Interpretable Machine Learning Reveals the Crucial Role of Water Availability in Regulating Thermal Optimality of Terrestrial Ecosystems
Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a comple...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.06.2025
|
Online Access | Get full text |
ISSN | 2993-5210 2993-5210 |
DOI | 10.1029/2024JH000445 |
Cover
Loading…
Abstract | Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process.
Plain Language Summary
Terrestrial ecosystems' productivity is influenced by air temperature, but water availability also plays a crucial role. This study uses interpretable machine learning to examine how water availability regulates temperature influence on ecosystem productivity. Using over 112,000 daily data samples from 108 micrometeorological sites across North America, we visualize the interactions between temperature, water, and productivity in a three‐dimensional space. Our multifaceted approach quantifies how the coupled effects of water availability and temperature impact productivity. Our findings show that arid ecosystems reach their optimum productivity at lower temperatures, with water availability being the primary driver of productivity. In contrast, wet ecosystems are primarily influenced by air temperature and have higher temperature optima. Additionally, we observe an upward trend in air temperatures in North America, which could reduce productivity, although terrestrial ecosystems may acclimate to these higher temperatures. Our innovative data‐driven approach can be adapted to explore complex interactions in diverse ecosystems.
Key Points
Interpretable machine learning reveals temperature‐water interactions shaping productivity, transcending traditional photosynthesis models
Water availability critically influences thermal optimality in terrestrial ecosystems, particularly in arid conditions
Rising air temperatures in North America may reduce ecosystem productivity, while acclimation can mitigate this process |
---|---|
AbstractList | Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process.
Plain Language Summary
Terrestrial ecosystems' productivity is influenced by air temperature, but water availability also plays a crucial role. This study uses interpretable machine learning to examine how water availability regulates temperature influence on ecosystem productivity. Using over 112,000 daily data samples from 108 micrometeorological sites across North America, we visualize the interactions between temperature, water, and productivity in a three‐dimensional space. Our multifaceted approach quantifies how the coupled effects of water availability and temperature impact productivity. Our findings show that arid ecosystems reach their optimum productivity at lower temperatures, with water availability being the primary driver of productivity. In contrast, wet ecosystems are primarily influenced by air temperature and have higher temperature optima. Additionally, we observe an upward trend in air temperatures in North America, which could reduce productivity, although terrestrial ecosystems may acclimate to these higher temperatures. Our innovative data‐driven approach can be adapted to explore complex interactions in diverse ecosystems.
Key Points
Interpretable machine learning reveals temperature‐water interactions shaping productivity, transcending traditional photosynthesis models
Water availability critically influences thermal optimality in terrestrial ecosystems, particularly in arid conditions
Rising air temperatures in North America may reduce ecosystem productivity, while acclimation can mitigate this process Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process. Terrestrial ecosystems' productivity is influenced by air temperature, but water availability also plays a crucial role. This study uses interpretable machine learning to examine how water availability regulates temperature influence on ecosystem productivity. Using over 112,000 daily data samples from 108 micrometeorological sites across North America, we visualize the interactions between temperature, water, and productivity in a three‐dimensional space. Our multifaceted approach quantifies how the coupled effects of water availability and temperature impact productivity. Our findings show that arid ecosystems reach their optimum productivity at lower temperatures, with water availability being the primary driver of productivity. In contrast, wet ecosystems are primarily influenced by air temperature and have higher temperature optima. Additionally, we observe an upward trend in air temperatures in North America, which could reduce productivity, although terrestrial ecosystems may acclimate to these higher temperatures. Our innovative data‐driven approach can be adapted to explore complex interactions in diverse ecosystems. Interpretable machine learning reveals temperature‐water interactions shaping productivity, transcending traditional photosynthesis models Water availability critically influences thermal optimality in terrestrial ecosystems, particularly in arid conditions Rising air temperatures in North America may reduce ecosystem productivity, while acclimation can mitigate this process Abstract Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences photosynthesis and, consequently, ecosystem‐level GPP. However, air temperature is not the sole driver of GPP; ecosystem‐level GPP is a complex, multidimensional phenomenon where soil and atmospheric water availability play crucial roles. This study employs process‐based interpretable machine learning to investigate the thermal optimality of terrestrial ecosystems multidimensionally and evaluate the role of water availability in regulating thermal behavior and productivity. Our innovative data‐driven approach transcends traditional photosynthesis‐temperature response curves, visualizing the controlling effects of water availability in a three‐dimensional temperature‐moisture‐productivity space. We analyze 112,683 daily data samples of carbon, water, and energy fluxes alongside auxiliary micrometeorological variables from 108 eddy‐covariance sites across North America. Our multifaceted, observation‐driven approach quantifies the coupled influence of water availability and temperature on productivity. Findings highlight the critical role of long‐term ecosystem wetness and daily water availability in shaping terrestrial ecosystems' thermal behavior and optimality. Arid ecosystems tend to reach their optimum productivity at lower temperatures, with water availability as the primary productivity driver. Conversely, air temperature is the main productivity driver in wet ecosystems, accompanied by higher values for optimum temperature. Additionally, we observe an increasing air temperature trend in North America, which could cause a decline in productivity. However, thermal acclimation may counteract or mitigate this process. |
Author | Yi, Koong Ahmadi, Arman Baldocchi, Dennis Mallick, Kanishka |
Author_xml | – sequence: 1 givenname: Arman orcidid: 0000-0001-7962-1990 surname: Ahmadi fullname: Ahmadi, Arman email: a.ahmadi@berkeley.edu organization: University of California – sequence: 2 givenname: Kanishka orcidid: 0000-0002-2735-930X surname: Mallick fullname: Mallick, Kanishka organization: Luxembourg Institute of Science and Technology – sequence: 3 givenname: Koong surname: Yi fullname: Yi, Koong organization: Earth and Environmental Sciences Area – sequence: 4 givenname: Dennis orcidid: 0000-0003-3496-4919 surname: Baldocchi fullname: Baldocchi, Dennis organization: University of California |
BookMark | eNp9kctqGzEUQEVJoGmaXT9AH1A3eo6kZTBp4uAQMA5dDleaO7bCZMZISor_oJ9dOQ4lq66uEOccCe4XcjJOIxLyjbMfnAl3KZhQd7eMMaX0J3ImnJMzLTg7-XD-TC5yfqqMlIJZZs7In8VYMO0SFvAD0nsI2zgiXSKkMY4busJXhCHTskU6Ty8hwkBXUyWnnv6CqtKrV4gD-DjEsqdxrMbmZYBykNdbTM9VeNiVWOcBqNoaU8Jc0iF1Haa8zwWf81dy2teH8OJ9npPHn9fr-e1s-XCzmF8tZ4FbrWZcBlQOtVCN4RA6Hnre9FyjEdKCRcYDd94ZYzyC9aHTlTaqkcJ6q2Unz8ni2O0meGp3qX4s7dsJYvt2MaVNC6nEMGAr0DHbad-EHpR3HKxxwRhpLRO6D762vh9bIU05J-z_9ThrD0tpPy6l4vKI_44D7v_Ltnc3K24Ya5T8CxfbkOA |
Cites_doi | 10.1098/rstb.1976.0035 10.1146/annurev.pp.31.060180.002423 10.2307/1907187 10.1016/j.inffus.2021.11.011 10.21105/joss.01556 10.1038/s41597‐022‐01493‐1 10.2307/2402267 10.1016/j.advwatres.2006.06.013 10.1126/science.1192666 10.1126/sciadv.aay1052 10.1256/smsqj.46909 10.1007/s11120‐013‐9874‐6 10.1038/s41559‐023‐02121‐w 10.1038/nature03972 10.1007/s11120‐017‐0388‐5 10.1038/nclimate3114 10.1111/j.1365-3040.2007.01682.x 10.1145/2939672.2939785 10.1016/j.scitotenv.2022.157823 10.1111/nph.15384 10.1007/b97397 10.1111/gcb.15760 10.1146/annurev.arplant.37.1.247 10.1111/j.1365‐2486.2009.02041.x 10.1038/s41597‐020‐0534‐3 10.1029/2021gl097568 10.1016/j.agrformet.2024.109929 10.1145/3292500.3330701 10.2135/cssaspecpub19.c2 10.1214/aos/1013203451 10.1038/s41586‐018‐0848‐x 10.1046/j.1365‐3040.2001.00668.x 10.1002/qj.3803 10.1111/gcb.16842 10.1146/annurev.pp.33.060182.001533 10.1111/rssb.12377 10.1029/2009wr008902 10.1038/s43017‐024‐00569‐3 10.1016/j.agwat.2024.108779 10.1007/978-0-387-84858-7 10.1175/1520‐0477(2001)082<2415:fantts>2.3.co;2 10.1038/s43247‐024‐01636‐9 10.1073/pnas.1107891109 10.1038/nature07031 10.1038/s41467‐023‐43430‐9 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1029/2024JH000445 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2e908d5b6cfa4b91a879c77388025fcb 10_1029_2024JH000445 JGR170064 |
Genre | researchArticle |
GrantInformation_xml | – fundername: University of California's Agricultural Experiment Station – fundername: Rausser College of Natural Resources – fundername: U.S. Department of Energy's Office of Science |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E AAYXX CITATION WIN |
ID | FETCH-LOGICAL-c1854-13ce49e524671acd1cf16f15e7238a8e01c19b9777bea8bcd549e746328b853d3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:08:34 EDT 2025 Thu Jul 10 08:32:36 EDT 2025 Sun Jul 06 04:45:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1854-13ce49e524671acd1cf16f15e7238a8e01c19b9777bea8bcd549e746328b853d3 |
ORCID | 0000-0001-7962-1990 0000-0003-3496-4919 0000-0002-2735-930X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000445 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e908d5b6cfa4b91a879c77388025fcb crossref_primary_10_1029_2024JH000445 wiley_primary_10_1029_2024JH000445_JGR170064 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2015; 1 2014; 119 2021; 27 2021; 7 1991; 19 2019; 4 2010; 16 2023; 14 2010; 329 2024; 348 2023; 7 2020; 82 1945; 13 1982; 33 1986; 37 2005; 437 2019; 565 2020; 146 2007; 30 2002 2001; 29 2017; 132 2001; 24 2022; 49 2019; 221 2012; 109 2020; 7 2001; 82 2016; 6 1976; 273 1976; 13 2010; 46 1980; 31 2022; 81 2024; 5 2023; 29 2020 2022; 9 1987 2024; 295 2019 2022; 849 2016 2008; 454 2009; 2 1948 1985; 111 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 Molnar C. (e_1_2_12_37_1) 2020 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_33_1 e_1_2_12_35_1 Chen T. (e_1_2_12_15_1) 2015; 1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 Gilbert R. O. (e_1_2_12_22_1) 1987 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_9_1 |
References_xml | – volume: 9 start-page: 409 issue: 1 year: 2022 article-title: Version 3 of the global aridity index and potential evapotranspiration database publication-title: Scientific Data – volume: 30 start-page: 2113 issue: 10 year: 2007 end-page: 2122 article-title: What limits evaporation from Mediterranean oak woodlands–The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? publication-title: Advances in Water Resources – volume: 849 year: 2022 article-title: Meteorological driving forces of reference evapotranspiration and their trends in California publication-title: Science of the Total Environment – volume: 109 start-page: 233 issue: 1 year: 2012 end-page: 237 article-title: The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off publication-title: Proceedings of the National Academy of Sciences – volume: 119 start-page: 101 issue: 1–2 year: 2014 end-page: 117 article-title: Temperature response of photosynthesis in C 3, C 4, and CAM plants: Temperature acclimation and temperature adaptation publication-title: Photosynthesis Research – volume: 7 start-page: 1379 issue: 9 year: 2023 end-page: 1387 article-title: Evidence for widespread thermal optimality of ecosystem respiration publication-title: Nature Ecology & Evolution – volume: 81 start-page: 84 year: 2022 end-page: 90 article-title: Tabular data: Deep learning is not all you need publication-title: Information Fusion – volume: 16 start-page: 187 issue: 1 year: 2010 end-page: 208 article-title: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation publication-title: Global Change Biology – volume: 13 start-page: 245 issue: 3 year: 1945 end-page: 259 article-title: Non‐parametric tests against trend publication-title: Econometrica: Journal of the Econometric Society – start-page: 785 year: 2016 end-page: 794 – volume: 329 start-page: 940 issue: 5994 year: 2010 end-page: 943 article-title: Drought‐induced reduction in global terrestrial net primary production from 2000 through 2009 publication-title: science – volume: 29 start-page: 4750 issue: 17 year: 2023 end-page: 4757 article-title: Dryness limits vegetation pace to cope with temperature change in warm regions publication-title: Global Change Biology – volume: 6 start-page: 1023 issue: 11 year: 2016 end-page: 1027 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nature Climate Change – volume: 437 start-page: 529 issue: 7058 year: 2005 end-page: 533 article-title: Europe‐wide reduction in primary productivity caused by the heat and drought in 2003 publication-title: Nature – volume: 49 issue: 15 year: 2022 article-title: Insights into the aerodynamic versus radiometric surface temperature debate in thermal‐based evaporation modeling publication-title: Geophysical Research Letters – volume: 5 start-page: 559 issue: 8 year: 2024 end-page: 571 article-title: Temperature responses of ecosystem respiration publication-title: Nature Reviews Earth and Environment – volume: 24 start-page: 253 issue: 2 year: 2001 end-page: 259 article-title: Improved temperature response functions for models of Rubisco‐limited photosynthesis publication-title: Plant, Cell and Environment – start-page: 2623 year: 2019 end-page: 2631 – volume: 2 start-page: 1 year: 2009 end-page: 758 – volume: 46 issue: 10 year: 2010 article-title: Groundwater uptake by woody vegetation in a semi‐arid oak savanna publication-title: Water Resources Research – volume: 1 start-page: 1 issue: 4 year: 2015 end-page: 4 article-title: Xgboost: Extreme gradient boosting publication-title: R Package Version 0.4‐2 – volume: 565 start-page: 476 issue: 7740 year: 2019 end-page: 479 article-title: Large influence of soil moisture on long‐term terrestrial carbon uptake publication-title: Nature – volume: 7 start-page: 225 issue: 1 year: 2020 article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data publication-title: Scientific Data – volume: 4 issue: 39 year: 2019 article-title: pyMannKendall: A python package for non parametric Mann Kendall family of trend tests publication-title: Journal of Open Source Software – volume: 348 year: 2024 article-title: AmeriFlux: Its Impact on our understanding of the ‘breathing of the biosphere’, after 25 years publication-title: Agricultural and Forest Meteorology – volume: 273 start-page: 593 issue: 927 year: 1976 end-page: 610 article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field publication-title: Philosophical Transactions of the Royal Society of London B Biological Sciences – volume: 37 start-page: 247 issue: 1 year: 1986 end-page: 274 article-title: Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil publication-title: Annual Review of Plant Physiology – volume: 111 start-page: 839 issue: 469 year: 1985 end-page: 855 article-title: Evaporation from sparse crops‐an energy combination theory publication-title: Quarterly Journal of the Royal Meteorological Society – year: 1987 – year: 1948 – volume: 19 start-page: 17 year: 1991 end-page: 39 – volume: 454 start-page: 511 issue: 7203 year: 2008 end-page: 514 article-title: Subtropical to boreal convergence of tree‐leaf temperatures publication-title: Nature – volume: 132 start-page: 277 issue: 3 year: 2017 end-page: 291 article-title: Photosynthetic responses to temperature across leaf–canopy–ecosystem scales: A 15‐year study in a Californian oak‐grass savanna publication-title: Photosynthesis Research – volume: 29 start-page: 1189 issue: 5 year: 2001 end-page: 1232 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics – volume: 33 start-page: 317 issue: 1 year: 1982 end-page: 345 article-title: Stomatal conductance and photosynthesis publication-title: Annual Review of Plant Physiology – volume: 27 start-page: 4727 issue: 19 year: 2021 end-page: 4744 article-title: Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems publication-title: Global Change Biology – volume: 221 start-page: 195 issue: 1 year: 2019 end-page: 208 article-title: Linking variation in intrinsic water‐use efficiency to isohydricity: A comparison at multiple spatiotemporal scales publication-title: New Phytologist – volume: 295 year: 2024 article-title: SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation publication-title: Agricultural Water Management – year: 2002 – volume: 14 issue: 1 year: 2023 article-title: Increased photosynthesis during spring drought in energy‐limited ecosystems publication-title: Nature Communications – volume: 31 start-page: 491 issue: 1 year: 1980 end-page: 543 article-title: Photosynthetic response and adaptation to temperature in higher plants publication-title: Annual Review of Plant Physiology – year: 2020 – volume: 146 start-page: 1999 issue: 730 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 82 start-page: 2415 issue: 11 year: 2001 end-page: 2434 article-title: Fluxnet: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities publication-title: Bulletin of the American Meteorological Society – volume: 7 start-page: eaay1052 issue: 3 year: 2021 article-title: How close are we to the temperature tipping point of the terrestrial biosphere? publication-title: Science Advances – volume: 82 start-page: 1059 issue: 4 year: 2020 end-page: 1086 article-title: Visualizing the effects of predictor variables in black box supervised learning models publication-title: Journal of the Royal Statistical Society–Series B: Statistical Methodology – volume: 30 start-page: 1086 issue: 9 year: 2007 end-page: 1106 article-title: The temperature response of C3 and C4 photosynthesis publication-title: Plant, Cell and Environment – volume: 13 start-page: 925 issue: 3 year: 1976 end-page: 942 article-title: An analytical model for field measurement of photosynthesis publication-title: Journal of Applied Ecology – volume: 5 start-page: 466 issue: 1 year: 2024 article-title: Global increase in the optimal temperature for the productivity of terrestrial ecosystems publication-title: Communications Earth and Environment – ident: e_1_2_12_29_1 doi: 10.1098/rstb.1976.0035 – ident: e_1_2_12_12_1 doi: 10.1146/annurev.pp.31.060180.002423 – ident: e_1_2_12_34_1 doi: 10.2307/1907187 – ident: e_1_2_12_45_1 doi: 10.1016/j.inffus.2021.11.011 – ident: e_1_2_12_28_1 doi: 10.21105/joss.01556 – ident: e_1_2_12_50_1 doi: 10.1038/s41597‐022‐01493‐1 – ident: e_1_2_12_41_1 doi: 10.2307/2402267 – ident: e_1_2_12_9_1 doi: 10.1016/j.advwatres.2006.06.013 – ident: e_1_2_12_49_1 doi: 10.1126/science.1192666 – ident: e_1_2_12_18_1 doi: 10.1126/sciadv.aay1052 – ident: e_1_2_12_44_1 doi: 10.1256/smsqj.46909 – ident: e_1_2_12_47_1 doi: 10.1007/s11120‐013‐9874‐6 – ident: e_1_2_12_16_1 doi: 10.1038/s41559‐023‐02121‐w – ident: e_1_2_12_17_1 doi: 10.1038/nature03972 – ident: e_1_2_12_32_1 doi: 10.1007/s11120‐017‐0388‐5 – ident: e_1_2_12_39_1 doi: 10.1038/nclimate3114 – ident: e_1_2_12_42_1 doi: 10.1111/j.1365-3040.2007.01682.x – ident: e_1_2_12_14_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_12_2_1 doi: 10.1016/j.scitotenv.2022.157823 – ident: e_1_2_12_48_1 doi: 10.1111/nph.15384 – ident: e_1_2_12_13_1 doi: 10.1007/b97397 – ident: e_1_2_12_10_1 doi: 10.1111/gcb.15760 – ident: e_1_2_12_43_1 doi: 10.1146/annurev.arplant.37.1.247 – ident: e_1_2_12_31_1 doi: 10.1111/j.1365‐2486.2009.02041.x – ident: e_1_2_12_40_1 doi: 10.1038/s41597‐020‐0534‐3 – ident: e_1_2_12_33_1 doi: 10.1029/2021gl097568 – ident: e_1_2_12_8_1 doi: 10.1016/j.agrformet.2024.109929 – ident: e_1_2_12_4_1 doi: 10.1145/3292500.3330701 – ident: e_1_2_12_24_1 doi: 10.2135/cssaspecpub19.c2 – volume-title: Interpretable machine learning year: 2020 ident: e_1_2_12_37_1 – volume-title: Statistical methods for environmental pollution monitoring year: 1987 ident: e_1_2_12_22_1 – volume: 1 start-page: 1 issue: 4 year: 2015 ident: e_1_2_12_15_1 article-title: Xgboost: Extreme gradient boosting publication-title: R Package Version 0.4‐2 – ident: e_1_2_12_21_1 doi: 10.1214/aos/1013203451 – ident: e_1_2_12_23_1 doi: 10.1038/s41586‐018‐0848‐x – ident: e_1_2_12_11_1 doi: 10.1046/j.1365‐3040.2001.00668.x – ident: e_1_2_12_27_1 doi: 10.1002/qj.3803 – ident: e_1_2_12_46_1 doi: 10.1111/gcb.16842 – ident: e_1_2_12_20_1 doi: 10.1146/annurev.pp.33.060182.001533 – ident: e_1_2_12_6_1 doi: 10.1111/rssb.12377 – ident: e_1_2_12_36_1 doi: 10.1029/2009wr008902 – ident: e_1_2_12_38_1 doi: 10.1038/s43017‐024‐00569‐3 – ident: e_1_2_12_3_1 doi: 10.1016/j.agwat.2024.108779 – ident: e_1_2_12_25_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_2_12_7_1 doi: 10.1175/1520‐0477(2001)082<2415:fantts>2.3.co;2 – ident: e_1_2_12_19_1 doi: 10.1038/s43247‐024‐01636‐9 – ident: e_1_2_12_5_1 doi: 10.1073/pnas.1107891109 – ident: e_1_2_12_26_1 doi: 10.1038/nature07031 – ident: e_1_2_12_30_1 – ident: e_1_2_12_35_1 doi: 10.1038/s41467‐023‐43430‐9 |
SSID | ssj0003320807 |
Score | 2.2935255 |
Snippet | Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly influences... Abstract Gross primary productivity (GPP) is the total carbon dioxide plants fix in terrestrial ecosystems through photosynthesis. Air temperature directly... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7EFvBrObzWOPtbSWQhVKi72FfUykUFNpa8F_4M92dhO1vejFa9hlw8xkvm-SyTeEXOFTVhhuRKBdChQ2hkDxOAp4AhYBRVum3N_Ig4ekNxb9STzZGPXlesIqeeDKcLccZJjZWCemUEJLprJUmjR1GiY8Lox22Rcxb6OYcjk4ijhSobTudA-5dEW-6Pf8B8x4C4O8VP82NfXY0t0nezUppK3qZg7IDpSH5OOnH1DPgA581yPQWhD1mQ5hjSRvSZHB0TZ6CAOJDue4cl7QJ2SQC9paq-ms0uF-p9MSd_i5824zRgdm5Bl9xIzx4qm42zYCP6rDxSTtmHml8rw8IuNuZ9TuBfXchMAg-oqARQaEhJhjEmTKWGYKlhQsBjdgTGUQMsOkRuKXalCZNhZrREhFEvFMI3rb6Jg0ynkJJ4SKxEqukhAxDKmWxOrMZli6cglIfJBaNsn1lyXz10oeI_eftbnMNy3eJHfOzN9rnKi1v4CuzmtX53-5ukluvJN-PSnv3w-d5mAiTv_jzDOyy93EX__e5Zw0Vos3uEAastKXPuI-ARJs2CA priority: 102 providerName: Directory of Open Access Journals |
Title | Interpretable Machine Learning Reveals the Crucial Role of Water Availability in Regulating Thermal Optimality of Terrestrial Ecosystems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000445 https://doaj.org/article/2e908d5b6cfa4b91a879c77388025fcb |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll5EUXF9kYPeLDZp-shRZXVZWJVF0VvJYyrCupVdFbx49mc7k9ZVL4KXHkrSQjKPbyaZbxjbRy2rnHQqsmQClU8hMjJNIpmBR4divTBUjTy4yHo3qn-X3rUJN6qFafghZgk30oxgr0nBjZ22ZAPEkYlRu-r3wolkOs8WqbqWuPOluprlWJJExk3FtKRrauip4vbuO37i6OcHfnmlQN7_G6wGb3O2wpZbmMiPm31dZXMwXmMf3zcE7Qj4INyDBN5SpN7zIbwi7JtyxHT8FPcMRYsPaxxZV_wWMeWEH7-ah1HDzP3GH8Y4I3Sip8koL2ijR_wSbchjAOc07RpC8w6SUt51dcP7PF1nN2fd69Ne1HZSiBz6YxWJxIHSkEo0i8I4L1wlskqkQC3HTAGxcEJbhIK5BVNY5zFqhFxliSws-nOfbLCFcT2GTcZV5rU0WYxeDcGXxnjNFxjMSg0IhRBsdtjB10qWTw1hRhkOuqUuf654h53QMs_GEM11eFFP7stWa0oJOi58ajNXGWW1MEWuXZ4TgY1MK2c77DBs0p9_KvvnQ2IhzNTW_4ZvsyVJ3X5DzmWHLTxPXmAXIciz3QtythcCeHwO3rufrlnTvw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoHNoLArWIhQI-tLdGxI7jxEdAwLKwFK0WlVvkxwQhLRu0UKT-g_5sZpywwAWJa2Q7kj2Pb8bjbxj7gVpWe-lV4sgEqpBDYmWeJVJDQIfigrD0Gnl4rvuXanCVX3V9TuktTMsPMU-4kWZEe00KTgnpjm2ASDIxbFeDfrySzD-xJaVlQZop1cU8yZJlMm2fTEuqU0NXlXbF77jE7usF3rilyN7_Fq1Gd3O0wpY7nMj32oNdZQsw_cr-v5QIugnwYSyEBN5xpF7zETwi7rvnCOr4AR4ayhYfNTiyqfkfBJUzvvdobyYtNfc_fjPFGbEVPU1GgUEjPeG_0YjcRnRO08YQu3eQmPJD37TEz_ff2OXR4fign3StFBKPDlklIvOgDOQS7aKwPghfC12LHKjnmC0hFV4Yh1iwcGBL5wOGjVAoncnSoUMP2RpbnDZTWGdc6WCk1Sm6NURfBgO2UGI0Kw0gFkK02WM_n3eyumsZM6p40y1N9XrHe2yftnk-hniu44dmdl11alNJMGkZcqd9bZUzwpaF8UVBDDYyr73rsV_xkN79UzU4HhENoVYbHxu-wz73x8Oz6uzk_HSTfZHU-jcmYL6zxYfZX9hCPPLgtqPMPQEzw9UF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYglVAvVau2amhLfSi3rrr2er3rIw2kaXgURSC4rfyYjZDSLEoCEv-gP5sZ75LCpRLXle2VxvP4xh5_w9hXtLLaS68SRy5QhRwSK_MskRoCBhQXhKXXyMcnenSuxpf5ZXfgRm9hWn6I9YEbWUb012Tg16HuyAaIIxOzdjUexRvJfJO9iPd9xOysTtdnLFkm0_bFtKQyNYxUaVf7jkt8f7zAk6gUyfufgtUYbYav2asOJvK9dl_fsA2Yv2V__1UIuhnw41gHCbyjSJ3yCdwi7FtyxHR8gHuGqsUnDY5san6BmHLB927t1axl5r7jV3OcETvR02TUF_TRM_4bfcifCM5p2hnE5h2kpfzANy3v8_IdOx8enA1GSddJIfEYj1UiMg_KQC7RLQrrg_C10LXIgVqO2RJS4YVxCAULB7Z0PmDWCIXSmSwdxvOQvWe9eTOHD4wrHYy0OkVpI_gymK-FEpNZaQChEILNPtt9kGR13RJmVPGiW5rqscT77AeJeT2GaK7jh2YxrTqrqSSYtAy50762yhlhy8L4oiACG5nX3vXZt7hJ__1TNf45IRZCrbafN_wL2zrdH1ZHv04OP7KXkhr_xuOXT6y3WtzAZ0QjK7cTVe4eFBjUNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Machine+Learning+Reveals+the+Crucial+Role+of+Water+Availability+in+Regulating+Thermal+Optimality+of+Terrestrial+Ecosystems&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Ahmadi%2C+Arman&rft.au=Mallick%2C+Kanishka&rft.au=Yi%2C+Koong&rft.au=Baldocchi%2C+Dennis&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000445&rft.externalDBID=10.1029%252F2024JH000445&rft.externalDocID=JGR170064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |