Solution of the Problem of Stressed State for a Closed Elastoplastic Cylindrical Shell Containing a Crack in the Complex Form

To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δ c -model and represent the resolving system of equations of the problem in the complex form. The obtained syste...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 279; no. 2; pp. 213 - 225
Main Authors Kostenko, I. S., Nykolyshyn, T. M., Rostun, M. Yo
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δ c -model and represent the resolving system of equations of the problem in the complex form. The obtained system of equations is reduced to a system of nonlinear singular integral equations whose solution is constructed by the method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the conditions of boundedness of stresses, and the conditions of uniqueness of displacements. We also perform the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on the geometric and mechanical parameters.
AbstractList To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δc-model and represent the resolving system of equations of the problem in the complex form. The obtained system of equations is reduced to a system of nonlinear singular integral equations whose solution is constructed by the method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the conditions of boundedness of stresses, and the conditions of uniqueness of displacements. We also perform the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on the geometric and mechanical parameters.
To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δ c -model and represent the resolving system of equations of the problem in the complex form. The obtained system of equations is reduced to a system of nonlinear singular integral equations whose solution is constructed by the method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the conditions of boundedness of stresses, and the conditions of uniqueness of displacements. We also perform the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on the geometric and mechanical parameters.
Author Rostun, M. Yo
Nykolyshyn, T. M.
Kostenko, I. S.
Author_xml – sequence: 1
  givenname: I. S.
  surname: Kostenko
  fullname: Kostenko, I. S.
  organization: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: T. M.
  surname: Nykolyshyn
  fullname: Nykolyshyn, T. M.
  email: tarasnyk@ukr.net
  organization: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine
– sequence: 3
  givenname: M. Yo
  surname: Rostun
  fullname: Rostun, M. Yo
  organization: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine
BookMark eNp9kM1LwzAYxoMouE3_AU8Bz9V8NGlylLKpMFCYnkOWpltnmsykA3fwf7ddBW9e3i-e3_PCMwXnPngLwA1Gdxih4j5hJJnIEMkzVCDEM3IGJpgVNBOFZOf9jAqSUVrkl2Ca0g71EBd0Ar5XwR26JngYathtLXyNYe1sO6yrLtqUbNUPurOwDhFqWLownOZOpy7sh9oYWB5d46vYGO3gamudg2XwnW584zcDE7X5gI0_PShDu3f2Cy5CbK_ARa1dste_fQbeF_O38ilbvjw-lw_LzGDBSFYwXklmCNJC5tjUlrGaE5ILTGpJOZbGSmMEZoZxobnJcaUFqnK61kSvjaYzcDv67mP4PNjUqV04RN-_VEQKJnPEmehVZFSZGFKKtlb72LQ6HhVGaohZjTGrPmZ1ilmRHqIjlHqx39j4Z_0P9QO-DYIO
Cites_doi 10.1007/BF00720872
10.1007/978-94-009-4333-9
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10958-024-07006-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 225
ExternalDocumentID 10_1007_s10958_024_07006_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AACDK
AAEOY
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAYXX
ACDTI
AEARS
CITATION
H13
ID FETCH-LOGICAL-c1852-756d95c20a8941cfe55f6224812f93619ce9cc815c568a6c41da80d43ba2abca3
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Thu Oct 10 17:14:15 EDT 2024
Thu Sep 12 18:04:58 EDT 2024
Tue Mar 26 01:23:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords closed elastoplastic cylindrical shell
δ
parabolic crack
fracture criterion
stressed state
model
complex form of equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1852-756d95c20a8941cfe55f6224812f93619ce9cc815c568a6c41da80d43ba2abca3
PQID 2985940658
PQPubID 2043545
PageCount 13
ParticipantIDs proquest_journals_2985940658
crossref_primary_10_1007_s10958_024_07006_2
springer_journals_10_1007_s10958_024_07006_2
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References R. M. Kushnir, M. M. Nykolyshyn, and M. Yo. Rostun, “Limit equilibrium of inhomogeneous shells of revolution with internal cracks,” in: E. E. Gdoutos (editor), Proc. of the 14th Internat. Conf. on Fracture ICF14 (Rhodes, Greece, June 18–23, 2017), Vol. 1, Curran Associates, Inc., New York (2017), pp. 316–317; https://www.icfweb.org/Procf/ICF14/Vol1/316.
Yu. P. Artyukhin, “Numerical analyses of one-layer and multilayer orthotropic shells for local loads,” Issled. Teor. Plastin Oboloch., No. 4, 91–110 (1966).
BarenblattGIMathematical theory of equilibrium cracks formed in brittle fractureZh. Éksper. Teor. Fiz.1961194356
KleinGKNumerical Analysis of Underground Pipelines1969MoscowStroiizdat[in Russian]
R. M. Kushnir, M. M. Nykolyshyn, and V. A. Osadchuk, Elastic and Elastoplastic Limit States of Shells with Defects [in Ukrainian], Spolom, Lviv (2003).
G. S. Vasil’chenko and P. F. Koshelev, Practical Application of Fracture Mechanics for the Evaluation of the Strength of Structures [in Russian], Nauka, Moscow (1974).
MukoedAPNovozhilov’s complex equations for orthotropic shellsPrikl. Mekh.196517122126
NovozhilovVVTheory of Thin Shells1962LeningradSudpromgiz[in Russian]
I. S. Kostenko and O. V. Tumashova, “Approximate solution of the problem of elastic equilibrium of a finite cylindrical shell with surface cracks,” Vest. Kherson. Nats. Tekh. Univ., No. 2(4), 176–179 (2012).
VlasovVZGeneral Theory of Shells and Its Applications in Engineering1949Moscow, LeningradGostekhizdat[in Russian]
V. A. Osadchuk, M. M. Nikolishin, and V. I. Kir’yan, “Application of an analog of the δc-model for the determination of the opening displacement of a nonthrough crack in a closed cylindrical shell,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 88–92 (1986).
D. Broek, Elementary Engineering Fracture Mechanics, Noordhoff International Publishing, Leiden (1974); D. Broek, Elementary Engineering Fracture Mechanics, Springer (1982).
K. F. Chernykh, Linear Theory of Shells [in Russian] Vols. 1–2, Leningrad State University, Leningrad (1962).
ShvetsRNPavlenkoVDOn cyclically symmetric problems of heat conduction for plates and shells with holes in the presence of heat exchangeInzh.-Fiz. Zh.1972235890897
V. A. Osadchuk and I. S. Yarmoshchuk, “Elastic equilibrium of a closed cylindrical shell with a system of periodically located parallel cracks,” in: Physicomechanical Fields in Deformable Media [in Russian], Naukova Dumka, Kiev (1978), pp. 51–58.
OgibalovPMKoltunovMAShells and Plates1969MoscowMoscow State University[in Russian]
Ya. S Pidstryhach and S. Ya. Yarema, Thermal Stresses in Shells [in Ukrainian], Academy of Sciences of Ukrainian SSR, Kiev (1961).
Yu. P. Artyukhin, “Determination of stresses in an orthotropic cylindrical shell under the action of concentrated forces,” Issled. Teor. Plastin Oboloch., No. 5, 148–152 (1967).
VekuaNPSystems of Singular Integral Equations and Some Boundary-Value Problems1970MoscowNauka[in Russian]
BerezhnitskiiLTDelyavskiiMVPanasyukVVBending of Thin Plates with Cracklike Defects1979KievNaukova Dumka[in Russian]
7006_CR18
7006_CR17
PM Ogibalov (7006_CR14) 1969
7006_CR16
7006_CR15
AP Mukoed (7006_CR12) 1965; 1
LT Berezhnitskii (7006_CR4) 1979
cr-split#-7006_CR5.2
RN Shvets (7006_CR19) 1972; 23
GI Barenblatt (7006_CR3) 1961; 19
NP Vekua (7006_CR7) 1970
VZ Vlasov (7006_CR8) 1949
GK Klein (7006_CR9) 1969
VV Novozhilov (7006_CR13) 1962
7006_CR11
cr-split#-7006_CR5.1
7006_CR10
7006_CR2
7006_CR20
7006_CR1
7006_CR6
References_xml – ident: 7006_CR6
– volume: 23
  start-page: 890
  issue: 5
  year: 1972
  ident: 7006_CR19
  publication-title: Inzh.-Fiz. Zh.
  contributor:
    fullname: RN Shvets
– ident: 7006_CR15
  doi: 10.1007/BF00720872
– ident: 7006_CR10
– ident: 7006_CR11
– volume-title: Theory of Thin Shells
  year: 1962
  ident: 7006_CR13
  contributor:
    fullname: VV Novozhilov
– ident: 7006_CR1
– ident: 7006_CR16
– ident: 7006_CR2
– volume-title: Systems of Singular Integral Equations and Some Boundary-Value Problems
  year: 1970
  ident: 7006_CR7
  contributor:
    fullname: NP Vekua
– ident: 7006_CR18
– ident: 7006_CR17
– ident: 7006_CR20
– volume: 1
  start-page: 122
  issue: 7
  year: 1965
  ident: 7006_CR12
  publication-title: Prikl. Mekh.
  contributor:
    fullname: AP Mukoed
– volume-title: Shells and Plates
  year: 1969
  ident: 7006_CR14
  contributor:
    fullname: PM Ogibalov
– volume-title: Bending of Thin Plates with Cracklike Defects
  year: 1979
  ident: 7006_CR4
  contributor:
    fullname: LT Berezhnitskii
– volume-title: Numerical Analysis of Underground Pipelines
  year: 1969
  ident: 7006_CR9
  contributor:
    fullname: GK Klein
– ident: #cr-split#-7006_CR5.2
  doi: 10.1007/978-94-009-4333-9
– volume: 19
  start-page: 3
  issue: 4
  year: 1961
  ident: 7006_CR3
  publication-title: Zh. Éksper. Teor. Fiz.
  contributor:
    fullname: GI Barenblatt
– volume-title: General Theory of Shells and Its Applications in Engineering
  year: 1949
  ident: 7006_CR8
  contributor:
    fullname: VZ Vlasov
– ident: #cr-split#-7006_CR5.1
SSID ssj0007683
Score 2.357321
Snippet To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 213
SubjectTerms Boundary conditions
Configurations
Crack opening displacement
Cylindrical shells
Elastoplasticity
Mathematics
Mathematics and Statistics
Mechanical properties
Numerical analysis
Plastic zones
Quadratures
Singular integral equations
Thin walled shells
Title Solution of the Problem of Stressed State for a Closed Elastoplastic Cylindrical Shell Containing a Crack in the Complex Form
URI https://link.springer.com/article/10.1007/s10958-024-07006-2
https://www.proquest.com/docview/2985940658
Volume 279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_iLnoQP3E6Rw7eNLC2SZsct7E6lA1hDuappGkKw9GObYIe_N99SdtVRQ9eWpqmKbz3-t7vNe8DoWvuMC6kpsTTOiAUppFY-glRMcANRhOvyPAejf3hlN7P2KzO47bB7tWOpFXUX3LdBOMETAoBKQU3GPRuA8ADNXFcU7e7Vb-An4uo-sAlnhfQMlPm9zW-W6MaYv7YFbXGJjxEByVKxN2CrUdoR2fHaH-0LbG6PkEf1Q8tnKcYxvFj0RrGXE5sAohOsIWSGHAplri_yM3QAODyJl-a41zh_jvQIrFlQvDExIRiU66q6BphnllJ9YLnmX2BUR0L_YZDgLmnaBoOnvpDUvZSIMqkR5OA-Ylgyu1ILqijUs1Y6hvqOW4qPPCilBZKAecU87n0FXUSyTsJ9WLpylhJ7wztZnmmzxFOBUgfc3iqpKAAILgKlEjBE_JknAL8baKbiqbRsiiZEdXFkQ0HIuBAZDkQuU3UqsgelZ_POnIFZ4IadNREtxUr6tt_r3bxv-mXaM-10mDCU1pod7N61VcAMjZxGzW6Ya83Nue754dB2wrZJ9WFy54
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-iB_UgfuJ0ag7eNLC2SZscx9iYug1hG-xW0jSB4WjHNkEP_u--pO2mogcvhaZpCu-9vvd7yftA6JZ7jAupKQm0jgiFaSSRYUpUAnCD0TQoMrz7g7A7po8TNimTwpZVtHt1JOk09ZdkN8E4AZtCQEzBDwbFu2Prq1u5HvvNtf4FAF2E1Uc-CYKIlqkyv6_x3RxtMOaPY1FnbTqH6KCEibhZ8PUIbensGO331zVWlyfoo9rRwrnBMI6fi94w9nboMkB0ih2WxABMscStWW6H2oCXV_ncXqcKt96BFqmrE4KHNigU23pVRdsI-85Cqhc8zdwHrO6Y6TfcAZx7isad9qjVJWUzBaJsfjSJWJgKpvyG5IJ6ymjGTAj2Gwy8EQG4UUoLpYB1ioVchop6qeSNlAaJ9GWiZHCGtrM80-cIGwHixzxulBQUEARXkRIGXKFAJgbwbw3dVTSN50XNjHhTHdlyIAYOxI4DsV9D9Yrscfn_LGNfcCaohUc1dF-xYvP479Uu_jf9Bu12R_1e3HsYPF2iPd9Jho1VqaPt1eJVXwHiWCXXTsA-AfKfy-k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IBNEH7-K85sE3jbo2aZNHmZv3MVBBn0qaJjCUbmgFFfzvnvSyTdEH8aXQNE3TnNPkS3O-LwA7osGFVIZR35iQMsxGYxUkVMcINzhL_ILhfdUJTm_Z-R2_G2Px59Hu1ZJkwWlwKk1pdjBI7MEY8U1yQXF8oeiyOCfGTniSucQaTB6d3F-0hr0xwukiyD70qO-HrCTO_FzK18FphDi_LZLmY097DlRV6yLk5GH_JYv39fs3Qcf_vNY8zJbAlBwVnrQAEyZdhJmroarr8xJ8VP_QSN8STCfdYjcad3qdc05MQnL0ShAKE0Waj32X1EKEnvUH7tjTpPmG1UxyZRJy7cJQiVPIKjaqcPc8Kf1Aemn-ANdbPZpX0kZkvQy37dZN85SW2zdQ7RjZNORBIrn2DpWQrKGt4dwGiBgQUljp48RNG6k1OovmgVCBZo1EicOE-bHyVKyVvwK1tJ-aVSBWosPzhrBaSYaYRehQS4uTL1_FFhF3HXYru0WDQqUjGukxu0aNsFGjvFEjrw4blWmj8ot9jjwpuGQOkNVhr7LU6PLvpa39Lfs2THWP29HlWediHaa93NYuOGYDatnTi9lEiJPFW6UXfwLQM_HB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+Problem+of+Stressed+State+for+a+Closed+Elastoplastic+Cylindrical+Shell+Containing+a+Crack+in+the+Complex+Form&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kostenko%2C+I.+S.&rft.au=Nykolyshyn%2C+T.+M.&rft.au=Rostun%2C+M.+Yo&rft.date=2024-02-01&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=279&rft.issue=2&rft.spage=213&rft.epage=225&rft_id=info:doi/10.1007%2Fs10958-024-07006-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10958_024_07006_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon