Semantic Segmentation of Plant Structures with Deep Learning and Channel-wise Attention Mechanism
Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanis...
Saved in:
Published in | Journal of Telecommunications and Information Technology Vol. 99; no. 1; pp. 56 - 66 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications)
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanism, designed to provide precise semantic segmentation while emphasizing crucial features. It leverages semantic information with global context and is capable of handling object scale variations within the image. The proposed approach aims to provide a well generalized model that may be adapted to various field conditions by training and tests performed on multiple datasets, including Eschikon wheat segmentation (EWS), humans in the loop (HIL), computer vision problems in plant phenotyping (CVPPP), and a custom "botanic mixed set" dataset. Incorporating an ensemble training paradigm, the proposed architecture achieved an intersection over union (IoU) score of 0.846, 0.665 and 0.975 on EWS, HIL plant segmentation, and CVPPP datasets, respectively. The trained model exhibited robustness to variations in lighting, backgrounds, and subject angles, showcasing its adaptability to real-world applications. |
---|---|
AbstractList | Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable of handling images in a diverse range of conditions. This paper introduces an extended DeepLabV3+ model with a channel-wise attention mechanism, designed to provide precise semantic segmentation while emphasizing crucial features. It leverages semantic information with global context and is capable of handling object scale variations within the image. The proposed approach aims to provide a well generalized model that may be adapted to various field conditions by training and tests performed on multiple datasets, including Eschikon wheat segmentation (EWS), humans in the loop (HIL), computer vision problems in plant phenotyping (CVPPP), and a custom "botanic mixed set" dataset. Incorporating an ensemble training paradigm, the proposed architecture achieved an intersection over union (IoU) score of 0.846,0.665 and 0.975 on EWS, HIL plant segmentation, and CVPPP datasets, respectively. The trained model exhibited robustness to variations in lighting, backgrounds, and subject angles, showcasing its adaptability to real-world applications. |
Author | Joshi, Garima Aggarwal, Naveen Surehli, Mukund Kumar Nayyar, Harsh |
Author_xml | – sequence: 1 givenname: Mukund Kumar orcidid: 0009-0004-6111-8149 surname: Surehli fullname: Surehli, Mukund Kumar – sequence: 2 givenname: Naveen surname: Aggarwal fullname: Aggarwal, Naveen – sequence: 3 givenname: Garima surname: Joshi fullname: Joshi, Garima – sequence: 4 givenname: Harsh orcidid: 0000-0001-6005-4391 surname: Nayyar fullname: Nayyar, Harsh |
BookMark | eNotkEtrwzAQhEVJoWmaH9CboGe7ekSyfQzpE1xaSHsWirxKFGI5lWRC_33tpqdZdofZ4btGE995QOiWkpxJyeX9PrmUM8JETnNaCn6BprSsqqwsBZsMsyBVthCCX6F5jHtCCKukIIxNkV5Dq31yBq9h24JPOrnO487ij8Owx-sUepP6ABGfXNrhB4AjrkEH7_wWa9_g1U57D4fs5CLgZUpDxpjwBmY4uNjeoEurDxHm_zpDX0-Pn6uXrH5_fl0t68yMjTNJ7EbzyghhoOFlUeqFptYCFazU3BCqObHEMCuFsIw3g1bGNLzgDVs0xYbP0N059xi67x5iUvuuD354qfgIQxImi8FFzy4TuhgDWHUMrtXhR1Gi_mCqEaYaYSqqxmr8F2olawI |
Cites_doi | 10.1109/TPAMI.2016.2644615 10.1016/j.patrec.2015.10.013 10.1016/j.atech.2022.100108 10.1016/j.compag.2019.105201 10.1007/978-3-030-00665-5_154 10.3389/fpls.2021.774068 10.1007/s11119-005-2324-5 10.1016/j.compag.2018.05.030 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2017.106 10.47852/bonviewJCCE2202174 10.1109/CVPR.2018.00745 10.1109/SIBGRAPI55357.2022.9991791 10.1109/TPAMI.2016.2572683 10.1016/j.compag.2018.11.033 10.1109/CVPR.2009.5206848 10.1007/978-3-030-01234-2_49 10.1109/CVPR.2017.195 10.1016/j.compag.2020.105783 10.34133/2020/3521852 10.3390/rs11101157 10.1186/s13007-017-0168-4 10.13031/2013.27838 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Copyright Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) 2025 |
Copyright_xml | – notice: Copyright Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) 2025 |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BYOGL CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.26636/jtit.2025.1.1853 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection East Europe, Central Europe Database ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts East Europe, Central Europe Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1899-8852 |
EndPage | 66 |
ExternalDocumentID | 10_26636_jtit_2025_1_1853 |
GroupedDBID | 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ BPHCQ BYOGL CCPQU CITATION GROUPED_DOAJ HCIFZ K6V K7- P2P P62 PHGZM PHGZT PQQKQ PROAC Y2W 7SC 7SP 8FD AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c1853-60fba39c55ced3878a4a1ffe1528a3c01a30f0c2f655f23df659ccd373d24d7b3 |
IEDL.DBID | BENPR |
ISSN | 1509-4553 |
IngestDate | Sat Aug 23 13:21:32 EDT 2025 Tue Jul 01 05:12:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1853-60fba39c55ced3878a4a1ffe1528a3c01a30f0c2f655f23df659ccd373d24d7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6005-4391 0009-0004-6111-8149 |
OpenAccessLink | https://jtit.pl/jtit/article/download/1853/1390 |
PQID | 3189960267 |
PQPubID | 2035630 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3189960267 crossref_primary_10_26636_jtit_2025_1_1853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Journal of Telecommunications and Information Technology |
PublicationYear | 2025 |
Publisher | Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) |
Publisher_xml | – name: Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) |
References | 6771 6770 6751 6773 6750 6772 6753 6775 6752 6774 6766 6765 6768 6767 6748 6769 6749 6760 6762 6761 6764 6763 6755 6754 6757 6756 6759 6758 |
References_xml | – ident: 6757 doi: 10.1109/TPAMI.2016.2644615 – ident: 6762 doi: 10.1016/j.patrec.2015.10.013 – ident: 6755 doi: 10.1016/j.atech.2022.100108 – ident: 6749 doi: 10.1016/j.compag.2019.105201 – ident: 6753 doi: 10.1007/978-3-030-00665-5_154 – ident: 6770 doi: 10.3389/fpls.2021.774068 – ident: 6751 doi: 10.1007/s11119-005-2324-5 – ident: 6752 doi: 10.1016/j.compag.2018.05.030 – ident: 6771 – ident: 6756 doi: 10.1007/978-3-319-24574-4_28 – ident: 6761 doi: 10.1109/CVPR.2017.106 – ident: 6765 doi: 10.47852/bonviewJCCE2202174 – ident: 6766 – ident: 6767 doi: 10.1109/CVPR.2018.00745 – ident: 6772 doi: 10.1109/SIBGRAPI55357.2022.9991791 – ident: 6759 – ident: 6754 doi: 10.1109/TPAMI.2016.2572683 – ident: 6773 doi: 10.1016/j.compag.2018.11.033 – ident: 6769 doi: 10.1109/CVPR.2009.5206848 – ident: 6758 doi: 10.1007/978-3-030-01234-2_49 – ident: 6768 doi: 10.1109/CVPR.2017.195 – ident: 6748 doi: 10.1016/j.compag.2020.105783 – ident: 6775 doi: 10.34133/2020/3521852 – ident: 6764 doi: 10.3390/rs11101157 – ident: 6774 doi: 10.1186/s13007-017-0168-4 – ident: 6750 doi: 10.13031/2013.27838 – ident: 6763 – ident: 6760 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0002965022 |
Score | 2.2926261 |
Snippet | Semantic segmentation of plant images is crucial for various agricultural applications and creates the need to develop more demanding models that are capable... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 56 |
SubjectTerms | Accuracy Computer vision Datasets Deep learning Image segmentation Lighting Neural networks Outdoors Plant diseases Semantic segmentation Semantics Telecommunications |
Title | Semantic Segmentation of Plant Structures with Deep Learning and Channel-wise Attention Mechanism |
URI | https://www.proquest.com/docview/3189960267 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uu3gRRcXpHDl4ErK1SdOmJ5m6OQSHOAe7hTRNxsB1k078981rM2UXTz0USvhe-r73-yF0EyZaRyLQxDp_gkRJxEmW05CwTGVwnwWrC2Qn8XgWPc_53AfcSl9WudOJlaLO1xpi5H1392CQCI2Tu80nga1RkF31KzQaqOVUsBBN1LofTl7ffqMsNHUWSJVKcIZPSiLOWZ3adLzE4j7Yfs5HpLwX9oC49slpXzdXhDM6RkfeUsSDWrQn6MAUp0hNzcphsdR4ahYr3zdU4LXFsH1oi6fVONgv50NjiLDiR2M22M9QXWBV5BjaCQrzQb6XpcGD7bYud8QvBlqAl-XqDM1Gw_eHMfFbEoiGI5M4sJliqeZcm5yJRKhIhdYaR8xCMR2EigU20NTGnFvKcvdMtc5ZwnIa5UnGzlGzWBfmAmFnLURBBrn4ECw9kQpuhYppqKjV1Og2ut3BIzf1MAzpnIgKSwlYSsBShhIO1kadHYDS_xel_JPi5f-vr9AhfKsOdnRQ06Fnrh39b7MuaojRU9dLuls50T9vCrAS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagDLAgECDeeIAFyZD4kceAUAWU8lwKEptxHLuqRNOiFiH-FL-RuzxALGxMGSJF1ueLv-_ufHeE7IextTIJLPPgTzAZS8WynIdMZCZDe05EdUH2Puo-yusn9TRDPptaGLxW2ZyJ5UGdjyzGyI_B9rCRCI_i0_Erw6lRmF1tRmhUZnHjPt7BZZucXJ3D_h5w3rl4OOuyeqoAs8hNLAp8ZkRqlbIuF0mcGGlC7x0QWWKEDUIjAh9Y7iOlPBc5PFNrcxGLnMs8zgR8d5bMSQFMjpXpncvvmA5PQe-UiQuQWSmTSokqkQosKKJjVJrgkXJ1FB7hUn5T4W8mKOmts0QWa11K25UhLZMZV6wQ03NDQH5gac_1h3WVUkFHnuKsoyntlc1n38BjpxjPpefOjWndsbVPTZFTLF4o3At7H0wcbU-n1eVKeuew4HgwGa6Sx39Bb420ilHh1gkFbSKDDDP_IerKJE2UT0zEQ8O95c5ukMMGHj2uWm9ocFlKLDViqRFLHWpc2AbZbgDU9V840T82s_n36z0y3324u9W3V_c3W2QBv1uFWbZJC5B0OyA8ptluuduUPP-3eX0BhijqCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC50hMWL7KKyPnbNQS9CnO6k04-DiOs4-BzEWcFbNp1OZMDpGZkR8a_566zqxy5e9uapDw1N-PJ16qtKPQB2w8TaKA0s9-hP8CiJFM8LEXKZm5z4nMo6QXYQn91FF_fqfgHe2loYSqtsz8TqoC4mlmLkXeQeNRIRcdL1TVrETa9_NH3iNEGKblrbcRo1RS7d6wu6b7PD8x7u9Z4Q_dPfJ2e8mTDALdkpHgc-NzKzSllXyDRJTWRC7x0atdRIG4RGBj6wwsdKeSELfGbWFjKRhYiKJJf43UVYSsgr6sDSr9PBze3fCI_IUP1U1xgoujIeKSXra1W0iTLuku5E_1Sog_CAFvPRMH60C5Wx63-FlUalsuOaVt9gwZWrYIZujPswsmzoHsZNzVLJJp7R5KM5G1ataJ_Rf2cU3WU956as6d_6wExZMCplKN0jfxnNHDuez-tUS3btqPx4NBuvwd2n4LcOnXJSuu_AUKlEQU55ACGpzDRLlU9NLEIjvBXObsB-C4-e1o04NDowFZaasNSEpQ41LWwDtlsAdfNPzvQ_Bm3-__UOfEFq6avzweUWLNNn65jLNnQQSPcDVcg8_9lsN4M_n82wdyL075s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Segmentation+of+Plant+Structures+with+Deep+Learning+and+Channel-wise+Attention+Mechanism&rft.jtitle=Journal+of+Telecommunications+and+Information+Technology&rft.au=Surehli%2C+Mukund+Kumar&rft.au=Aggarwal%2C+Naveen&rft.au=Joshi%2C+Garima&rft.au=Nayyar%2C+Harsh&rft.date=2025&rft.issn=1509-4553&rft.eissn=1899-8852&rft.volume=99&rft.issue=1&rft.spage=56&rft.epage=66&rft_id=info:doi/10.26636%2Fjtit.2025.1.1853&rft.externalDBID=n%2Fa&rft.externalDocID=10_26636_jtit_2025_1_1853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1509-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1509-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1509-4553&client=summon |