S. N. Lakaev (8172_CR12) 2022; 43
S. Albeverio (8172_CR25) 2016; 49
A. M. Melnikov (8172_CR19) 1991; 6
M. I. Muminov (8172_CR27) 2023; 14
S. Albeverio (8172_CR17) 2004
S. N. Lakaev (8172_CR26) 2023; 44
S. Fassari (8172_CR23) 2009; 64
A. M. Khalkhuzhaev (8172_CR8) 2022; 43
A. I. Mogilner (8172_CR7) 1991; 5
S. Albeverio (8172_CR31) 2017; 8
M. Reed (8172_CR1) 1978
Z. E. Muminov (8172_CR24) 2022; 43
References_xml – volume-title: Theory of Linear Operators in Hilbert Space
  year: 1993
  ident: 8172_CR20
– volume: 42
  start-page: 598
  year: 2021
  ident: 8172_CR21
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080221030161
– volume: 43
  start-page: 784
  year: 2022
  ident: 8172_CR28
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080222060257
– volume: 5
  start-page: 139
  year: 1991
  ident: 8172_CR7
  publication-title: Adv. Sov. Math.
– volume: 14
  start-page: 1315
  year: 1961
  ident: 8172_CR16
  publication-title: Dokl. Akad. Nauk SSSR
– volume-title: Methods of Modern Mathematical Physics IV: Analysis of Operators
  year: 1978
  ident: 8172_CR1
– volume: 6
  start-page: 99
  year: 1991
  ident: 8172_CR19
  publication-title: Adv. Sov. Math.
– volume: 6
  start-page: 7
  year: 1989
  ident: 8172_CR18
  publication-title: Ser. Mat. Mekh.
– volume: 35
  start-page: 304
  year: 1980
  ident: 8172_CR2
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(80)90085-3
– volume: 43
  start-page: 3079
  year: 2022
  ident: 8172_CR13
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080222140074
– volume: 69
  start-page: 353
  year: 2012
  ident: 8172_CR22
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(13)60004-X
– volume: 262
  start-page: 91
  year: 2006
  ident: 8172_CR9
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-005-1454-y
– volume: 141
  start-page: 1335
  year: 1961
  ident: 8172_CR15
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 155
  start-page: 753
  year: 2008
  ident: 8172_CR10
  publication-title: Theor. Math. Phys.
  doi: 10.1007/s11232-008-0064-1
– volume: 43
  start-page: 135
  year: 2022
  ident: 8172_CR12
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080222150173
– volume-title: Perturbation Theory for Linear Operators
  year: 1995
  ident: 8172_CR5
  doi: 10.1007/978-3-642-66282-9
– volume: 54
  start-page: 1
  year: 2021
  ident: 8172_CR11
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8121/abfcf4
– volume: 97
  start-page: 279
  year: 1976
  ident: 8172_CR3
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(76)90038-5
– volume: 43
  start-page: 3525
  year: 2022
  ident: 8172_CR24
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080222150161
– volume: 43
  start-page: 3486
  year: 2022
  ident: 8172_CR8
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080222150112
– volume: 137
  start-page: 1011
  year: 1961
  ident: 8172_CR14
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 14
  start-page: 505
  year: 2023
  ident: 8172_CR30
  publication-title: Nanosyst.: Phys. Chem. Math.
– volume: 64
  start-page: 367
  year: 2009
  ident: 8172_CR23
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(10)00004-2
– volume-title: Solvable Models in Quantum Mechanics
  year: 2004
  ident: 8172_CR17
– volume: 58
  start-page: 361
  year: 1986
  ident: 8172_CR6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.361
– volume: 14
  start-page: 237
  year: 2023
  ident: 8172_CR27
  publication-title: Nanosyst.: Phys. Chem. Math.
– volume: 43
  start-page: 3460
  year: 2022
  ident: 8172_CR29
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080222150082
– volume: 49
  start-page: 667
  year: 2016
  ident: 8172_CR25
  publication-title: Rep. J. Phys. A
– volume: 108
  start-page: 288
  year: 1977
  ident: 8172_CR4
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(77)90015-X
– volume: 44
  start-page: 1168
  year: 2023
  ident: 8172_CR26
  publication-title: Lobachevskii J. Math.
– volume: 8
  start-page: 153
  year: 2017
  ident: 8172_CR31
  publication-title: Nanosyst.: Phys. Chem. Math.
SSID ssj0022666
Score 2.3104713
Snippet In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 456
SubjectTerms Algebra
Analysis
Eigenvalues
Eigenvectors
Geometry
Laplace transforms
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Operators (mathematics)
Probability Theory and Stochastic Processes
Quantum theory
Schrodinger equation
Title On the Spectrum of the Two-Particle Schrödinger Operator with Point Potential: Two Dimensional Case
URI https://link.springer.com/article/10.1134/S1995080224608105
https://www.proquest.com/docview/3214111401
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YuOjBtxFFsgdPmiJtt5R6AwSNhkcCJHhq9tVo1JZAiYk_zD_gH3N220JEPXBpsmm73Xam-32zszOD0DkHylph3DS4CJhBmCcNym3PsCQRwICdCuEqOLnTrd6NyP3YGadx3LNst3vmktQzdVJ3hFwNVDCxjgwlVcAxlbc0D_SjQnIoX799fGgt7CzAHB1UpIOPaxUrdWb-2clPOFpyzBW3qEab9g4aZuNMNpm8lOcxK_OPlRSOa77ILtpO2SeuJ-qyhzZkuI-2OovUrbMDJHohhiZWhenj6fwNR4FuD98jo5_qGR7wp-nXp9BPxb2J1L56rNZ0cT96DmM4xmobEn29VjfiG1VDIMn_gZuAm4do1G4Nm3dGWorB4ADojmHKICABF8xh1HYtQm3qCosy6tiUAyUUNeFKRSUUoeKeSSVjLgssk8iAsZq0j1AujEJ5jDAhQgKp9ALOgE1w16tVbSJdQV2PUmKLArrIJOJPkowbvrZUbOL_-nQFVMxk5qc_38xXtZdgCgfLsYAuMxEsT__b2claV5-iTUvVAtbLMUWUA5HIMyAoMSuBQrYbjW4pVcxv8ArdXQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOKgH30YUdQ-eNEVot5R6IwiiPBMgwVOzr0ajFgIlJv4w_4B_zNltCxH1wKXJpu1225nufLOz3wxCFxwga57xgsGFzwzCXGlQbrmGKYkABGznCVfk5Fa7WB-Qh6E9jHnc02S3exKS1DN1VHeEXPcUmVgzQ0kR7JjKW5om4IKDWqfLd4-N6tzPApujSUWafFzKm3Ew889OfpqjBcZcCotqa1PbRv1knNEmk5fcLGQ5_rGUwnHFF9lBWzH6xOVIXXbRmgz20GZrnrp1uo9EJ8DQxKowfTiZveGRr9v995HRjfUM9_jT5OtT6KfizljqWD1Wa7q4O3oOQjiGahsSfb1RN-JbVUMgyv-BK2A3D9CgVu1X6kZcisHgYNBtoyB9n_hcMJtRyzEJtagjTMqobVEOkFCUhCMVlFCAirsFKhlzmG8WiPQZK0nrEKWCUSCPECZESACVrs8ZoAnuuKWiRaQjqONSSiyRQZeJRLxxlHHD056KRbxfny6DsonMvPjnm3qq9hJM4eA5ZtBVIoLF6X87O17p6nO0Xu-3ml7zvt04QRumqgusl2ayKAXikacAVkJ2FivnN4iT3tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1IC6IL32K16ixcKaltMmkad6UPH7UPqEJdxXmiiGlpUwQ_zB_wx5yZJBarLsRNYEgyTHJvcs_MnXsOwBFTkLVIWcliXFILU19YhDm-ZQvMFQJ2i5jp4uR2p3xxi68G7iDROZ2ku93TlGRc06BZmsLodMRlokGCT_u6sNhUieKyimmawzSLNbVdBrLV87tW43POpeKPKTAyhciVop0kNn_s5GtomuHNuRSpiTzNVbhPxxxvOHkqTCNaYK9zdI7_eKg1WElQKarGbrQOCyLcgOX2J6XrZBN4N0SqibRgfTSePqOhNO2bl6HVS_wP9dnD-P2NmxGg7kiYHD7Sa72oN3wMI3XUA1I-f6ZvRHWtLRDzgqCaiqdbcNts3NQurESiwWIq0LtWSUiJJePUpcTxbEwc4nGbUOI6hCmoyCvcExpiaKDF_BIRlHpU2iUsJKUV4WxDJhyGYgcQxlwosOlLRhXKYJ5fKTtYeJx4PiHY4Tk4Tq0TjGImjsDMYBwcfHt1Ocin9guSj3ISaE0m9WtXM8ocnKTmmJ3-tbPdP119CIu9ejO4vuy09mDJ1nLBZsUmDxllHbGvMExEDxI__QCpIee0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Spectrum+of+the+Two-Particle+Schr%C3%B6dinger+Operator+with+Point+Potential%3A+Two+Dimensional+Case&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Kuljanov%2C+U.+N.&rft.date=2025-01-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=456&rft.epage=463&rft_id=info:doi/10.1134%2FS1995080224608105&rft.externalDocID=10_1134_S1995080224608105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon