On the Spectrum of the Two-Particle Schrödinger Operator with Point Potential: Two Dimensional Case
In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is de...
Saved in:
Published in | Lobachevskii journal of mathematics Vol. 46; no. 1; pp. 456 - 463 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1995-0802 1818-9962 |
DOI | 10.1134/S1995080224608105 |
Cover
Loading…
Abstract | In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator)
depending on
is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of
is described. The existence of unique eigenvalue of the Schrödinger operator is proved and corresponding eigenfunction to this eigenvalue is found. |
---|---|
AbstractList | In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is described. The existence of unique eigenvalue of the Schrödinger operator is proved and corresponding eigenfunction to this eigenvalue is found. In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator (energy operator) depending on is constructed as a self-adjoint extension of the symmetric Laplace operator. The essential spectrum of is described. The existence of unique eigenvalue of the Schrödinger operator is proved and corresponding eigenfunction to this eigenvalue is found. |
Author | Kuljanov, U. N. |
Author_xml | – sequence: 1 givenname: U. N. surname: Kuljanov fullname: Kuljanov, U. N. email: uquljonov@bk.ru organization: Sharof Rashidov Samarkand State University, Samarkand Branch of Tashkent State University of Economics |
BookMark | eNp1kN9KwzAYxYNMcE4fwLuA19V8bZO23sn8C4MNNq9L0iYuo0tqkjF8MV_AFzN1ghfiTZKP8zuHL-cUjYw1EqELIFcAWX69hKqipCRpmjNSAqFHaAwllElVsXQU31FOBv0EnXq_IRFkjI1ROzc4rCVe9rIJbrfFVn3Pq71NFtwF3XRRbNbu86PV5lU6PO-l48E6vNdhjRdWmxDPIE3QvLsZjPhOb6Xx2hre4Sn38gwdK955ef5zT9DLw_1q-pTM5o_P09tZ0kBJaQJSqVw1raCCZ0Wa84wXbcoFpxlvGGVt2RaSQPwcoaypgEshCqFSyKUSopTZBF0ecntn33bSh3pjdy5u4essUgCQE4gUHKjGWe-dVHXv9Ja79xpIPZRZ_ykzetKDx0d2qOE3-X_TFw1FeVQ |
Cites_doi | 10.1134/S1995080221030161 10.1134/S1995080222060257 10.1016/0022-1236(80)90085-3 10.1134/S1995080222140074 10.1016/S0034-4877(13)60004-X 10.1007/s00220-005-1454-y 10.1007/s11232-008-0064-1 10.1134/S1995080222150173 10.1007/978-3-642-66282-9 10.1088/1751-8121/abfcf4 10.1016/0003-4916(76)90038-5 10.1134/S1995080222150161 10.1134/S1995080222150112 10.1016/S0034-4877(10)00004-2 10.1103/RevModPhys.58.361 10.1134/S1995080222150082 10.1016/0003-4916(77)90015-X |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1995080224608105 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1818-9962 |
EndPage | 463 |
ExternalDocumentID | 10_1134_S1995080224608105 |
GroupedDBID | -Y2 -~9 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB YLTOR ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c1855-1eff4fcdb5ba3724a3a7d2aba53ac656d8d7e01105056c91aebb7bf214efbb8e3 |
IEDL.DBID | AGYKE |
ISSN | 1995-0802 |
IngestDate | Fri Jul 25 09:02:16 EDT 2025 Thu Jul 03 08:42:58 EDT 2025 Sat May 31 01:18:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | symmetric Laplace operator energy operator two-particle quantum system 2010 Mathematics Subject Classification: 81Q10, 35P20, 47N50 eigenvalue eigenfunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1855-1eff4fcdb5ba3724a3a7d2aba53ac656d8d7e01105056c91aebb7bf214efbb8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3214111401 |
PQPubID | 2044393 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3214111401 crossref_primary_10_1134_S1995080224608105 springer_journals_10_1134_S1995080224608105 |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Lobachevskii journal of mathematics |
PublicationTitleAbbrev | Lobachevskii J Math |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Z. E. Muminov (8172_CR21) 2021; 42 D. C. Mattis (8172_CR6) 1986; 58 F. A. Berezin (8172_CR14) 1961; 137 N. I. Akhiezer (8172_CR20) 1993 U. N. Kuljanov (8172_CR30) 2023; 14 B. Simon (8172_CR3) 1976; 97 S. Lakaev (8172_CR11) 2021; 54 R. A. Minlos (8172_CR15) 1961; 141 S. Albeverio (8172_CR9) 2006; 262 T. Kato (8172_CR5) 1995 S. N. Lakaev (8172_CR10) 2008; 155 J. Rauch (8172_CR2) 1980; 35 I. N. Bozorov (8172_CR13) 2022; 43 S. Fassari (8172_CR22) 2012; 69 M. Klaus (8172_CR4) 1977; 108 R. A. Minlos (8172_CR16) 1961; 14 R. A. Minlos (8172_CR18) 1989; 6 Z. E. Muminov (8172_CR28) 2022; 43 A. T. Boltaev (8172_CR29) 2022; 43 S. N. Lakaev (8172_CR12) 2022; 43 S. Albeverio (8172_CR25) 2016; 49 A. M. Melnikov (8172_CR19) 1991; 6 M. I. Muminov (8172_CR27) 2023; 14 S. Albeverio (8172_CR17) 2004 S. N. Lakaev (8172_CR26) 2023; 44 S. Fassari (8172_CR23) 2009; 64 A. M. Khalkhuzhaev (8172_CR8) 2022; 43 A. I. Mogilner (8172_CR7) 1991; 5 S. Albeverio (8172_CR31) 2017; 8 M. Reed (8172_CR1) 1978 Z. E. Muminov (8172_CR24) 2022; 43 |
References_xml | – volume-title: Theory of Linear Operators in Hilbert Space year: 1993 ident: 8172_CR20 – volume: 42 start-page: 598 year: 2021 ident: 8172_CR21 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080221030161 – volume: 43 start-page: 784 year: 2022 ident: 8172_CR28 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080222060257 – volume: 5 start-page: 139 year: 1991 ident: 8172_CR7 publication-title: Adv. Sov. Math. – volume: 14 start-page: 1315 year: 1961 ident: 8172_CR16 publication-title: Dokl. Akad. Nauk SSSR – volume-title: Methods of Modern Mathematical Physics IV: Analysis of Operators year: 1978 ident: 8172_CR1 – volume: 6 start-page: 99 year: 1991 ident: 8172_CR19 publication-title: Adv. Sov. Math. – volume: 6 start-page: 7 year: 1989 ident: 8172_CR18 publication-title: Ser. Mat. Mekh. – volume: 35 start-page: 304 year: 1980 ident: 8172_CR2 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(80)90085-3 – volume: 43 start-page: 3079 year: 2022 ident: 8172_CR13 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080222140074 – volume: 69 start-page: 353 year: 2012 ident: 8172_CR22 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(13)60004-X – volume: 262 start-page: 91 year: 2006 ident: 8172_CR9 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-005-1454-y – volume: 141 start-page: 1335 year: 1961 ident: 8172_CR15 publication-title: Dokl. Akad. Nauk SSSR – volume: 155 start-page: 753 year: 2008 ident: 8172_CR10 publication-title: Theor. Math. Phys. doi: 10.1007/s11232-008-0064-1 – volume: 43 start-page: 135 year: 2022 ident: 8172_CR12 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080222150173 – volume-title: Perturbation Theory for Linear Operators year: 1995 ident: 8172_CR5 doi: 10.1007/978-3-642-66282-9 – volume: 54 start-page: 1 year: 2021 ident: 8172_CR11 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/abfcf4 – volume: 97 start-page: 279 year: 1976 ident: 8172_CR3 publication-title: Ann. Phys. doi: 10.1016/0003-4916(76)90038-5 – volume: 43 start-page: 3525 year: 2022 ident: 8172_CR24 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080222150161 – volume: 43 start-page: 3486 year: 2022 ident: 8172_CR8 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080222150112 – volume: 137 start-page: 1011 year: 1961 ident: 8172_CR14 publication-title: Dokl. Akad. Nauk SSSR – volume: 14 start-page: 505 year: 2023 ident: 8172_CR30 publication-title: Nanosyst.: Phys. Chem. Math. – volume: 64 start-page: 367 year: 2009 ident: 8172_CR23 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(10)00004-2 – volume-title: Solvable Models in Quantum Mechanics year: 2004 ident: 8172_CR17 – volume: 58 start-page: 361 year: 1986 ident: 8172_CR6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.58.361 – volume: 14 start-page: 237 year: 2023 ident: 8172_CR27 publication-title: Nanosyst.: Phys. Chem. Math. – volume: 43 start-page: 3460 year: 2022 ident: 8172_CR29 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080222150082 – volume: 49 start-page: 667 year: 2016 ident: 8172_CR25 publication-title: Rep. J. Phys. A – volume: 108 start-page: 288 year: 1977 ident: 8172_CR4 publication-title: Ann. Phys. doi: 10.1016/0003-4916(77)90015-X – volume: 44 start-page: 1168 year: 2023 ident: 8172_CR26 publication-title: Lobachevskii J. Math. – volume: 8 start-page: 153 year: 2017 ident: 8172_CR31 publication-title: Nanosyst.: Phys. Chem. Math. |
SSID | ssj0022666 |
Score | 2.3104713 |
Snippet | In the article, a two-dimensional two-particle quantum system interacted by two identical point interactions is studied. The corresponding Schrödinger operator... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 456 |
SubjectTerms | Algebra Analysis Eigenvalues Eigenvectors Geometry Laplace transforms Mathematical Logic and Foundations Mathematics Mathematics and Statistics Operators (mathematics) Probability Theory and Stochastic Processes Quantum theory Schrodinger equation |
Title | On the Spectrum of the Two-Particle Schrödinger Operator with Point Potential: Two Dimensional Case |
URI | https://link.springer.com/article/10.1134/S1995080224608105 https://www.proquest.com/docview/3214111401 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YuOjBtxFFsgdPmiJtt5R6AwSNhkcCJHhq9tVo1JZAiYk_zD_gH3N220JEPXBpsmm73Xam-32zszOD0DkHylph3DS4CJhBmCcNym3PsCQRwICdCuEqOLnTrd6NyP3YGadx3LNst3vmktQzdVJ3hFwNVDCxjgwlVcAxlbc0D_SjQnIoX799fGgt7CzAHB1UpIOPaxUrdWb-2clPOFpyzBW3qEab9g4aZuNMNpm8lOcxK_OPlRSOa77ILtpO2SeuJ-qyhzZkuI-2OovUrbMDJHohhiZWhenj6fwNR4FuD98jo5_qGR7wp-nXp9BPxb2J1L56rNZ0cT96DmM4xmobEn29VjfiG1VDIMn_gZuAm4do1G4Nm3dGWorB4ADojmHKICABF8xh1HYtQm3qCosy6tiUAyUUNeFKRSUUoeKeSSVjLgssk8iAsZq0j1AujEJ5jDAhQgKp9ALOgE1w16tVbSJdQV2PUmKLArrIJOJPkowbvrZUbOL_-nQFVMxk5qc_38xXtZdgCgfLsYAuMxEsT__b2claV5-iTUvVAtbLMUWUA5HIMyAoMSuBQrYbjW4pVcxv8ArdXQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOKgH30YUdQ-eNEVot5R6IwiiPBMgwVOzr0ajFgIlJv4w_4B_zNltCxH1wKXJpu1225nufLOz3wxCFxwga57xgsGFzwzCXGlQbrmGKYkABGznCVfk5Fa7WB-Qh6E9jHnc02S3exKS1DN1VHeEXPcUmVgzQ0kR7JjKW5om4IKDWqfLd4-N6tzPApujSUWafFzKm3Ew889OfpqjBcZcCotqa1PbRv1knNEmk5fcLGQ5_rGUwnHFF9lBWzH6xOVIXXbRmgz20GZrnrp1uo9EJ8DQxKowfTiZveGRr9v995HRjfUM9_jT5OtT6KfizljqWD1Wa7q4O3oOQjiGahsSfb1RN-JbVUMgyv-BK2A3D9CgVu1X6kZcisHgYNBtoyB9n_hcMJtRyzEJtagjTMqobVEOkFCUhCMVlFCAirsFKhlzmG8WiPQZK0nrEKWCUSCPECZESACVrs8ZoAnuuKWiRaQjqONSSiyRQZeJRLxxlHHD056KRbxfny6DsonMvPjnm3qq9hJM4eA5ZtBVIoLF6X87O17p6nO0Xu-3ml7zvt04QRumqgusl2ayKAXikacAVkJ2FivnN4iT3tA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1IC6IL32K16ixcKaltMmkad6UPH7UPqEJdxXmiiGlpUwQ_zB_wx5yZJBarLsRNYEgyTHJvcs_MnXsOwBFTkLVIWcliXFILU19YhDm-ZQvMFQJ2i5jp4uR2p3xxi68G7iDROZ2ku93TlGRc06BZmsLodMRlokGCT_u6sNhUieKyimmawzSLNbVdBrLV87tW43POpeKPKTAyhciVop0kNn_s5GtomuHNuRSpiTzNVbhPxxxvOHkqTCNaYK9zdI7_eKg1WElQKarGbrQOCyLcgOX2J6XrZBN4N0SqibRgfTSePqOhNO2bl6HVS_wP9dnD-P2NmxGg7kiYHD7Sa72oN3wMI3XUA1I-f6ZvRHWtLRDzgqCaiqdbcNts3NQurESiwWIq0LtWSUiJJePUpcTxbEwc4nGbUOI6hCmoyCvcExpiaKDF_BIRlHpU2iUsJKUV4WxDJhyGYgcQxlwosOlLRhXKYJ5fKTtYeJx4PiHY4Tk4Tq0TjGImjsDMYBwcfHt1Ocin9guSj3ISaE0m9WtXM8ocnKTmmJ3-tbPdP119CIu9ejO4vuy09mDJ1nLBZsUmDxllHbGvMExEDxI__QCpIee0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Spectrum+of+the+Two-Particle+Schr%C3%B6dinger+Operator+with+Point+Potential%3A+Two+Dimensional+Case&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Kuljanov%2C+U.+N.&rft.date=2025-01-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=456&rft.epage=463&rft_id=info:doi/10.1134%2FS1995080224608105&rft.externalDocID=10_1134_S1995080224608105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |