On the Invertibility and Structural Properties of Interval Translation Maps

In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its invariant measure. This result has far-reaching consequences, as it implies that ITMs reduce to Interval Exchange Maps (IEM) in some cases. Wh...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 46; no. 2; pp. 901 - 910
Main Authors Tajbakhsh, Khosro, Yaghmaeian, Reza
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1995-0802
1818-9962
DOI10.1134/S1995080224606891

Cover

Loading…
Abstract In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its invariant measure. This result has far-reaching consequences, as it implies that ITMs reduce to Interval Exchange Maps (IEM) in some cases. While previous work has noted that the support of the invariant measure may sometimes form a Cantor set, we are able to conclude that every ITM is indeed invertible almost everywhere on its support. This discovery extends the understanding of ITMs and their structural properties, providing a deeper insight into the behavior of these dynamical systems. Additionally, we investigate several properties of ITMs, contributing to a deeper understanding of their structural properties.
AbstractList In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its invariant measure. This result has far-reaching consequences, as it implies that ITMs reduce to Interval Exchange Maps (IEM) in some cases. While previous work has noted that the support of the invariant measure may sometimes form a Cantor set, we are able to conclude that every ITM is indeed invertible almost everywhere on its support. This discovery extends the understanding of ITMs and their structural properties, providing a deeper insight into the behavior of these dynamical systems. Additionally, we investigate several properties of ITMs, contributing to a deeper understanding of their structural properties.
Author Tajbakhsh, Khosro
Yaghmaeian, Reza
Author_xml – sequence: 1
  givenname: Khosro
  surname: Tajbakhsh
  fullname: Tajbakhsh, Khosro
  email: khtajbakhsh@modares.ac.ir
  organization: Faculty ofMathematical Sciences, TarbiatModares University
– sequence: 2
  givenname: Reza
  surname: Yaghmaeian
  fullname: Yaghmaeian, Reza
  email: reza.yaghmaeian@modares.ac.ir
  organization: Faculty ofMathematical Sciences, TarbiatModares University
BookMark eNp1kEFLAzEQhYNUsK3-AG8Bz6uZZDubHKWoLVYqtPclWbO6Zc2uSbbQf29KBQ_iaYZ533sDb0JGrnOWkGtgtwAiv9uAUjMmGec5MpQKzsgYJMhMKeSjtCc5O-oXZBLCjiUQEcfkee1o_LB06fbWx8Y0bRMPVLs3uol-qOLgdUtffdcfVRtoVyc0Wr9P563XLrQ6Np2jL7oPl-S81m2wVz9zSraPD9v5Ilutn5bz-1VWgZxBZvWMWcO4yiVizipuhEUo8gIKJRgiB7CopBQGZcFMIStUNWNGsLq2phBTcnOK7X33NdgQy103eJc-loKDEqkPxETBiap8F4K3ddn75lP7QwmsPFZW_qksefjJExLr3q3_Tf7f9A2h9G2f
Cites_doi 10.1007/BF02785958
10.1016/j.crma.2016.05.002
10.3934/dcds.2005.13.515
10.3390/axioms10020080
10.1051/mmnp/2019041
10.1017/S0143385703000488
10.1017/S0143385701001651
10.1007/978-1-4612-4190-4
10.1017/S0143385700009652
10.1080/14689360601028084
10.1016/j.physleta.2007.06.033
10.1017/S0143385799151964
10.3934/dcds.2014.34.2307
10.3934/dcds.2012.32.4133
10.1215/ijm/1256060408
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1134/S1995080224606891
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 910
ExternalDocumentID 10_1134_S1995080224606891
GroupedDBID -Y2
-~9
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
YLTOR
ZMTXR
~A9
AAYXX
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c1851-ea50eb029486640c2b3e617471793066211e69883b6870b78c69f00b30ffeb73
IEDL.DBID AGYKE
ISSN 1995-0802
IngestDate Fri Jul 25 09:02:16 EDT 2025
Thu Jul 03 08:35:15 EDT 2025
Tue Jun 17 01:10:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords invertibility
interval translation maps
syndetic recurrence
interval exchange maps
37E10
invariant measure
37A05
37E05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1851-ea50eb029486640c2b3e617471793066211e69883b6870b78c69f00b30ffeb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3219311366
PQPubID 2044393
PageCount 10
ParticipantIDs proquest_journals_3219311366
crossref_primary_10_1134_S1995080224606891
springer_journals_10_1134_S1995080224606891
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References H. Bruin (8208_CR2) 2007; 22
A. Goetz (8208_CR9) 1999; 19
J. Buzzi (8208_CR6) 2004; 24
M. Boshernitzan (8208_CR1) 1995; 15
A. Katok (8208_CR11) 1997
H. Suzuki (8208_CR17) 2005; 13
H. Bruin (8208_CR4) 2003; 137
Z. Chen (8208_CR7) 2010; 14
8208_CR13
8208_CR12
H. Bruin (8208_CR3) 2012; 32
D. Volk (8208_CR19) 2014; 34
8208_CR21
8208_CR20
A. Goetz (8208_CR10) 2000; 44
X. Fu (8208_CR8) 2007; 37
S. Kryzhevich (8208_CR14) 2021; 10
B. Pires (8208_CR15) 2016; 354
8208_CR18
J. Buzzi (8208_CR5) 2001; 21
J. Schmeling (8208_CR16) 1998
References_xml – volume: 137
  start-page: 125
  year: 2003
  ident: 8208_CR4
  publication-title: Israel J. Math.
  doi: 10.1007/BF02785958
– volume-title: Introduction to the Modern Theory of Dynamical Systems
  year: 1997
  ident: 8208_CR11
– volume: 354
  start-page: 717
  year: 2016
  ident: 8208_CR15
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2016.05.002
– volume: 13
  start-page: 515
  year: 2005
  ident: 8208_CR17
  publication-title: Discr. Contin. Dyn. Syst.
  doi: 10.3934/dcds.2005.13.515
– volume: 10
  start-page: 80
  year: 2021
  ident: 8208_CR14
  publication-title: Axioms
  doi: 10.3390/axioms10020080
– ident: 8208_CR13
  doi: 10.1051/mmnp/2019041
– volume: 24
  start-page: 383
  year: 2004
  ident: 8208_CR6
  publication-title: Ergod. Theory Dyn. Syst.
  doi: 10.1017/S0143385703000488
– volume: 21
  start-page: 1371
  year: 2001
  ident: 8208_CR5
  publication-title: Ergod. Theory Dyn. Syst.
  doi: 10.1017/S0143385701001651
– ident: 8208_CR12
  doi: 10.1007/978-1-4612-4190-4
– volume: 15
  start-page: 821
  year: 1995
  ident: 8208_CR1
  publication-title: Ergod. Theory Dyn. Syst.
  doi: 10.1017/S0143385700009652
– volume: 22
  start-page: 11
  year: 2007
  ident: 8208_CR2
  publication-title: Dyn. Syst.
  doi: 10.1080/14689360601028084
– volume: 14
  start-page: 174
  year: 2010
  ident: 8208_CR7
  publication-title: Engl. Ed.
– ident: 8208_CR20
– ident: 8208_CR21
– ident: 8208_CR18
– volume: 37
  start-page: 285
  year: 2007
  ident: 8208_CR8
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.06.033
– volume: 19
  start-page: 1485
  year: 1999
  ident: 8208_CR9
  publication-title: Ergod. Theory Dyn. Syst.
  doi: 10.1017/S0143385799151964
– volume: 34
  start-page: 2307
  year: 2014
  ident: 8208_CR19
  publication-title: Discr. Contin. Dyn. Syst.
  doi: 10.3934/dcds.2014.34.2307
– volume: 32
  start-page: 4133
  year: 2012
  ident: 8208_CR3
  publication-title: Discr. Contin. Dyn. Syst.
  doi: 10.3934/dcds.2012.32.4133
– volume: 44
  start-page: 465
  year: 2000
  ident: 8208_CR10
  publication-title: Illinois J. Math.
  doi: 10.1215/ijm/1256060408
– volume-title: Dynamical Systems (Luminy-Marseille)
  year: 1998
  ident: 8208_CR16
SSID ssj0022666
Score 2.3133218
Snippet In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 901
SubjectTerms Algebra
Analysis
Geometry
Invariants
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Title On the Invertibility and Structural Properties of Interval Translation Maps
URI https://link.springer.com/article/10.1134/S1995080224606891
https://www.proquest.com/docview/3219311366
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xcNGDv40okh48aYal7Up3BAMSCWgCJnha1q29mAzC8KB_vW23YUQ9cFy2NNvba7_Xvvd9D-BaSKJ1EjEPY809FhPfkxL7HjdQHASRpDSxfOfRmA9e2OPMnxU87qysdi9Tkm6lzvuOsLuJJRM7ZigzQbewjPWqCT8wqUC18_A67K33WQZzHKnIkY8FJkUy889BfsLRd4y5kRZ1aNM_gGn5nnmRyVvzfSWb8eeGhOOWH3II-0X0iTq5uxzBjkqPYW-0lm7NTmD4lCJziawAx3KV185-oChN0MRJzVqZDvRsj_CXVosVzTVyp4rGY5EDvry4Do2iRXYK035vej_wio4LXmxwu-WpyMdKYhIwwTnDMZFUmRDHAJiZxlYrvtVSPBCCSm7muWyLmAcaY0mx1kq26RlU0nmqzgExoYgQSaAs-ZarQHJCtGgnZgPT4joRNbgp7R4ucl2N0O1HKAt_GagG9fLPhMUUy0Jq1lpqO9LwGtyWhv6-_e9gF1s9fQm7xHb8dXXadagYS6srE4asZMO4Xb_bHTcK9_sCF1rQ-w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hdgAGvhGFAh6YQCmO7brOWKFCoR8gtUhliuLEXpDSqi0D_HpsJ2lFgaFjlMhKLrbfne_eO4ArIYnWScQ8jDX3WEzqnpS47nEDxUEQSUoTy3fu9Xn7lT2N6qOcxz0rqt2LlKTbqbO-I-x2YMnEjhnKjNMtLGO9zEwIzkpQbj68dVqLOMtgjiMVOfKxwCRPZv45yE84WvqYK2lRhzb3uzAs3jMrMnmvfcxlLf5akXBc80P2YCf3PlEzmy77sKHSA9juLaRbZ4fQeU6RuURWgGM6z2pnP1GUJmjgpGatTAd6sUf4U6vFisYauVNFM2ORA76suA71osnsCIb3reFd28s7LnixwW3fU1EdK4lJwATnDMdEUmVcHANgZhlbrXjfVzwQgkpu1rlsiJgHGmNJsdZKNugxlNJxqk4AMaGIEEmgLPmWq0ByQrRoJCaA8blORAWuC7uHk0xXI3TxCGXhLwNVoFr8mTBfYrOQmr2W2o40vAI3haGXt_8d7HStpy9hsz3sdcPuY79zBlvEdv91NdtVKBmrq3PjkszlRT4FvwF9vtJu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4xkBg9-NuIovbgSTMpbSndkSiIIkgCJnqa69ZeTAYBPOhfb9ttEFEPxuOypdle233v9b3vewBnQhKt45B5GGvusYjUPClxzeMGin0_lJTGlu_c7fH2I7t7qj1lfU6nebV7npJMOQ1WpSmZVcaxznqQsMrAEosdS5QZB1xY9nqRWW32AhQbN8-d5jzmMvjjCEaOiCwwyRKbPw7yFZoW_uZSitQhT2sTXvJ3TgtOXi_fZvIy-liSc_zHR23BRuaVoka6jLZhRSU7sN6dS7pOd6HzkCBziawwx2SW1tS-ozCJ0cBJ0Fr5DtS3R_sTq9GKRhq500azkpEDxLToDnXD8XQPhq3m8KrtZZ0YvMjgedVTYQ0riYnPBOcMR0RSZVwfA2xme1sN-WpVcV8IKrnZ_7IuIu5rjCXFWitZp_tQSEaJOgDEhCJCxL6ypFyufMkJ0aIem8CmynUsSnCez0EwTvU2AhenUBZ8M1AJyvksBdnWmwbU_IOp7VTDS3CRG31x-9fBDv_09Cms9q9bwf1tr3MEa8Q2BXal3GUoGKOrY-OpzORJtho_AbMw21I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Invertibility+and+Structural+Properties+of+Interval+Translation+Maps&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Tajbakhsh%2C+Khosro&rft.au=Yaghmaeian%2C+Reza&rft.date=2025-02-01&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=2&rft.spage=901&rft.epage=910&rft_id=info:doi/10.1134%2FS1995080224606891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1995080224606891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon