Semantic Segmentation of Plant Structures with Deep Learning and Channel-wise Attention Mechanism

Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanis...

Full description

Saved in:
Bibliographic Details
Published inJournal of Telecommunications and Information Technology Vol. 99; no. 1; pp. 56 - 66
Main Authors Surehli, Mukund Kumar, Aggarwal, Naveen, Joshi, Garima, Nayyar, Harsh
Format Journal Article
LanguageEnglish
Published Warsaw Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanism, designed to provide precise semantic segmentation while emphasizing crucial features. It leverages semantic information with global context and is capable of handling object scale variations within the image. The proposed approach aims to provide a well generalized model that may be adapted to various field conditions by training and tests performed on multiple datasets, including Eschikon wheat segmentation (EWS), humans in the loop (HIL), computer vision problems in plant phenotyping (CVPPP), and a custom "botanic mixed set" dataset. Incorporating an ensemble training paradigm, the proposed architecture achieved an intersection over union (IoU) score of 0.846, 0.665 and 0.975 on EWS, HIL plant segmentation, and CVPPP datasets, respectively. The trained model exhibited robustness to variations in lighting, backgrounds, and subject angles, showcasing its adaptability to real-world applications.
AbstractList Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanism, designed to provide precise semantic segmentation while emphasizing crucial features. It leverages semantic information with global context and is capable of handling object scale variations within the image. The proposed approach aims to provide a well generalized model that may be adapted to various field conditions by training and tests performed on multiple datasets, including Eschikon wheat segmentation (EWS), humans in the loop (HIL), computer vision problems in plant phenotyping (CVPPP), and a custom "botanic mixed set" dataset. Incorporating an ensemble training paradigm, the proposed architecture achieved an intersection over union (IoU) score of 0.846,0.665 and 0.975 on EWS, HIL plant segmentation, and CVPPP datasets, respectively. The trained model exhibited robustness to variations in lighting, backgrounds, and subject angles, showcasing its adaptability to real-world applications.
Author Joshi, Garima
Aggarwal, Naveen
Surehli, Mukund Kumar
Nayyar, Harsh
Author_xml – sequence: 1
  givenname: Mukund Kumar
  orcidid: 0009-0004-6111-8149
  surname: Surehli
  fullname: Surehli, Mukund Kumar
– sequence: 2
  givenname: Naveen
  surname: Aggarwal
  fullname: Aggarwal, Naveen
– sequence: 3
  givenname: Garima
  surname: Joshi
  fullname: Joshi, Garima
– sequence: 4
  givenname: Harsh
  orcidid: 0000-0001-6005-4391
  surname: Nayyar
  fullname: Nayyar, Harsh
BookMark eNotkEtrwzAQhEVJoWmaH9CboGe7ekSyfQzpE1xaSHsWirxKFGI5lWRC_33tpqdZdofZ4btGE995QOiWkpxJyeX9PrmUM8JETnNaCn6BprSsqqwsBZsMsyBVthCCX6F5jHtCCKukIIxNkV5Dq31yBq9h24JPOrnO487ij8Owx-sUepP6ABGfXNrhB4AjrkEH7_wWa9_g1U57D4fs5CLgZUpDxpjwBmY4uNjeoEurDxHm_zpDX0-Pn6uXrH5_fl0t68yMjTNJ7EbzyghhoOFlUeqFptYCFazU3BCqObHEMCuFsIw3g1bGNLzgDVs0xYbP0N059xi67x5iUvuuD354qfgIQxImi8FFzy4TuhgDWHUMrtXhR1Gi_mCqEaYaYSqqxmr8F2olawI
Cites_doi 10.1109/TPAMI.2016.2644615
10.1016/j.patrec.2015.10.013
10.1016/j.atech.2022.100108
10.1016/j.compag.2019.105201
10.1007/978-3-030-00665-5_154
10.3389/fpls.2021.774068
10.1007/s11119-005-2324-5
10.1016/j.compag.2018.05.030
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2017.106
10.47852/bonviewJCCE2202174
10.1109/CVPR.2018.00745
10.1109/SIBGRAPI55357.2022.9991791
10.1109/TPAMI.2016.2572683
10.1016/j.compag.2018.11.033
10.1109/CVPR.2009.5206848
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2017.195
10.1016/j.compag.2020.105783
10.34133/2020/3521852
10.3390/rs11101157
10.1186/s13007-017-0168-4
10.13031/2013.27838
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) 2025
Copyright_xml – notice: Copyright Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) 2025
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.26636/jtit.2025.1.1853
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1899-8852
EndPage 66
ExternalDocumentID 10_26636_jtit_2025_1_1853
GroupedDBID 8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
K6V
K7-
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
Y2W
7SC
7SP
8FD
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c1853-60fba39c55ced3878a4a1ffe1528a3c01a30f0c2f655f23df659ccd373d24d7b3
IEDL.DBID BENPR
ISSN 1509-4553
IngestDate Sat Aug 23 13:21:32 EDT 2025
Tue Jul 01 05:12:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1853-60fba39c55ced3878a4a1ffe1528a3c01a30f0c2f655f23df659ccd373d24d7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6005-4391
0009-0004-6111-8149
OpenAccessLink https://jtit.pl/jtit/article/download/1853/1390
PQID 3189960267
PQPubID 2035630
PageCount 11
ParticipantIDs proquest_journals_3189960267
crossref_primary_10_26636_jtit_2025_1_1853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Journal of Telecommunications and Information Technology
PublicationYear 2025
Publisher Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications)
Publisher_xml – name: Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications)
References 6771
6770
6751
6773
6750
6772
6753
6775
6752
6774
6766
6765
6768
6767
6748
6769
6749
6760
6762
6761
6764
6763
6755
6754
6757
6756
6759
6758
References_xml – ident: 6757
  doi: 10.1109/TPAMI.2016.2644615
– ident: 6762
  doi: 10.1016/j.patrec.2015.10.013
– ident: 6755
  doi: 10.1016/j.atech.2022.100108
– ident: 6749
  doi: 10.1016/j.compag.2019.105201
– ident: 6753
  doi: 10.1007/978-3-030-00665-5_154
– ident: 6770
  doi: 10.3389/fpls.2021.774068
– ident: 6751
  doi: 10.1007/s11119-005-2324-5
– ident: 6752
  doi: 10.1016/j.compag.2018.05.030
– ident: 6771
– ident: 6756
  doi: 10.1007/978-3-319-24574-4_28
– ident: 6761
  doi: 10.1109/CVPR.2017.106
– ident: 6765
  doi: 10.47852/bonviewJCCE2202174
– ident: 6766
– ident: 6767
  doi: 10.1109/CVPR.2018.00745
– ident: 6772
  doi: 10.1109/SIBGRAPI55357.2022.9991791
– ident: 6759
– ident: 6754
  doi: 10.1109/TPAMI.2016.2572683
– ident: 6773
  doi: 10.1016/j.compag.2018.11.033
– ident: 6769
  doi: 10.1109/CVPR.2009.5206848
– ident: 6758
  doi: 10.1007/978-3-030-01234-2_49
– ident: 6768
  doi: 10.1109/CVPR.2017.195
– ident: 6748
  doi: 10.1016/j.compag.2020.105783
– ident: 6775
  doi: 10.34133/2020/3521852
– ident: 6764
  doi: 10.3390/rs11101157
– ident: 6774
  doi: 10.1186/s13007-017-0168-4
– ident: 6750
  doi: 10.13031/2013.27838
– ident: 6763
– ident: 6760
  doi: 10.1109/CVPR.2016.90
SSID ssj0002965022
Score 2.2926261
Snippet Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 56
SubjectTerms Accuracy
Computer vision
Datasets
Deep learning
Image segmentation
Lighting
Neural networks
Outdoors
Plant diseases
Semantic segmentation
Semantics
Telecommunications
Title Semantic Segmentation of Plant Structures with Deep Learning and Channel-wise Attention Mechanism
URI https://www.proquest.com/docview/3189960267
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uu3gRRcXpHDl4ErK1SdOmJ5m6OQSHOAe7hTRNxsB1k078981rM2UXTz0USvhe-r73-yF0EyZaRyLQxDp_gkRJxEmW05CwTGVwnwWrC2Qn8XgWPc_53AfcSl9WudOJlaLO1xpi5H1392CQCI2Tu80nga1RkF31KzQaqOVUsBBN1LofTl7ffqMsNHUWSJVKcIZPSiLOWZ3adLzE4j7Yfs5HpLwX9oC49slpXzdXhDM6RkfeUsSDWrQn6MAUp0hNzcphsdR4ahYr3zdU4LXFsH1oi6fVONgv50NjiLDiR2M22M9QXWBV5BjaCQrzQb6XpcGD7bYud8QvBlqAl-XqDM1Gw_eHMfFbEoiGI5M4sJliqeZcm5yJRKhIhdYaR8xCMR2EigU20NTGnFvKcvdMtc5ZwnIa5UnGzlGzWBfmAmFnLURBBrn4ECw9kQpuhYppqKjV1Og2ut3BIzf1MAzpnIgKSwlYSsBShhIO1kadHYDS_xel_JPi5f-vr9AhfKsOdnRQ06Fnrh39b7MuaojRU9dLuls50T9vCrAS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagDLAgECDeeIAFyZD4kceAUAWU8lwKEptxHLuqRNOiFiH-FL-RuzxALGxMGSJF1ueLv-_ufHeE7IextTIJLPPgTzAZS8WynIdMZCZDe05EdUH2Puo-yusn9TRDPptaGLxW2ZyJ5UGdjyzGyI_B9rCRCI_i0_Erw6lRmF1tRmhUZnHjPt7BZZucXJ3D_h5w3rl4OOuyeqoAs8hNLAp8ZkRqlbIuF0mcGGlC7x0QWWKEDUIjAh9Y7iOlPBc5PFNrcxGLnMs8zgR8d5bMSQFMjpXpncvvmA5PQe-UiQuQWSmTSokqkQosKKJjVJrgkXJ1FB7hUn5T4W8mKOmts0QWa11K25UhLZMZV6wQ03NDQH5gac_1h3WVUkFHnuKsoyntlc1n38BjpxjPpefOjWndsbVPTZFTLF4o3At7H0wcbU-n1eVKeuew4HgwGa6Sx39Bb420ilHh1gkFbSKDDDP_IerKJE2UT0zEQ8O95c5ukMMGHj2uWm9ocFlKLDViqRFLHWpc2AbZbgDU9V840T82s_n36z0y3324u9W3V_c3W2QBv1uFWbZJC5B0OyA8ptluuduUPP-3eX0BhijqCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC50hMWL7KKyPnbNQS9CnO6k04-DiOs4-BzEWcFbNp1OZMDpGZkR8a_566zqxy5e9uapDw1N-PJ16qtKPQB2w8TaKA0s9-hP8CiJFM8LEXKZm5z4nMo6QXYQn91FF_fqfgHe2loYSqtsz8TqoC4mlmLkXeQeNRIRcdL1TVrETa9_NH3iNEGKblrbcRo1RS7d6wu6b7PD8x7u9Z4Q_dPfJ2e8mTDALdkpHgc-NzKzSllXyDRJTWRC7x0atdRIG4RGBj6wwsdKeSELfGbWFjKRhYiKJJf43UVYSsgr6sDSr9PBze3fCI_IUP1U1xgoujIeKSXra1W0iTLuku5E_1Sog_CAFvPRMH60C5Wx63-FlUalsuOaVt9gwZWrYIZujPswsmzoHsZNzVLJJp7R5KM5G1ataJ_Rf2cU3WU956as6d_6wExZMCplKN0jfxnNHDuez-tUS3btqPx4NBuvwd2n4LcOnXJSuu_AUKlEQU55ACGpzDRLlU9NLEIjvBXObsB-C4-e1o04NDowFZaasNSEpQ41LWwDtlsAdfNPzvQ_Bm3-__UOfEFq6avzweUWLNNn65jLNnQQSPcDVcg8_9lsN4M_n82wdyL075s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Segmentation+of+Plant+Structures+with+Deep+Learning+and+Channel-wise+Attention+Mechanism&rft.jtitle=Journal+of+Telecommunications+and+Information+Technology&rft.au=Surehli%2C+Mukund+Kumar&rft.au=Aggarwal%2C+Naveen&rft.au=Joshi%2C+Garima&rft.au=Nayyar%2C+Harsh&rft.date=2025&rft.issn=1509-4553&rft.eissn=1899-8852&rft.volume=99&rft.issue=1&rft.spage=56&rft.epage=66&rft_id=info:doi/10.26636%2Fjtit.2025.1.1853&rft.externalDBID=n%2Fa&rft.externalDocID=10_26636_jtit_2025_1_1853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1509-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1509-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1509-4553&client=summon