Solution of the Problem of Stressed State for a Closed Elastoplastic Cylindrical Shell Containing a Crack in the Complex Form
To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δ c -model and represent the resolving system of equations of the problem in the complex form. The obtained syste...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 279; no. 2; pp. 213 - 225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δ
c
-model and represent the resolving system of equations of the problem in the complex form. The obtained system of equations is reduced to a system of nonlinear singular integral equations whose solution is constructed by the method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the conditions of boundedness of stresses, and the conditions of uniqueness of displacements. We also perform the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on the geometric and mechanical parameters. |
---|---|
AbstractList | To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δc-model and represent the resolving system of equations of the problem in the complex form. The obtained system of equations is reduced to a system of nonlinear singular integral equations whose solution is constructed by the method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the conditions of boundedness of stresses, and the conditions of uniqueness of displacements. We also perform the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on the geometric and mechanical parameters. To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any configuration, we use an analog of the δ c -model and represent the resolving system of equations of the problem in the complex form. The obtained system of equations is reduced to a system of nonlinear singular integral equations whose solution is constructed by the method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the conditions of boundedness of stresses, and the conditions of uniqueness of displacements. We also perform the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on the geometric and mechanical parameters. |
Author | Rostun, M. Yo Nykolyshyn, T. M. Kostenko, I. S. |
Author_xml | – sequence: 1 givenname: I. S. surname: Kostenko fullname: Kostenko, I. S. organization: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine – sequence: 2 givenname: T. M. surname: Nykolyshyn fullname: Nykolyshyn, T. M. email: tarasnyk@ukr.net organization: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine – sequence: 3 givenname: M. Yo surname: Rostun fullname: Rostun, M. Yo organization: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine |
BookMark | eNp9kM1LwzAYxoMouE3_AU8Bz9V8NGlylLKpMFCYnkOWpltnmsykA3fwf7ddBW9e3i-e3_PCMwXnPngLwA1Gdxih4j5hJJnIEMkzVCDEM3IGJpgVNBOFZOf9jAqSUVrkl2Ca0g71EBd0Ar5XwR26JngYathtLXyNYe1sO6yrLtqUbNUPurOwDhFqWLownOZOpy7sh9oYWB5d46vYGO3gamudg2XwnW584zcDE7X5gI0_PShDu3f2Cy5CbK_ARa1dste_fQbeF_O38ilbvjw-lw_LzGDBSFYwXklmCNJC5tjUlrGaE5ILTGpJOZbGSmMEZoZxobnJcaUFqnK61kSvjaYzcDv67mP4PNjUqV04RN-_VEQKJnPEmehVZFSZGFKKtlb72LQ6HhVGaohZjTGrPmZ1ilmRHqIjlHqx39j4Z_0P9QO-DYIO |
Cites_doi | 10.1007/BF00720872 10.1007/978-94-009-4333-9 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10958-024-07006-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 225 |
ExternalDocumentID | 10_1007_s10958_024_07006_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AACDK AAEOY AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAYXX ACDTI AEARS CITATION H13 |
ID | FETCH-LOGICAL-c1852-756d95c20a8941cfe55f6224812f93619ce9cc815c568a6c41da80d43ba2abca3 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Thu Oct 10 17:14:15 EDT 2024 Thu Sep 12 18:04:58 EDT 2024 Tue Mar 26 01:23:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | closed elastoplastic cylindrical shell δ parabolic crack fracture criterion stressed state model complex form of equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1852-756d95c20a8941cfe55f6224812f93619ce9cc815c568a6c41da80d43ba2abca3 |
PQID | 2985940658 |
PQPubID | 2043545 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2985940658 crossref_primary_10_1007_s10958_024_07006_2 springer_journals_10_1007_s10958_024_07006_2 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | R. M. Kushnir, M. M. Nykolyshyn, and M. Yo. Rostun, “Limit equilibrium of inhomogeneous shells of revolution with internal cracks,” in: E. E. Gdoutos (editor), Proc. of the 14th Internat. Conf. on Fracture ICF14 (Rhodes, Greece, June 18–23, 2017), Vol. 1, Curran Associates, Inc., New York (2017), pp. 316–317; https://www.icfweb.org/Procf/ICF14/Vol1/316. Yu. P. Artyukhin, “Numerical analyses of one-layer and multilayer orthotropic shells for local loads,” Issled. Teor. Plastin Oboloch., No. 4, 91–110 (1966). BarenblattGIMathematical theory of equilibrium cracks formed in brittle fractureZh. Éksper. Teor. Fiz.1961194356 KleinGKNumerical Analysis of Underground Pipelines1969MoscowStroiizdat[in Russian] R. M. Kushnir, M. M. Nykolyshyn, and V. A. Osadchuk, Elastic and Elastoplastic Limit States of Shells with Defects [in Ukrainian], Spolom, Lviv (2003). G. S. Vasil’chenko and P. F. Koshelev, Practical Application of Fracture Mechanics for the Evaluation of the Strength of Structures [in Russian], Nauka, Moscow (1974). MukoedAPNovozhilov’s complex equations for orthotropic shellsPrikl. Mekh.196517122126 NovozhilovVVTheory of Thin Shells1962LeningradSudpromgiz[in Russian] I. S. Kostenko and O. V. Tumashova, “Approximate solution of the problem of elastic equilibrium of a finite cylindrical shell with surface cracks,” Vest. Kherson. Nats. Tekh. Univ., No. 2(4), 176–179 (2012). VlasovVZGeneral Theory of Shells and Its Applications in Engineering1949Moscow, LeningradGostekhizdat[in Russian] V. A. Osadchuk, M. M. Nikolishin, and V. I. Kir’yan, “Application of an analog of the δc-model for the determination of the opening displacement of a nonthrough crack in a closed cylindrical shell,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 88–92 (1986). D. Broek, Elementary Engineering Fracture Mechanics, Noordhoff International Publishing, Leiden (1974); D. Broek, Elementary Engineering Fracture Mechanics, Springer (1982). K. F. Chernykh, Linear Theory of Shells [in Russian] Vols. 1–2, Leningrad State University, Leningrad (1962). ShvetsRNPavlenkoVDOn cyclically symmetric problems of heat conduction for plates and shells with holes in the presence of heat exchangeInzh.-Fiz. Zh.1972235890897 V. A. Osadchuk and I. S. Yarmoshchuk, “Elastic equilibrium of a closed cylindrical shell with a system of periodically located parallel cracks,” in: Physicomechanical Fields in Deformable Media [in Russian], Naukova Dumka, Kiev (1978), pp. 51–58. OgibalovPMKoltunovMAShells and Plates1969MoscowMoscow State University[in Russian] Ya. S Pidstryhach and S. Ya. Yarema, Thermal Stresses in Shells [in Ukrainian], Academy of Sciences of Ukrainian SSR, Kiev (1961). Yu. P. Artyukhin, “Determination of stresses in an orthotropic cylindrical shell under the action of concentrated forces,” Issled. Teor. Plastin Oboloch., No. 5, 148–152 (1967). VekuaNPSystems of Singular Integral Equations and Some Boundary-Value Problems1970MoscowNauka[in Russian] BerezhnitskiiLTDelyavskiiMVPanasyukVVBending of Thin Plates with Cracklike Defects1979KievNaukova Dumka[in Russian] 7006_CR18 7006_CR17 PM Ogibalov (7006_CR14) 1969 7006_CR16 7006_CR15 AP Mukoed (7006_CR12) 1965; 1 LT Berezhnitskii (7006_CR4) 1979 cr-split#-7006_CR5.2 RN Shvets (7006_CR19) 1972; 23 GI Barenblatt (7006_CR3) 1961; 19 NP Vekua (7006_CR7) 1970 VZ Vlasov (7006_CR8) 1949 GK Klein (7006_CR9) 1969 VV Novozhilov (7006_CR13) 1962 7006_CR11 cr-split#-7006_CR5.1 7006_CR10 7006_CR2 7006_CR20 7006_CR1 7006_CR6 |
References_xml | – ident: 7006_CR6 – volume: 23 start-page: 890 issue: 5 year: 1972 ident: 7006_CR19 publication-title: Inzh.-Fiz. Zh. contributor: fullname: RN Shvets – ident: 7006_CR15 doi: 10.1007/BF00720872 – ident: 7006_CR10 – ident: 7006_CR11 – volume-title: Theory of Thin Shells year: 1962 ident: 7006_CR13 contributor: fullname: VV Novozhilov – ident: 7006_CR1 – ident: 7006_CR16 – ident: 7006_CR2 – volume-title: Systems of Singular Integral Equations and Some Boundary-Value Problems year: 1970 ident: 7006_CR7 contributor: fullname: NP Vekua – ident: 7006_CR18 – ident: 7006_CR17 – ident: 7006_CR20 – volume: 1 start-page: 122 issue: 7 year: 1965 ident: 7006_CR12 publication-title: Prikl. Mekh. contributor: fullname: AP Mukoed – volume-title: Shells and Plates year: 1969 ident: 7006_CR14 contributor: fullname: PM Ogibalov – volume-title: Bending of Thin Plates with Cracklike Defects year: 1979 ident: 7006_CR4 contributor: fullname: LT Berezhnitskii – volume-title: Numerical Analysis of Underground Pipelines year: 1969 ident: 7006_CR9 contributor: fullname: GK Klein – ident: #cr-split#-7006_CR5.2 doi: 10.1007/978-94-009-4333-9 – volume: 19 start-page: 3 issue: 4 year: 1961 ident: 7006_CR3 publication-title: Zh. Éksper. Teor. Fiz. contributor: fullname: GI Barenblatt – volume-title: General Theory of Shells and Its Applications in Engineering year: 1949 ident: 7006_CR8 contributor: fullname: VZ Vlasov – ident: #cr-split#-7006_CR5.1 |
SSID | ssj0007683 |
Score | 2.357321 |
Snippet | To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a plane longitudinal internal crack of any... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 213 |
SubjectTerms | Boundary conditions Configurations Crack opening displacement Cylindrical shells Elastoplasticity Mathematics Mathematics and Statistics Mechanical properties Numerical analysis Plastic zones Quadratures Singular integral equations Thin walled shells |
Title | Solution of the Problem of Stressed State for a Closed Elastoplastic Cylindrical Shell Containing a Crack in the Complex Form |
URI | https://link.springer.com/article/10.1007/s10958-024-07006-2 https://www.proquest.com/docview/2985940658 |
Volume | 279 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_iLnoQP3E6Rw7eNLC2SZsct7E6lA1hDuappGkKw9GObYIe_N99SdtVRQ9eWpqmKbz3-t7vNe8DoWvuMC6kpsTTOiAUppFY-glRMcANRhOvyPAejf3hlN7P2KzO47bB7tWOpFXUX3LdBOMETAoBKQU3GPRuA8ADNXFcU7e7Vb-An4uo-sAlnhfQMlPm9zW-W6MaYv7YFbXGJjxEByVKxN2CrUdoR2fHaH-0LbG6PkEf1Q8tnKcYxvFj0RrGXE5sAohOsIWSGHAplri_yM3QAODyJl-a41zh_jvQIrFlQvDExIRiU66q6BphnllJ9YLnmX2BUR0L_YZDgLmnaBoOnvpDUvZSIMqkR5OA-Ylgyu1ILqijUs1Y6hvqOW4qPPCilBZKAecU87n0FXUSyTsJ9WLpylhJ7wztZnmmzxFOBUgfc3iqpKAAILgKlEjBE_JknAL8baKbiqbRsiiZEdXFkQ0HIuBAZDkQuU3UqsgelZ_POnIFZ4IadNREtxUr6tt_r3bxv-mXaM-10mDCU1pod7N61VcAMjZxGzW6Ya83Nue754dB2wrZJ9WFy54 |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-iB_UgfuJ0ag7eNLC2SZscx9iYug1hG-xW0jSB4WjHNkEP_u--pO2mogcvhaZpCu-9vvd7yftA6JZ7jAupKQm0jgiFaSSRYUpUAnCD0TQoMrz7g7A7po8TNimTwpZVtHt1JOk09ZdkN8E4AZtCQEzBDwbFu2Prq1u5HvvNtf4FAF2E1Uc-CYKIlqkyv6_x3RxtMOaPY1FnbTqH6KCEibhZ8PUIbensGO331zVWlyfoo9rRwrnBMI6fi94w9nboMkB0ih2WxABMscStWW6H2oCXV_ncXqcKt96BFqmrE4KHNigU23pVRdsI-85Cqhc8zdwHrO6Y6TfcAZx7isad9qjVJWUzBaJsfjSJWJgKpvyG5IJ6ymjGTAj2Gwy8EQG4UUoLpYB1ioVchop6qeSNlAaJ9GWiZHCGtrM80-cIGwHixzxulBQUEARXkRIGXKFAJgbwbw3dVTSN50XNjHhTHdlyIAYOxI4DsV9D9Yrscfn_LGNfcCaohUc1dF-xYvP479Uu_jf9Bu12R_1e3HsYPF2iPd9Jho1VqaPt1eJVXwHiWCXXTsA-AfKfy-k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IBNEH7-K85sE3jbo2aZNHmZv3MVBBn0qaJjCUbmgFFfzvnvSyTdEH8aXQNE3TnNPkS3O-LwA7osGFVIZR35iQMsxGYxUkVMcINzhL_ILhfdUJTm_Z-R2_G2Px59Hu1ZJkwWlwKk1pdjBI7MEY8U1yQXF8oeiyOCfGTniSucQaTB6d3F-0hr0xwukiyD70qO-HrCTO_FzK18FphDi_LZLmY097DlRV6yLk5GH_JYv39fs3Qcf_vNY8zJbAlBwVnrQAEyZdhJmroarr8xJ8VP_QSN8STCfdYjcad3qdc05MQnL0ShAKE0Waj32X1EKEnvUH7tjTpPmG1UxyZRJy7cJQiVPIKjaqcPc8Kf1Aemn-ANdbPZpX0kZkvQy37dZN85SW2zdQ7RjZNORBIrn2DpWQrKGt4dwGiBgQUljp48RNG6k1OovmgVCBZo1EicOE-bHyVKyVvwK1tJ-aVSBWosPzhrBaSYaYRehQS4uTL1_FFhF3HXYru0WDQqUjGukxu0aNsFGjvFEjrw4blWmj8ot9jjwpuGQOkNVhr7LU6PLvpa39Lfs2THWP29HlWediHaa93NYuOGYDatnTi9lEiJPFW6UXfwLQM_HB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+Problem+of+Stressed+State+for+a+Closed+Elastoplastic+Cylindrical+Shell+Containing+a+Crack+in+the+Complex+Form&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kostenko%2C+I.+S.&rft.au=Nykolyshyn%2C+T.+M.&rft.au=Rostun%2C+M.+Yo&rft.date=2024-02-01&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=279&rft.issue=2&rft.spage=213&rft.epage=225&rft_id=info:doi/10.1007%2Fs10958-024-07006-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10958_024_07006_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |