A New Method for Approximating of First Derivatives in Smoothed Particle Hydrodynamics: Theory and Practice for Linear Transport Equation

Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced nodes. The main idea of SPH is to construct a smooth approximating function for a discrete set of nodes using finite smoothing kernels whose sup...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 46; no. 1; pp. 43 - 54
Main Authors Burmistrova, O. A., Markelova, T. V., Arendarenko, M. S., Stoyanovskaya, O. P.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced nodes. The main idea of SPH is to construct a smooth approximating function for a discrete set of nodes using finite smoothing kernels whose support is smaller than the computational domain but covers several neighboring particles. In the classical version of SPH, the differentiation operation is applied to smooth kernels to calculate derivatives. In this paper, a new method for approximating first derivatives in SPH is proposed, based on the use of the idea of finite differences instead of kernel’s differentiating. It is shown that with comparable computational costs, the new method for calculating derivatives gives the same or higher order of approximation as the classical one. In addition, it was found that the actual error of the solution obtained by the new method, even with a rough resolution, is several times smaller than when using the classical method. This result was obtained theoretically by means of dispersion analysis and confirmed in practice when solving a linear one-dimensional transport equation.
AbstractList Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced nodes. The main idea of SPH is to construct a smooth approximating function for a discrete set of nodes using finite smoothing kernels whose support is smaller than the computational domain but covers several neighboring particles. In the classical version of SPH, the differentiation operation is applied to smooth kernels to calculate derivatives. In this paper, a new method for approximating first derivatives in SPH is proposed, based on the use of the idea of finite differences instead of kernel’s differentiating. It is shown that with comparable computational costs, the new method for calculating derivatives gives the same or higher order of approximation as the classical one. In addition, it was found that the actual error of the solution obtained by the new method, even with a rough resolution, is several times smaller than when using the classical method. This result was obtained theoretically by means of dispersion analysis and confirmed in practice when solving a linear one-dimensional transport equation.
Author Arendarenko, M. S.
Stoyanovskaya, O. P.
Burmistrova, O. A.
Markelova, T. V.
Author_xml – sequence: 1
  givenname: O. A.
  surname: Burmistrova
  fullname: Burmistrova, O. A.
  email: oksanabur@hydro.nsc.ru
  organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: T. V.
  surname: Markelova
  fullname: Markelova, T. V.
  email: matamara@gmail.com
  organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences
– sequence: 3
  givenname: M. S.
  surname: Arendarenko
  fullname: Arendarenko, M. S.
  email: m.arendarenko@inbox.ru
  organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences
– sequence: 4
  givenname: O. P.
  surname: Stoyanovskaya
  fullname: Stoyanovskaya, O. P.
  email: o.p.sklyar@gmail.com
  organization: Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy of Sciences
BookMark eNp1kMtOwzAQRS0EEqXwAewssQ54nMZ12FW8ilQeUss6cpJxm6q1yzgF-gn8NS5FYoFYzWjm3Duae8T2nXfI2CmIc4C0dzGGPM-EFlL2lNApyD3WAQ06yXMl92Mf18l2f8iOQpiLCCqlOuxzwB_xnT9gO_M1t574YLUi_9EsTdu4KfeW3zYUWn6N1LzF2RsG3jg-XnrfzrDmz4baplogH25q8vXGmWVThUs-maGnDTcuImSqyOC3_ahxaIhPyLiw8tTym9d1tPXumB1Yswh48lO77OX2ZnI1TEZPd_dXg1FSgc5kYuscjc1snkIfbQ0iUwqkzDPQZa1LBVajygF0qpVE2xdZaUxWYynKfqW0TbvsbOcb33xdY2iLuV-TiyeLVEIPYpxpFinYURX5EAhtsaKYCW0KEMU28eJP4lEjd5oQWTdF-nX-X_QFaYSFpQ
Cites_doi 10.1016/j.jcp.2020.109310
10.1111/j.1365-2966.2012.21439.x.arXiv:1204.2471
10.1002/fld.4037
10.1016/j.cam.2024.116316
10.1103/PhysRevE.67.026705
10.1017/S1323358000018117
10.1016/j.cam.2023.115495
10.1016/j.rinam.2023.100355
10.1016/j.camwa.2010.11.028
10.1086/112164
10.1007/BF02123482
10.1016/0021-9991(85)90006-3
10.1093/mnras/181.3.375
10.1088/0034-4885/68/8/R01
10.1016/j.compfluid.2023.105915
10.1017/S1323358000020610
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1134/S1995080224608312
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 54
ExternalDocumentID 10_1134_S1995080224608312
GroupedDBID -Y2
-~9
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c1852-fd9eaf5f9317efd105661229518bd8b61f8e691183862ef705baa5deb0b7c68f3
IEDL.DBID AGYKE
ISSN 1995-0802
IngestDate Fri Jul 25 09:04:00 EDT 2025
Thu Jul 03 08:40:19 EDT 2025
Sat May 31 01:18:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords partial differential equation
high-order SPH method
approximate dispersion relation
2010 Mathematics Subject Classification: 65M08
transport equation
dispersion analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1852-fd9eaf5f9317efd105661229518bd8b61f8e691183862ef705baa5deb0b7c68f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3214111335
PQPubID 2044393
PageCount 12
ParticipantIDs proquest_journals_3214111335
crossref_primary_10_1134_S1995080224608312
springer_journals_10_1134_S1995080224608312
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References J. P. Morris (8135_CR13) 1996; 13
R. Fatehi (8135_CR5) 2011; 61
C. Huang (8135_CR8) 2015; 78
8135_CR10
W. Dehnen (8135_CR14) 2012; 425
8135_CR11
R. A. Gingold (8135_CR2) 1977; 181
J. J. Monaghan (8135_CR3) 2005; 68
L. B. Lucy (8135_CR1) 1977; 82
L. Brookshaw (8135_CR7) 1985; 6
8135_CR12
8135_CR4
8135_CR6
8135_CR9
J. Monaghan (8135_CR16) 1985; 60
H. Wendland (8135_CR15) 1995; 4
References_xml – ident: 8135_CR11
  doi: 10.1016/j.jcp.2020.109310
– volume: 425
  start-page: 1068
  year: 2012
  ident: 8135_CR14
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2012.21439.x.arXiv:1204.2471
– volume: 78
  start-page: 691
  year: 2015
  ident: 8135_CR8
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4037
– ident: 8135_CR6
  doi: 10.1016/j.cam.2024.116316
– ident: 8135_CR4
  doi: 10.1103/PhysRevE.67.026705
– volume: 6
  start-page: 207
  year: 1985
  ident: 8135_CR7
  publication-title: Publ. Astron. Soc. Austral.
  doi: 10.1017/S1323358000018117
– ident: 8135_CR10
  doi: 10.1016/j.cam.2023.115495
– ident: 8135_CR9
  doi: 10.1016/j.rinam.2023.100355
– volume: 61
  start-page: 482
  year: 2011
  ident: 8135_CR5
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.11.028
– volume: 82
  start-page: 1013
  year: 1977
  ident: 8135_CR1
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 4
  start-page: 389
  year: 1995
  ident: 8135_CR15
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– volume: 60
  start-page: 253
  year: 1985
  ident: 8135_CR16
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90006-3
– volume: 181
  start-page: 375
  year: 1977
  ident: 8135_CR2
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 68
  start-page: 1703
  year: 2005
  ident: 8135_CR3
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– ident: 8135_CR12
  doi: 10.1016/j.compfluid.2023.105915
– volume: 13
  start-page: 97
  year: 1996
  ident: 8135_CR13
  publication-title: Publ. Astron. Soc. Austral.
  doi: 10.1017/S1323358000020610
SSID ssj0022666
Score 2.3118079
Snippet Smoothed Particle Hydrodynamics (SPH) can be considered as a method for approximating dynamical partial differential equations on moving irregularly spaced...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 43
SubjectTerms Algebra
Analysis
Approximation
Computing costs
Derivatives
Fluid mechanics
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Nodes
Partial differential equations
Probability Theory and Stochastic Processes
Smooth particle hydrodynamics
Transport equations
Title A New Method for Approximating of First Derivatives in Smoothed Particle Hydrodynamics: Theory and Practice for Linear Transport Equation
URI https://link.springer.com/article/10.1134/S1995080224608312
https://www.proquest.com/docview/3214111335
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLZQucCBMTZEGUPvsNOmFBM7jsOtbO0qJtAkqFROkR3bqJqWsqVMg3_Av-bZSYoG7NBzLCuJX977Xuzv-wj5kHFhs1SnUWypjrjULtIZy6JCM5VaWjiqgtrnmRiN-ckkmTQ87qo97d5uSYZMXfuO8INzTyYOzFAuvD0W5t1VhB806ZDV_tfLb4NFn4U1J5CKAvlY0rjZzHxxkn_L0SPGfLItGqrN8BW5aO-zPmTyo3cz173i7omE45IPskk2GvQJ_TpcXpMVW26R9dOFdGv1htz3ARMfnAZnaUBIC30vO_536geUVzBzMJwiZIQvGLt_gmx4BdMSzn_OPJnLwPcmGGF0azA714731RHUKgCgShzSULPC9NgN49cGC5V1GPyq5cffkvFwcPF5FDV-DVHhKdiRM5lVLnEZYhLrDCI3LP7eLvxQaiO1OHTSCkyukmEbZV1KE61UYqymOi2EdGybdMpZaXcIyNhqoeLEWWq4i40suCmcjRVzginBu-Rju2z5dS3LkYd2hvH82fvtkr12YfPmC61yb9CEeZ6xpEs-tev0ePm_k-0uNfodWYu9YXD4Z7NHOvPfN_Y9opi53seoHR4fn-030fsAIm_qTQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqOBQO9AMQS4HOoaeiQDZ2HIfbiu6yfCxCYpHgFNmxjVaILDRLBfwD_jVjJ1lUaA-cY1lJPJl5E_u9R8iPlHGTJioJIhOqgAllA5XSNMgVlYkJcxtKr_Z5zPtn7OA8Pq953GVz2r3ZkvSZuvIdYdunjkzsmaGMO3sszLuzDFtw7LhmO3sXh91pn4U1x5OKPPlYhFG9mfnPSf4uRy8Y89W2qK82vU9k2Nxndcjkautuorbyx1cSju98kM9koUaf0KnC5Qv5YIqvZH4wlW4tF8lTBzDxwcA7SwNCWug42fH7kRtQXMLYQm-EkBF-Yez-8bLhJYwKOL0eOzKXhpM6GKH_oDE7V4735Q5UKgAgCxxSU7P89NgN49cGU5V16N5W8uNL5KzXHe72g9qvIcgdBTuwOjXSxjZFTGKsRuSGxd_ZhbeF0kLxthWGY3IVFNsoY5MwVlLG2qhQJTkXli6TmWJcmBUCIjKKyyi2JtTMRlrkTOfWRJJaTiVnLfKzWbbsppLlyHw7Q1n25v22yFqzsFn9hZaZM2jCPE9p3CKbzTq9XP7vZKvvGv2dfOwPB0fZ0f7x4TcyFznzYP__Zo3MTH7fmXVENBO1UUfwM-9i68A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VW6mCA1A-1IVC58AJlDaNHcfpbUV3u1BaVSqVyinYsY1WqNnCbhHtP-BfM3acrWjhgDjHGiXxZPwm9nsP4GXJhS0LXSSZTXXCpXaJLlmZ1Jqpwqa1S1VQ-zwU4xP-7jQ_jT6ns-60e7cl2XIavEpTM986Ny56kPCtY08sDixRLrxVFtXgZZ7KQvZgebD3cX-46Llo_QkEo0BElmkWNzb_GOT3pekab97YIg0rz-g-fOruuT1w8mXzYq4366sbco7_8VAP4F5EpTho02gVlmzzEO4eLCRdZ4_g5wCpIOJBcJxGgro48HLkPyZ-QPMZpw5HE4KSuEs5_T3Iic9w0uDx2dSTvAwexSTF8aWhqn3ZqDMKvIOtOgCqhoZEylYIT10yfYW4UF_H4ddWlvwxnIyGH96Mk-jjkNSemp04U1rlclcSVrHOEKIjUOBtxLelNlKLbSetoKIrGbVX1hVprpXKjdWpLmohHXsCvWba2DVAmVktVJY7mxruMiNrbmpnM8WcYErwPrzqprA6b-U6qtDmMF7der99WO8muYpf7qzyxk1U_xnL-_C6m7Pry38N9vSfRm_AytHuqHr_9nD_GdzJvKdw-K2zDr35twv7nIDOXL-IyfwLVvr0pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Method+for+Approximating+of+First+Derivatives+in+Smoothed+Particle+Hydrodynamics%3A+Theory+and+Practice+for+Linear+Transport+Equation&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Burmistrova%2C+O.+A.&rft.au=Markelova%2C+T.+V.&rft.au=Arendarenko%2C+M.+S.&rft.au=Stoyanovskaya%2C+O.+P.&rft.date=2025-01-01&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=43&rft.epage=54&rft_id=info:doi/10.1134%2FS1995080224608312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1995080224608312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon