A New Method for Approximating of First Derivatives in Smoothed Particle Hydrodynamics: Theory and Practice for Linear Transport Equation
Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced nodes. The main idea of SPH is to construct a smooth approximating function for a discrete set of nodes using finite smoothing kernels whose sup...
Saved in:
Published in | Lobachevskii journal of mathematics Vol. 46; no. 1; pp. 43 - 54 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced nodes. The main idea of SPH is to construct a smooth approximating function for a discrete set of nodes using finite smoothing kernels whose support is smaller than the computational domain but covers several neighboring particles. In the classical version of SPH, the differentiation operation is applied to smooth kernels to calculate derivatives. In this paper, a new method for approximating first derivatives in SPH is proposed, based on the use of the idea of finite differences instead of kernel’s differentiating. It is shown that with comparable computational costs, the new method for calculating derivatives gives the same or higher order of approximation as the classical one. In addition, it was found that the actual error of the solution obtained by the new method, even with a rough resolution, is several times smaller than when using the classical method. This result was obtained theoretically by means of dispersion analysis and confirmed in practice when solving a linear one-dimensional transport equation. |
---|---|
AbstractList | Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced nodes. The main idea of SPH is to construct a smooth approximating function for a discrete set of nodes using finite smoothing kernels whose support is smaller than the computational domain but covers several neighboring particles. In the classical version of SPH, the differentiation operation is applied to smooth kernels to calculate derivatives. In this paper, a new method for approximating first derivatives in SPH is proposed, based on the use of the idea of finite differences instead of kernel’s differentiating. It is shown that with comparable computational costs, the new method for calculating derivatives gives the same or higher order of approximation as the classical one. In addition, it was found that the actual error of the solution obtained by the new method, even with a rough resolution, is several times smaller than when using the classical method. This result was obtained theoretically by means of dispersion analysis and confirmed in practice when solving a linear one-dimensional transport equation. |
Author | Arendarenko, M. S. Stoyanovskaya, O. P. Burmistrova, O. A. Markelova, T. V. |
Author_xml | – sequence: 1 givenname: O. A. surname: Burmistrova fullname: Burmistrova, O. A. email: oksanabur@hydro.nsc.ru organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences – sequence: 2 givenname: T. V. surname: Markelova fullname: Markelova, T. V. email: matamara@gmail.com organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences – sequence: 3 givenname: M. S. surname: Arendarenko fullname: Arendarenko, M. S. email: m.arendarenko@inbox.ru organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences – sequence: 4 givenname: O. P. surname: Stoyanovskaya fullname: Stoyanovskaya, O. P. email: o.p.sklyar@gmail.com organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences |
BookMark | eNp1kMtOwzAQRS0EEqXwAewssQ54nMZ12FW8ilQeUss6cpJxm6q1yzgF-gn8NS5FYoFYzWjm3Duae8T2nXfI2CmIc4C0dzGGPM-EFlL2lNApyD3WAQ06yXMl92Mf18l2f8iOQpiLCCqlOuxzwB_xnT9gO_M1t574YLUi_9EsTdu4KfeW3zYUWn6N1LzF2RsG3jg-XnrfzrDmz4baplogH25q8vXGmWVThUs-maGnDTcuImSqyOC3_ahxaIhPyLiw8tTym9d1tPXumB1Yswh48lO77OX2ZnI1TEZPd_dXg1FSgc5kYuscjc1snkIfbQ0iUwqkzDPQZa1LBVajygF0qpVE2xdZaUxWYynKfqW0TbvsbOcb33xdY2iLuV-TiyeLVEIPYpxpFinYURX5EAhtsaKYCW0KEMU28eJP4lEjd5oQWTdF-nX-X_QFaYSFpQ |
Cites_doi | 10.1016/j.jcp.2020.109310 10.1111/j.1365-2966.2012.21439.x.arXiv:1204.2471 10.1002/fld.4037 10.1016/j.cam.2024.116316 10.1103/PhysRevE.67.026705 10.1017/S1323358000018117 10.1016/j.cam.2023.115495 10.1016/j.rinam.2023.100355 10.1016/j.camwa.2010.11.028 10.1086/112164 10.1007/BF02123482 10.1016/0021-9991(85)90006-3 10.1093/mnras/181.3.375 10.1088/0034-4885/68/8/R01 10.1016/j.compfluid.2023.105915 10.1017/S1323358000020610 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1995080224608312 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1818-9962 |
EndPage | 54 |
ExternalDocumentID | 10_1134_S1995080224608312 |
GroupedDBID | -Y2 -~9 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB YLTOR ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c1852-fd9eaf5f9317efd105661229518bd8b61f8e691183862ef705baa5deb0b7c68f3 |
IEDL.DBID | AGYKE |
ISSN | 1995-0802 |
IngestDate | Fri Jul 25 09:04:00 EDT 2025 Thu Jul 03 08:40:19 EDT 2025 Sat May 31 01:18:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | partial differential equation high-order SPH method approximate dispersion relation 2010 Mathematics Subject Classification: 65M08 transport equation dispersion analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1852-fd9eaf5f9317efd105661229518bd8b61f8e691183862ef705baa5deb0b7c68f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3214111335 |
PQPubID | 2044393 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3214111335 crossref_primary_10_1134_S1995080224608312 springer_journals_10_1134_S1995080224608312 |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Lobachevskii journal of mathematics |
PublicationTitleAbbrev | Lobachevskii J Math |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | J. P. Morris (8135_CR13) 1996; 13 R. Fatehi (8135_CR5) 2011; 61 C. Huang (8135_CR8) 2015; 78 8135_CR10 W. Dehnen (8135_CR14) 2012; 425 8135_CR11 R. A. Gingold (8135_CR2) 1977; 181 J. J. Monaghan (8135_CR3) 2005; 68 L. B. Lucy (8135_CR1) 1977; 82 L. Brookshaw (8135_CR7) 1985; 6 8135_CR12 8135_CR4 8135_CR6 8135_CR9 J. Monaghan (8135_CR16) 1985; 60 H. Wendland (8135_CR15) 1995; 4 |
References_xml | – ident: 8135_CR11 doi: 10.1016/j.jcp.2020.109310 – volume: 425 start-page: 1068 year: 2012 ident: 8135_CR14 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2012.21439.x.arXiv:1204.2471 – volume: 78 start-page: 691 year: 2015 ident: 8135_CR8 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4037 – ident: 8135_CR6 doi: 10.1016/j.cam.2024.116316 – ident: 8135_CR4 doi: 10.1103/PhysRevE.67.026705 – volume: 6 start-page: 207 year: 1985 ident: 8135_CR7 publication-title: Publ. Astron. Soc. Austral. doi: 10.1017/S1323358000018117 – ident: 8135_CR10 doi: 10.1016/j.cam.2023.115495 – ident: 8135_CR9 doi: 10.1016/j.rinam.2023.100355 – volume: 61 start-page: 482 year: 2011 ident: 8135_CR5 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.11.028 – volume: 82 start-page: 1013 year: 1977 ident: 8135_CR1 publication-title: Astron. J. doi: 10.1086/112164 – volume: 4 start-page: 389 year: 1995 ident: 8135_CR15 publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – volume: 60 start-page: 253 year: 1985 ident: 8135_CR16 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(85)90006-3 – volume: 181 start-page: 375 year: 1977 ident: 8135_CR2 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 68 start-page: 1703 year: 2005 ident: 8135_CR3 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – ident: 8135_CR12 doi: 10.1016/j.compfluid.2023.105915 – volume: 13 start-page: 97 year: 1996 ident: 8135_CR13 publication-title: Publ. Astron. Soc. Austral. doi: 10.1017/S1323358000020610 |
SSID | ssj0022666 |
Score | 2.3118079 |
Snippet | Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 43 |
SubjectTerms | Algebra Analysis Approximation Computing costs Derivatives Fluid mechanics Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Nodes Partial differential equations Probability Theory and Stochastic Processes Smooth particle hydrodynamics Transport equations |
Title | A New Method for Approximating of First Derivatives in Smoothed Particle Hydrodynamics: Theory and Practice for Linear Transport Equation |
URI | https://link.springer.com/article/10.1134/S1995080224608312 https://www.proquest.com/docview/3214111335 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLZQucCBMTZEGUPvsNOmFBM7jsOtbO0qJtAkqFROkR3bqJqWsqVMg3_Av-bZSYoG7NBzLCuJX977Xuzv-wj5kHFhs1SnUWypjrjULtIZy6JCM5VaWjiqgtrnmRiN-ckkmTQ87qo97d5uSYZMXfuO8INzTyYOzFAuvD0W5t1VhB806ZDV_tfLb4NFn4U1J5CKAvlY0rjZzHxxkn_L0SPGfLItGqrN8BW5aO-zPmTyo3cz173i7omE45IPskk2GvQJ_TpcXpMVW26R9dOFdGv1htz3ARMfnAZnaUBIC30vO_536geUVzBzMJwiZIQvGLt_gmx4BdMSzn_OPJnLwPcmGGF0azA714731RHUKgCgShzSULPC9NgN49cGC5V1GPyq5cffkvFwcPF5FDV-DVHhKdiRM5lVLnEZYhLrDCI3LP7eLvxQaiO1OHTSCkyukmEbZV1KE61UYqymOi2EdGybdMpZaXcIyNhqoeLEWWq4i40suCmcjRVzginBu-Rju2z5dS3LkYd2hvH82fvtkr12YfPmC61yb9CEeZ6xpEs-tev0ePm_k-0uNfodWYu9YXD4Z7NHOvPfN_Y9opi53seoHR4fn-030fsAIm_qTQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqOBQO9AMQS4HOoaeiQDZ2HIfbiu6yfCxCYpHgFNmxjVaILDRLBfwD_jVjJ1lUaA-cY1lJPJl5E_u9R8iPlHGTJioJIhOqgAllA5XSNMgVlYkJcxtKr_Z5zPtn7OA8Pq953GVz2r3ZkvSZuvIdYdunjkzsmaGMO3sszLuzDFtw7LhmO3sXh91pn4U1x5OKPPlYhFG9mfnPSf4uRy8Y89W2qK82vU9k2Nxndcjkautuorbyx1cSju98kM9koUaf0KnC5Qv5YIqvZH4wlW4tF8lTBzDxwcA7SwNCWug42fH7kRtQXMLYQm-EkBF-Yez-8bLhJYwKOL0eOzKXhpM6GKH_oDE7V4735Q5UKgAgCxxSU7P89NgN49cGU5V16N5W8uNL5KzXHe72g9qvIcgdBTuwOjXSxjZFTGKsRuSGxd_ZhbeF0kLxthWGY3IVFNsoY5MwVlLG2qhQJTkXli6TmWJcmBUCIjKKyyi2JtTMRlrkTOfWRJJaTiVnLfKzWbbsppLlyHw7Q1n25v22yFqzsFn9hZaZM2jCPE9p3CKbzTq9XP7vZKvvGv2dfOwPB0fZ0f7x4TcyFznzYP__Zo3MTH7fmXVENBO1UUfwM-9i68A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VW6mCA1A-1IVC58AJlDaNHcfpbUV3u1BaVSqVyinYsY1WqNnCbhHtP-BfM3acrWjhgDjHGiXxZPwm9nsP4GXJhS0LXSSZTXXCpXaJLlmZ1Jqpwqa1S1VQ-zwU4xP-7jQ_jT6ns-60e7cl2XIavEpTM986Ny56kPCtY08sDixRLrxVFtXgZZ7KQvZgebD3cX-46Llo_QkEo0BElmkWNzb_GOT3pekab97YIg0rz-g-fOruuT1w8mXzYq4366sbco7_8VAP4F5EpTho02gVlmzzEO4eLCRdZ4_g5wCpIOJBcJxGgro48HLkPyZ-QPMZpw5HE4KSuEs5_T3Iic9w0uDx2dSTvAwexSTF8aWhqn3ZqDMKvIOtOgCqhoZEylYIT10yfYW4UF_H4ddWlvwxnIyGH96Mk-jjkNSemp04U1rlclcSVrHOEKIjUOBtxLelNlKLbSetoKIrGbVX1hVprpXKjdWpLmohHXsCvWba2DVAmVktVJY7mxruMiNrbmpnM8WcYErwPrzqprA6b-U6qtDmMF7der99WO8muYpf7qzyxk1U_xnL-_C6m7Pry38N9vSfRm_AytHuqHr_9nD_GdzJvKdw-K2zDr35twv7nIDOXL-IyfwLVvr0pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Method+for+Approximating+of+First+Derivatives+in+Smoothed+Particle+Hydrodynamics%3A+Theory+and+Practice+for+Linear+Transport+Equation&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Burmistrova%2C+O.+A.&rft.au=Markelova%2C+T.+V.&rft.au=Arendarenko%2C+M.+S.&rft.au=Stoyanovskaya%2C+O.+P.&rft.date=2025-01-01&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=43&rft.epage=54&rft_id=info:doi/10.1134%2FS1995080224608312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1995080224608312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |