On the Invertibility and Structural Properties of Interval Translation Maps
In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its invariant measure. This result has far-reaching consequences, as it implies that ITMs reduce to Interval Exchange Maps (IEM) in some cases. Wh...
Saved in:
Published in | Lobachevskii journal of mathematics Vol. 46; no. 2; pp. 901 - 910 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1995-0802 1818-9962 |
DOI | 10.1134/S1995080224606891 |
Cover
Loading…
Abstract | In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its invariant measure. This result has far-reaching consequences, as it implies that ITMs reduce to Interval Exchange Maps (IEM) in some cases. While previous work has noted that the support of the invariant measure may sometimes form a Cantor set, we are able to conclude that every ITM is indeed invertible almost everywhere on its support. This discovery extends the understanding of ITMs and their structural properties, providing a deeper insight into the behavior of these dynamical systems. Additionally, we investigate several properties of ITMs, contributing to a deeper understanding of their structural properties. |
---|---|
AbstractList | In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its invariant measure. This result has far-reaching consequences, as it implies that ITMs reduce to Interval Exchange Maps (IEM) in some cases. While previous work has noted that the support of the invariant measure may sometimes form a Cantor set, we are able to conclude that every ITM is indeed invertible almost everywhere on its support. This discovery extends the understanding of ITMs and their structural properties, providing a deeper insight into the behavior of these dynamical systems. Additionally, we investigate several properties of ITMs, contributing to a deeper understanding of their structural properties. |
Author | Tajbakhsh, Khosro Yaghmaeian, Reza |
Author_xml | – sequence: 1 givenname: Khosro surname: Tajbakhsh fullname: Tajbakhsh, Khosro email: khtajbakhsh@modares.ac.ir organization: Faculty ofMathematical Sciences, TarbiatModares University – sequence: 2 givenname: Reza surname: Yaghmaeian fullname: Yaghmaeian, Reza email: reza.yaghmaeian@modares.ac.ir organization: Faculty ofMathematical Sciences, TarbiatModares University |
BookMark | eNp1kEFLAzEQhYNUsK3-AG8Bz6uZZDubHKWoLVYqtPclWbO6Zc2uSbbQf29KBQ_iaYZ533sDb0JGrnOWkGtgtwAiv9uAUjMmGec5MpQKzsgYJMhMKeSjtCc5O-oXZBLCjiUQEcfkee1o_LB06fbWx8Y0bRMPVLs3uol-qOLgdUtffdcfVRtoVyc0Wr9P563XLrQ6Np2jL7oPl-S81m2wVz9zSraPD9v5Ilutn5bz-1VWgZxBZvWMWcO4yiVizipuhEUo8gIKJRgiB7CopBQGZcFMIStUNWNGsLq2phBTcnOK7X33NdgQy103eJc-loKDEqkPxETBiap8F4K3ddn75lP7QwmsPFZW_qksefjJExLr3q3_Tf7f9A2h9G2f |
Cites_doi | 10.1007/BF02785958 10.1016/j.crma.2016.05.002 10.3934/dcds.2005.13.515 10.3390/axioms10020080 10.1051/mmnp/2019041 10.1017/S0143385703000488 10.1017/S0143385701001651 10.1007/978-1-4612-4190-4 10.1017/S0143385700009652 10.1080/14689360601028084 10.1016/j.physleta.2007.06.033 10.1017/S0143385799151964 10.3934/dcds.2014.34.2307 10.3934/dcds.2012.32.4133 10.1215/ijm/1256060408 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1995080224606891 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1818-9962 |
EndPage | 910 |
ExternalDocumentID | 10_1134_S1995080224606891 |
GroupedDBID | -Y2 -~9 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB YLTOR ZMTXR ~A9 AAYXX CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c1851-ea50eb029486640c2b3e617471793066211e69883b6870b78c69f00b30ffeb73 |
IEDL.DBID | AGYKE |
ISSN | 1995-0802 |
IngestDate | Fri Jul 25 09:02:16 EDT 2025 Thu Jul 03 08:35:15 EDT 2025 Tue Jun 17 01:10:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | invertibility interval translation maps syndetic recurrence interval exchange maps 37E10 invariant measure 37A05 37E05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1851-ea50eb029486640c2b3e617471793066211e69883b6870b78c69f00b30ffeb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3219311366 |
PQPubID | 2044393 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3219311366 crossref_primary_10_1134_S1995080224606891 springer_journals_10_1134_S1995080224606891 |
PublicationCentury | 2000 |
PublicationDate | 20250200 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Lobachevskii journal of mathematics |
PublicationTitleAbbrev | Lobachevskii J Math |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | H. Bruin (8208_CR2) 2007; 22 A. Goetz (8208_CR9) 1999; 19 J. Buzzi (8208_CR6) 2004; 24 M. Boshernitzan (8208_CR1) 1995; 15 A. Katok (8208_CR11) 1997 H. Suzuki (8208_CR17) 2005; 13 H. Bruin (8208_CR4) 2003; 137 Z. Chen (8208_CR7) 2010; 14 8208_CR13 8208_CR12 H. Bruin (8208_CR3) 2012; 32 D. Volk (8208_CR19) 2014; 34 8208_CR21 8208_CR20 A. Goetz (8208_CR10) 2000; 44 X. Fu (8208_CR8) 2007; 37 S. Kryzhevich (8208_CR14) 2021; 10 B. Pires (8208_CR15) 2016; 354 8208_CR18 J. Buzzi (8208_CR5) 2001; 21 J. Schmeling (8208_CR16) 1998 |
References_xml | – volume: 137 start-page: 125 year: 2003 ident: 8208_CR4 publication-title: Israel J. Math. doi: 10.1007/BF02785958 – volume-title: Introduction to the Modern Theory of Dynamical Systems year: 1997 ident: 8208_CR11 – volume: 354 start-page: 717 year: 2016 ident: 8208_CR15 publication-title: C. R. Math. doi: 10.1016/j.crma.2016.05.002 – volume: 13 start-page: 515 year: 2005 ident: 8208_CR17 publication-title: Discr. Contin. Dyn. Syst. doi: 10.3934/dcds.2005.13.515 – volume: 10 start-page: 80 year: 2021 ident: 8208_CR14 publication-title: Axioms doi: 10.3390/axioms10020080 – ident: 8208_CR13 doi: 10.1051/mmnp/2019041 – volume: 24 start-page: 383 year: 2004 ident: 8208_CR6 publication-title: Ergod. Theory Dyn. Syst. doi: 10.1017/S0143385703000488 – volume: 21 start-page: 1371 year: 2001 ident: 8208_CR5 publication-title: Ergod. Theory Dyn. Syst. doi: 10.1017/S0143385701001651 – ident: 8208_CR12 doi: 10.1007/978-1-4612-4190-4 – volume: 15 start-page: 821 year: 1995 ident: 8208_CR1 publication-title: Ergod. Theory Dyn. Syst. doi: 10.1017/S0143385700009652 – volume: 22 start-page: 11 year: 2007 ident: 8208_CR2 publication-title: Dyn. Syst. doi: 10.1080/14689360601028084 – volume: 14 start-page: 174 year: 2010 ident: 8208_CR7 publication-title: Engl. Ed. – ident: 8208_CR20 – ident: 8208_CR21 – ident: 8208_CR18 – volume: 37 start-page: 285 year: 2007 ident: 8208_CR8 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.06.033 – volume: 19 start-page: 1485 year: 1999 ident: 8208_CR9 publication-title: Ergod. Theory Dyn. Syst. doi: 10.1017/S0143385799151964 – volume: 34 start-page: 2307 year: 2014 ident: 8208_CR19 publication-title: Discr. Contin. Dyn. Syst. doi: 10.3934/dcds.2014.34.2307 – volume: 32 start-page: 4133 year: 2012 ident: 8208_CR3 publication-title: Discr. Contin. Dyn. Syst. doi: 10.3934/dcds.2012.32.4133 – volume: 44 start-page: 465 year: 2000 ident: 8208_CR10 publication-title: Illinois J. Math. doi: 10.1215/ijm/1256060408 – volume-title: Dynamical Systems (Luminy-Marseille) year: 1998 ident: 8208_CR16 |
SSID | ssj0022666 |
Score | 2.3133218 |
Snippet | In this paper, we present a significant advancement by proving that each Interval Translation Map (ITM) is invertible almost everywhere on the support of its... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 901 |
SubjectTerms | Algebra Analysis Geometry Invariants Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
Title | On the Invertibility and Structural Properties of Interval Translation Maps |
URI | https://link.springer.com/article/10.1134/S1995080224606891 https://www.proquest.com/docview/3219311366 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xcNGDv40okh48aYal7Up3BAMSCWgCJnha1q29mAzC8KB_vW23YUQ9cFy2NNvba7_Xvvd9D-BaSKJ1EjEPY809FhPfkxL7HjdQHASRpDSxfOfRmA9e2OPMnxU87qysdi9Tkm6lzvuOsLuJJRM7ZigzQbewjPWqCT8wqUC18_A67K33WQZzHKnIkY8FJkUy889BfsLRd4y5kRZ1aNM_gGn5nnmRyVvzfSWb8eeGhOOWH3II-0X0iTq5uxzBjkqPYW-0lm7NTmD4lCJziawAx3KV185-oChN0MRJzVqZDvRsj_CXVosVzTVyp4rGY5EDvry4Do2iRXYK035vej_wio4LXmxwu-WpyMdKYhIwwTnDMZFUmRDHAJiZxlYrvtVSPBCCSm7muWyLmAcaY0mx1kq26RlU0nmqzgExoYgQSaAs-ZarQHJCtGgnZgPT4joRNbgp7R4ucl2N0O1HKAt_GagG9fLPhMUUy0Jq1lpqO9LwGtyWhv6-_e9gF1s9fQm7xHb8dXXadagYS6srE4asZMO4Xb_bHTcK9_sCF1rQ-w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hdgAGvhGFAh6YQCmO7brOWKFCoR8gtUhliuLEXpDSqi0D_HpsJ2lFgaFjlMhKLrbfne_eO4ArIYnWScQ8jDX3WEzqnpS47nEDxUEQSUoTy3fu9Xn7lT2N6qOcxz0rqt2LlKTbqbO-I-x2YMnEjhnKjNMtLGO9zEwIzkpQbj68dVqLOMtgjiMVOfKxwCRPZv45yE84WvqYK2lRhzb3uzAs3jMrMnmvfcxlLf5akXBc80P2YCf3PlEzmy77sKHSA9juLaRbZ4fQeU6RuURWgGM6z2pnP1GUJmjgpGatTAd6sUf4U6vFisYauVNFM2ORA76suA71osnsCIb3reFd28s7LnixwW3fU1EdK4lJwATnDMdEUmVcHANgZhlbrXjfVzwQgkpu1rlsiJgHGmNJsdZKNugxlNJxqk4AMaGIEEmgLPmWq0ByQrRoJCaA8blORAWuC7uHk0xXI3TxCGXhLwNVoFr8mTBfYrOQmr2W2o40vAI3haGXt_8d7HStpy9hsz3sdcPuY79zBlvEdv91NdtVKBmrq3PjkszlRT4FvwF9vtJu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4xkBg9-NuIovbgSTMpbSndkSiIIkgCJnqa69ZeTAYBPOhfb9ttEFEPxuOypdle233v9b3vewBnQhKt45B5GGvusYjUPClxzeMGin0_lJTGlu_c7fH2I7t7qj1lfU6nebV7npJMOQ1WpSmZVcaxznqQsMrAEosdS5QZB1xY9nqRWW32AhQbN8-d5jzmMvjjCEaOiCwwyRKbPw7yFZoW_uZSitQhT2sTXvJ3TgtOXi_fZvIy-liSc_zHR23BRuaVoka6jLZhRSU7sN6dS7pOd6HzkCBziawwx2SW1tS-ozCJ0cBJ0Fr5DtS3R_sTq9GKRhq500azkpEDxLToDnXD8XQPhq3m8KrtZZ0YvMjgedVTYQ0riYnPBOcMR0RSZVwfA2xme1sN-WpVcV8IKrnZ_7IuIu5rjCXFWitZp_tQSEaJOgDEhCJCxL6ypFyufMkJ0aIem8CmynUsSnCez0EwTvU2AhenUBZ8M1AJyvksBdnWmwbU_IOp7VTDS3CRG31x-9fBDv_09Cms9q9bwf1tr3MEa8Q2BXal3GUoGKOrY-OpzORJtho_AbMw21I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Invertibility+and+Structural+Properties+of+Interval+Translation+Maps&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Tajbakhsh%2C+Khosro&rft.au=Yaghmaeian%2C+Reza&rft.date=2025-02-01&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=2&rft.spage=901&rft.epage=910&rft_id=info:doi/10.1134%2FS1995080224606891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1995080224606891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |