Interpretable Machine Learning Reveals the Crucial Role of Water Availability in Regulating Thermal Optimality of Terrestrial Ecosystems

Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a comple...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 2
Main Authors Ahmadi, Arman, Mallick, Kanishka, Yi, Koong, Baldocchi, Dennis
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2025
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2024JH000445

Cover

Loading…
Abstract Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process. Plain Language Summary Terrestrial ecosystems' productivity is influenced by air temperature, but water availability also plays a crucial role. This study uses interpretable machine learning to examine how water availability regulates temperature influence on ecosystem productivity. Using over 112,000 daily data samples from 108 micrometeorological sites across North America, we visualize the interactions between temperature, water, and productivity in a three‐dimensional space. Our multifaceted approach quantifies how the coupled effects of water availability and temperature impact productivity. Our findings show that arid ecosystems reach their optimum productivity at lower temperatures, with water availability being the primary driver of productivity. In contrast, wet ecosystems are primarily influenced by air temperature and have higher temperature optima. Additionally, we observe an upward trend in air temperatures in North America, which could reduce productivity, although terrestrial ecosystems may acclimate to these higher temperatures. Our innovative data‐driven approach can be adapted to explore complex interactions in diverse ecosystems. Key Points Interpretable machine learning reveals temperature‐water interactions shaping productivity, transcending traditional photosynthesis models Water availability critically influences thermal optimality in terrestrial ecosystems, particularly in arid conditions Rising air temperatures in North America may reduce ecosystem productivity, while acclimation can mitigate this process
AbstractList Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process. Plain Language Summary Terrestrial ecosystems' productivity is influenced by air temperature, but water availability also plays a crucial role. This study uses interpretable machine learning to examine how water availability regulates temperature influence on ecosystem productivity. Using over 112,000 daily data samples from 108 micrometeorological sites across North America, we visualize the interactions between temperature, water, and productivity in a three‐dimensional space. Our multifaceted approach quantifies how the coupled effects of water availability and temperature impact productivity. Our findings show that arid ecosystems reach their optimum productivity at lower temperatures, with water availability being the primary driver of productivity. In contrast, wet ecosystems are primarily influenced by air temperature and have higher temperature optima. Additionally, we observe an upward trend in air temperatures in North America, which could reduce productivity, although terrestrial ecosystems may acclimate to these higher temperatures. Our innovative data‐driven approach can be adapted to explore complex interactions in diverse ecosystems. Key Points Interpretable machine learning reveals temperature‐water interactions shaping productivity, transcending traditional photosynthesis models Water availability critically influences thermal optimality in terrestrial ecosystems, particularly in arid conditions Rising air temperatures in North America may reduce ecosystem productivity, while acclimation can mitigate this process
Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process. Terrestrial ecosystems' productivity is influenced by air temperature, but water availability also plays a crucial role. This study uses interpretable machine learning to examine how water availability regulates temperature influence on ecosystem productivity. Using over 112,000 daily data samples from 108 micrometeorological sites across North America, we visualize the interactions between temperature, water, and productivity in a three‐dimensional space. Our multifaceted approach quantifies how the coupled effects of water availability and temperature impact productivity. Our findings show that arid ecosystems reach their optimum productivity at lower temperatures, with water availability being the primary driver of productivity. In contrast, wet ecosystems are primarily influenced by air temperature and have higher temperature optima. Additionally, we observe an upward trend in air temperatures in North America, which could reduce productivity, although terrestrial ecosystems may acclimate to these higher temperatures. Our innovative data‐driven approach can be adapted to explore complex interactions in diverse ecosystems. Interpretable machine learning reveals temperature‐water interactions shaping productivity, transcending traditional photosynthesis models Water availability critically influences thermal optimality in terrestrial ecosystems, particularly in arid conditions Rising air temperatures in North America may reduce ecosystem productivity, while acclimation can mitigate this process
Abstract Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process.
Author Yi, Koong
Ahmadi, Arman
Baldocchi, Dennis
Mallick, Kanishka
Author_xml – sequence: 1
  givenname: Arman
  orcidid: 0000-0001-7962-1990
  surname: Ahmadi
  fullname: Ahmadi, Arman
  email: a.ahmadi@berkeley.edu
  organization: University of California
– sequence: 2
  givenname: Kanishka
  orcidid: 0000-0002-2735-930X
  surname: Mallick
  fullname: Mallick, Kanishka
  organization: Luxembourg Institute of Science and Technology
– sequence: 3
  givenname: Koong
  surname: Yi
  fullname: Yi, Koong
  organization: Earth and Environmental Sciences Area
– sequence: 4
  givenname: Dennis
  orcidid: 0000-0003-3496-4919
  surname: Baldocchi
  fullname: Baldocchi, Dennis
  organization: University of California
BookMark eNp9kctqGzEUQEVJoGmaXT9AH1A3eo6kZTBp4uAQMA5dDleaO7bCZMZISor_oJ9dOQ4lq66uEOccCe4XcjJOIxLyjbMfnAl3KZhQd7eMMaX0J3ImnJMzLTg7-XD-TC5yfqqMlIJZZs7In8VYMO0SFvAD0nsI2zgiXSKkMY4busJXhCHTskU6Ty8hwkBXUyWnnv6CqtKrV4gD-DjEsqdxrMbmZYBykNdbTM9VeNiVWOcBqNoaU8Jc0iF1Haa8zwWf81dy2teH8OJ9npPHn9fr-e1s-XCzmF8tZ4FbrWZcBlQOtVCN4RA6Hnre9FyjEdKCRcYDd94ZYzyC9aHTlTaqkcJ6q2Unz8ni2O0meGp3qX4s7dsJYvt2MaVNC6nEMGAr0DHbad-EHpR3HKxxwRhpLRO6D762vh9bIU05J-z_9ThrD0tpPy6l4vKI_44D7v_Ltnc3K24Ya5T8CxfbkOA
Cites_doi 10.1098/rstb.1976.0035
10.1146/annurev.pp.31.060180.002423
10.2307/1907187
10.1016/j.inffus.2021.11.011
10.21105/joss.01556
10.1038/s41597‐022‐01493‐1
10.2307/2402267
10.1016/j.advwatres.2006.06.013
10.1126/science.1192666
10.1126/sciadv.aay1052
10.1256/smsqj.46909
10.1007/s11120‐013‐9874‐6
10.1038/s41559‐023‐02121‐w
10.1038/nature03972
10.1007/s11120‐017‐0388‐5
10.1038/nclimate3114
10.1111/j.1365-3040.2007.01682.x
10.1145/2939672.2939785
10.1016/j.scitotenv.2022.157823
10.1111/nph.15384
10.1007/b97397
10.1111/gcb.15760
10.1146/annurev.arplant.37.1.247
10.1111/j.1365‐2486.2009.02041.x
10.1038/s41597‐020‐0534‐3
10.1029/2021gl097568
10.1016/j.agrformet.2024.109929
10.1145/3292500.3330701
10.2135/cssaspecpub19.c2
10.1214/aos/1013203451
10.1038/s41586‐018‐0848‐x
10.1046/j.1365‐3040.2001.00668.x
10.1002/qj.3803
10.1111/gcb.16842
10.1146/annurev.pp.33.060182.001533
10.1111/rssb.12377
10.1029/2009wr008902
10.1038/s43017‐024‐00569‐3
10.1016/j.agwat.2024.108779
10.1007/978-0-387-84858-7
10.1175/1520‐0477(2001)082<2415:fantts>2.3.co;2
10.1038/s43247‐024‐01636‐9
10.1073/pnas.1107891109
10.1038/nature07031
10.1038/s41467‐023‐43430‐9
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000445
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2e908d5b6cfa4b91a879c77388025fcb
10_1029_2024JH000445
JGR170064
Genre researchArticle
GrantInformation_xml – fundername: University of California's Agricultural Experiment Station
– fundername: Rausser College of Natural Resources
– fundername: U.S. Department of Energy's Office of Science
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
AAYXX
CITATION
WIN
ID FETCH-LOGICAL-c1854-13ce49e524671acd1cf16f15e7238a8e01c19b9777bea8bcd549e746328b853d3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Wed Aug 27 01:08:34 EDT 2025
Thu Jul 10 08:32:36 EDT 2025
Sun Jul 06 04:45:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1854-13ce49e524671acd1cf16f15e7238a8e01c19b9777bea8bcd549e746328b853d3
ORCID 0000-0001-7962-1990
0000-0003-3496-4919
0000-0002-2735-930X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000445
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2e908d5b6cfa4b91a879c77388025fcb
crossref_primary_10_1029_2024JH000445
wiley_primary_10_1029_2024JH000445_JGR170064
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 1
2014; 119
2021; 27
2021; 7
1991; 19
2019; 4
2010; 16
2023; 14
2010; 329
2024; 348
2023; 7
2020; 82
1945; 13
1982; 33
1986; 37
2005; 437
2019; 565
2020; 146
2007; 30
2002
2001; 29
2017; 132
2001; 24
2022; 49
2019; 221
2012; 109
2020; 7
2001; 82
2016; 6
1976; 273
1976; 13
2010; 46
1980; 31
2022; 81
2024; 5
2023; 29
2020
2022; 9
1987
2024; 295
2019
2022; 849
2016
2008; 454
2009; 2
1948
1985; 111
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
Molnar C. (e_1_2_12_37_1) 2020
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_33_1
e_1_2_12_35_1
Chen T. (e_1_2_12_15_1) 2015; 1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
Gilbert R. O. (e_1_2_12_22_1) 1987
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_32_1
e_1_2_12_34_1
e_1_2_12_36_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 9
  start-page: 409
  issue: 1
  year: 2022
  article-title: Version 3 of the global aridity index and potential evapotranspiration database
  publication-title: Scientific Data
– volume: 30
  start-page: 2113
  issue: 10
  year: 2007
  end-page: 2122
  article-title: What limits evaporation from Mediterranean oak woodlands–The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?
  publication-title: Advances in Water Resources
– volume: 849
  year: 2022
  article-title: Meteorological driving forces of reference evapotranspiration and their trends in California
  publication-title: Science of the Total Environment
– volume: 109
  start-page: 233
  issue: 1
  year: 2012
  end-page: 237
  article-title: The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off
  publication-title: Proceedings of the National Academy of Sciences
– volume: 119
  start-page: 101
  issue: 1–2
  year: 2014
  end-page: 117
  article-title: Temperature response of photosynthesis in C 3, C 4, and CAM plants: Temperature acclimation and temperature adaptation
  publication-title: Photosynthesis Research
– volume: 7
  start-page: 1379
  issue: 9
  year: 2023
  end-page: 1387
  article-title: Evidence for widespread thermal optimality of ecosystem respiration
  publication-title: Nature Ecology & Evolution
– volume: 81
  start-page: 84
  year: 2022
  end-page: 90
  article-title: Tabular data: Deep learning is not all you need
  publication-title: Information Fusion
– volume: 16
  start-page: 187
  issue: 1
  year: 2010
  end-page: 208
  article-title: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation
  publication-title: Global Change Biology
– volume: 13
  start-page: 245
  issue: 3
  year: 1945
  end-page: 259
  article-title: Non‐parametric tests against trend
  publication-title: Econometrica: Journal of the Econometric Society
– start-page: 785
  year: 2016
  end-page: 794
– volume: 329
  start-page: 940
  issue: 5994
  year: 2010
  end-page: 943
  article-title: Drought‐induced reduction in global terrestrial net primary production from 2000 through 2009
  publication-title: science
– volume: 29
  start-page: 4750
  issue: 17
  year: 2023
  end-page: 4757
  article-title: Dryness limits vegetation pace to cope with temperature change in warm regions
  publication-title: Global Change Biology
– volume: 6
  start-page: 1023
  issue: 11
  year: 2016
  end-page: 1027
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nature Climate Change
– volume: 437
  start-page: 529
  issue: 7058
  year: 2005
  end-page: 533
  article-title: Europe‐wide reduction in primary productivity caused by the heat and drought in 2003
  publication-title: Nature
– volume: 49
  issue: 15
  year: 2022
  article-title: Insights into the aerodynamic versus radiometric surface temperature debate in thermal‐based evaporation modeling
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 559
  issue: 8
  year: 2024
  end-page: 571
  article-title: Temperature responses of ecosystem respiration
  publication-title: Nature Reviews Earth and Environment
– volume: 24
  start-page: 253
  issue: 2
  year: 2001
  end-page: 259
  article-title: Improved temperature response functions for models of Rubisco‐limited photosynthesis
  publication-title: Plant, Cell and Environment
– start-page: 2623
  year: 2019
  end-page: 2631
– volume: 2
  start-page: 1
  year: 2009
  end-page: 758
– volume: 46
  issue: 10
  year: 2010
  article-title: Groundwater uptake by woody vegetation in a semi‐arid oak savanna
  publication-title: Water Resources Research
– volume: 1
  start-page: 1
  issue: 4
  year: 2015
  end-page: 4
  article-title: Xgboost: Extreme gradient boosting
  publication-title: R Package Version 0.4‐2
– volume: 565
  start-page: 476
  issue: 7740
  year: 2019
  end-page: 479
  article-title: Large influence of soil moisture on long‐term terrestrial carbon uptake
  publication-title: Nature
– volume: 7
  start-page: 225
  issue: 1
  year: 2020
  article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
  publication-title: Scientific Data
– volume: 4
  issue: 39
  year: 2019
  article-title: pyMannKendall: A python package for non parametric Mann Kendall family of trend tests
  publication-title: Journal of Open Source Software
– volume: 348
  year: 2024
  article-title: AmeriFlux: Its Impact on our understanding of the ‘breathing of the biosphere’, after 25 years
  publication-title: Agricultural and Forest Meteorology
– volume: 273
  start-page: 593
  issue: 927
  year: 1976
  end-page: 610
  article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
  publication-title: Philosophical Transactions of the Royal Society of London B Biological Sciences
– volume: 37
  start-page: 247
  issue: 1
  year: 1986
  end-page: 274
  article-title: Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil
  publication-title: Annual Review of Plant Physiology
– volume: 111
  start-page: 839
  issue: 469
  year: 1985
  end-page: 855
  article-title: Evaporation from sparse crops‐an energy combination theory
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 1987
– year: 1948
– volume: 19
  start-page: 17
  year: 1991
  end-page: 39
– volume: 454
  start-page: 511
  issue: 7203
  year: 2008
  end-page: 514
  article-title: Subtropical to boreal convergence of tree‐leaf temperatures
  publication-title: Nature
– volume: 132
  start-page: 277
  issue: 3
  year: 2017
  end-page: 291
  article-title: Photosynthetic responses to temperature across leaf–canopy–ecosystem scales: A 15‐year study in a Californian oak‐grass savanna
  publication-title: Photosynthesis Research
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  end-page: 1232
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
– volume: 33
  start-page: 317
  issue: 1
  year: 1982
  end-page: 345
  article-title: Stomatal conductance and photosynthesis
  publication-title: Annual Review of Plant Physiology
– volume: 27
  start-page: 4727
  issue: 19
  year: 2021
  end-page: 4744
  article-title: Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems
  publication-title: Global Change Biology
– volume: 221
  start-page: 195
  issue: 1
  year: 2019
  end-page: 208
  article-title: Linking variation in intrinsic water‐use efficiency to isohydricity: A comparison at multiple spatiotemporal scales
  publication-title: New Phytologist
– volume: 295
  year: 2024
  article-title: SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation
  publication-title: Agricultural Water Management
– year: 2002
– volume: 14
  issue: 1
  year: 2023
  article-title: Increased photosynthesis during spring drought in energy‐limited ecosystems
  publication-title: Nature Communications
– volume: 31
  start-page: 491
  issue: 1
  year: 1980
  end-page: 543
  article-title: Photosynthetic response and adaptation to temperature in higher plants
  publication-title: Annual Review of Plant Physiology
– year: 2020
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 82
  start-page: 2415
  issue: 11
  year: 2001
  end-page: 2434
  article-title: Fluxnet: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bulletin of the American Meteorological Society
– volume: 7
  start-page: eaay1052
  issue: 3
  year: 2021
  article-title: How close are we to the temperature tipping point of the terrestrial biosphere?
  publication-title: Science Advances
– volume: 82
  start-page: 1059
  issue: 4
  year: 2020
  end-page: 1086
  article-title: Visualizing the effects of predictor variables in black box supervised learning models
  publication-title: Journal of the Royal Statistical Society–Series B: Statistical Methodology
– volume: 30
  start-page: 1086
  issue: 9
  year: 2007
  end-page: 1106
  article-title: The temperature response of C3 and C4 photosynthesis
  publication-title: Plant, Cell and Environment
– volume: 13
  start-page: 925
  issue: 3
  year: 1976
  end-page: 942
  article-title: An analytical model for field measurement of photosynthesis
  publication-title: Journal of Applied Ecology
– volume: 5
  start-page: 466
  issue: 1
  year: 2024
  article-title: Global increase in the optimal temperature for the productivity of terrestrial ecosystems
  publication-title: Communications Earth and Environment
– ident: e_1_2_12_29_1
  doi: 10.1098/rstb.1976.0035
– ident: e_1_2_12_12_1
  doi: 10.1146/annurev.pp.31.060180.002423
– ident: e_1_2_12_34_1
  doi: 10.2307/1907187
– ident: e_1_2_12_45_1
  doi: 10.1016/j.inffus.2021.11.011
– ident: e_1_2_12_28_1
  doi: 10.21105/joss.01556
– ident: e_1_2_12_50_1
  doi: 10.1038/s41597‐022‐01493‐1
– ident: e_1_2_12_41_1
  doi: 10.2307/2402267
– ident: e_1_2_12_9_1
  doi: 10.1016/j.advwatres.2006.06.013
– ident: e_1_2_12_49_1
  doi: 10.1126/science.1192666
– ident: e_1_2_12_18_1
  doi: 10.1126/sciadv.aay1052
– ident: e_1_2_12_44_1
  doi: 10.1256/smsqj.46909
– ident: e_1_2_12_47_1
  doi: 10.1007/s11120‐013‐9874‐6
– ident: e_1_2_12_16_1
  doi: 10.1038/s41559‐023‐02121‐w
– ident: e_1_2_12_17_1
  doi: 10.1038/nature03972
– ident: e_1_2_12_32_1
  doi: 10.1007/s11120‐017‐0388‐5
– ident: e_1_2_12_39_1
  doi: 10.1038/nclimate3114
– ident: e_1_2_12_42_1
  doi: 10.1111/j.1365-3040.2007.01682.x
– ident: e_1_2_12_14_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_12_2_1
  doi: 10.1016/j.scitotenv.2022.157823
– ident: e_1_2_12_48_1
  doi: 10.1111/nph.15384
– ident: e_1_2_12_13_1
  doi: 10.1007/b97397
– ident: e_1_2_12_10_1
  doi: 10.1111/gcb.15760
– ident: e_1_2_12_43_1
  doi: 10.1146/annurev.arplant.37.1.247
– ident: e_1_2_12_31_1
  doi: 10.1111/j.1365‐2486.2009.02041.x
– ident: e_1_2_12_40_1
  doi: 10.1038/s41597‐020‐0534‐3
– ident: e_1_2_12_33_1
  doi: 10.1029/2021gl097568
– ident: e_1_2_12_8_1
  doi: 10.1016/j.agrformet.2024.109929
– ident: e_1_2_12_4_1
  doi: 10.1145/3292500.3330701
– ident: e_1_2_12_24_1
  doi: 10.2135/cssaspecpub19.c2
– volume-title: Interpretable machine learning
  year: 2020
  ident: e_1_2_12_37_1
– volume-title: Statistical methods for environmental pollution monitoring
  year: 1987
  ident: e_1_2_12_22_1
– volume: 1
  start-page: 1
  issue: 4
  year: 2015
  ident: e_1_2_12_15_1
  article-title: Xgboost: Extreme gradient boosting
  publication-title: R Package Version 0.4‐2
– ident: e_1_2_12_21_1
  doi: 10.1214/aos/1013203451
– ident: e_1_2_12_23_1
  doi: 10.1038/s41586‐018‐0848‐x
– ident: e_1_2_12_11_1
  doi: 10.1046/j.1365‐3040.2001.00668.x
– ident: e_1_2_12_27_1
  doi: 10.1002/qj.3803
– ident: e_1_2_12_46_1
  doi: 10.1111/gcb.16842
– ident: e_1_2_12_20_1
  doi: 10.1146/annurev.pp.33.060182.001533
– ident: e_1_2_12_6_1
  doi: 10.1111/rssb.12377
– ident: e_1_2_12_36_1
  doi: 10.1029/2009wr008902
– ident: e_1_2_12_38_1
  doi: 10.1038/s43017‐024‐00569‐3
– ident: e_1_2_12_3_1
  doi: 10.1016/j.agwat.2024.108779
– ident: e_1_2_12_25_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_12_7_1
  doi: 10.1175/1520‐0477(2001)082<2415:fantts>2.3.co;2
– ident: e_1_2_12_19_1
  doi: 10.1038/s43247‐024‐01636‐9
– ident: e_1_2_12_5_1
  doi: 10.1073/pnas.1107891109
– ident: e_1_2_12_26_1
  doi: 10.1038/nature07031
– ident: e_1_2_12_30_1
– ident: e_1_2_12_35_1
  doi: 10.1038/s41467‐023‐43430‐9
SSID ssj0003320807
Score 2.2935255
Snippet Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences...
Abstract Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7EFvBrObzWOPtbSWQhVKi72FfUykUFNpa8F_4M92dhO1vejFa9hlw8xkvm-SyTeEXOFTVhhuRKBdChQ2hkDxOAp4AhYBRVum3N_Ig4ekNxb9STzZGPXlesIqeeDKcLccZJjZWCemUEJLprJUmjR1GiY8Lox22Rcxb6OYcjk4ijhSobTudA-5dEW-6Pf8B8x4C4O8VP82NfXY0t0nezUppK3qZg7IDpSH5OOnH1DPgA581yPQWhD1mQ5hjSRvSZHB0TZ6CAOJDue4cl7QJ2SQC9paq-ms0uF-p9MSd_i5824zRgdm5Bl9xIzx4qm42zYCP6rDxSTtmHml8rw8IuNuZ9TuBfXchMAg-oqARQaEhJhjEmTKWGYKlhQsBjdgTGUQMsOkRuKXalCZNhZrREhFEvFMI3rb6Jg0ynkJJ4SKxEqukhAxDKmWxOrMZli6cglIfJBaNsn1lyXz10oeI_eftbnMNy3eJHfOzN9rnKi1v4CuzmtX53-5ukluvJN-PSnv3w-d5mAiTv_jzDOyy93EX__e5Zw0Vos3uEAastKXPuI-ARJs2CA
  priority: 102
  providerName: Directory of Open Access Journals
Title Interpretable Machine Learning Reveals the Crucial Role of Water Availability in Regulating Thermal Optimality of Terrestrial Ecosystems
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000445
https://doaj.org/article/2e908d5b6cfa4b91a879c77388025fcb
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll5EUXF9kYPeLDZp-shRZXVZWJVF0VvJYyrCupVdFbx49mc7k9ZVL4KXHkrSQjKPbyaZbxjbRy2rnHQqsmQClU8hMjJNIpmBR4divTBUjTy4yHo3qn-X3rUJN6qFafghZgk30oxgr0nBjZ22ZAPEkYlRu-r3wolkOs8WqbqWuPOluprlWJJExk3FtKRrauip4vbuO37i6OcHfnmlQN7_G6wGb3O2wpZbmMiPm31dZXMwXmMf3zcE7Qj4INyDBN5SpN7zIbwi7JtyxHT8FPcMRYsPaxxZV_wWMeWEH7-ah1HDzP3GH8Y4I3Sip8koL2ijR_wSbchjAOc07RpC8w6SUt51dcP7PF1nN2fd69Ne1HZSiBz6YxWJxIHSkEo0i8I4L1wlskqkQC3HTAGxcEJbhIK5BVNY5zFqhFxliSws-nOfbLCFcT2GTcZV5rU0WYxeDcGXxnjNFxjMSg0IhRBsdtjB10qWTw1hRhkOuqUuf654h53QMs_GEM11eFFP7stWa0oJOi58ajNXGWW1MEWuXZ4TgY1MK2c77DBs0p9_KvvnQ2IhzNTW_4ZvsyVJ3X5DzmWHLTxPXmAXIciz3QtythcCeHwO3rufrlnTvw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoHNoLArWIhQI-tLdGxI7jxEdAwLKwFK0WlVvkxwQhLRu0UKT-g_5sZpywwAWJa2Q7kj2Pb8bjbxj7gVpWe-lV4sgEqpBDYmWeJVJDQIfigrD0Gnl4rvuXanCVX3V9TuktTMsPMU-4kWZEe00KTgnpjm2ASDIxbFeDfrySzD-xJaVlQZop1cU8yZJlMm2fTEuqU0NXlXbF77jE7usF3rilyN7_Fq1Gd3O0wpY7nMj32oNdZQsw_cr-v5QIugnwYSyEBN5xpF7zETwi7rvnCOr4AR4ayhYfNTiyqfkfBJUzvvdobyYtNfc_fjPFGbEVPU1GgUEjPeG_0YjcRnRO08YQu3eQmPJD37TEz_ff2OXR4fign3StFBKPDlklIvOgDOQS7aKwPghfC12LHKjnmC0hFV4Yh1iwcGBL5wOGjVAoncnSoUMP2RpbnDZTWGdc6WCk1Sm6NURfBgO2UGI0Kw0gFkK02WM_n3eyumsZM6p40y1N9XrHe2yftnk-hniu44dmdl11alNJMGkZcqd9bZUzwpaF8UVBDDYyr73rsV_xkN79UzU4HhENoVYbHxu-wz73x8Oz6uzk_HSTfZHU-jcmYL6zxYfZX9hCPPLgtqPMPQEzw9UF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYglVAvVau2amhLfSi3rrr2er3rIw2kaXgURSC4rfyYjZDSLEoCEv-gP5sZ75LCpRLXle2VxvP4xh5_w9hXtLLaS68SRy5QhRwSK_MskRoCBhQXhKXXyMcnenSuxpf5ZXfgRm9hWn6I9YEbWUb012Tg16HuyAaIIxOzdjUexRvJfJO9iPd9xOysTtdnLFkm0_bFtKQyNYxUaVf7jkt8f7zAk6gUyfufgtUYbYav2asOJvK9dl_fsA2Yv2V__1UIuhnw41gHCbyjSJ3yCdwi7FtyxHR8gHuGqsUnDY5san6BmHLB927t1axl5r7jV3OcETvR02TUF_TRM_4bfcifCM5p2hnE5h2kpfzANy3v8_IdOx8enA1GSddJIfEYj1UiMg_KQC7RLQrrg_C10LXIgVqO2RJS4YVxCAULB7Z0PmDWCIXSmSwdxvOQvWe9eTOHD4wrHYy0OkVpI_gymK-FEpNZaQChEILNPtt9kGR13RJmVPGiW5rqscT77AeJeT2GaK7jh2YxrTqrqSSYtAy50762yhlhy8L4oiACG5nX3vXZt7hJ__1TNf45IRZCrbafN_wL2zrdH1ZHv04OP7KXkhr_xuOXT6y3WtzAZ0QjK7cTVe4eFBjUNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Machine+Learning+Reveals+the+Crucial+Role+of+Water+Availability+in+Regulating+Thermal+Optimality+of+Terrestrial+Ecosystems&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Ahmadi%2C+Arman&rft.au=Mallick%2C+Kanishka&rft.au=Yi%2C+Koong&rft.au=Baldocchi%2C+Dennis&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000445&rft.externalDBID=10.1029%252F2024JH000445&rft.externalDocID=JGR170064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon