Forecasting Groundwater Level by Characterizing Multiple Spatial Dependencies of Environmental Factors Using Graph‐Based Deep Learning

Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared enviro...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 2
Main Authors Wu, Yinghan, Mei, Gang, Shao, Kaixuan, Xu, Nengxiong, Peng, Jianbing
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems. Plain Language Summary The groundwater level variations between different monitoring wells within the same region exhibit correlations or interactions, which can be represented as complex spatial dependencies. These dependencies are influenced by various environmental factors, such as hydrological conditions, meteorology, and human activities. Characterizing multiple spatial dependencies provides significant value in capturing complex connections within groundwater systems. However, this advantage does not always lead to substantially improved prediction performance. This study captures multiple forms of spatial dependencies (e.g., distance and correlation) of groundwater and integrates them into a temporal graph convolutional network for regional groundwater level forecasting. The model adaptively captures the spatial dependencies between nodes during training based on a predefined graph structure and updates the graph using a weighted averaging mechanism. Comparative analysis with single spatial dependency models shows that the updated graph structure reflects more reasonable spatial dependencies, consistent with the temporal dynamics of observed data. This study contributes to understanding and forecasting complex spatial dependency structures in regional monitoring networks of geosciences. Key Points A graph neural network characterizes multiple spatial dependencies of environmental factors for groundwater level forecasting Characterizing spatial dependencies aids in understanding groundwater dynamics, but its effectiveness depends on spatial interactions The latent associations within the dynamic time‐series of groundwater levels can be uncovered
AbstractList Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems. Plain Language Summary The groundwater level variations between different monitoring wells within the same region exhibit correlations or interactions, which can be represented as complex spatial dependencies. These dependencies are influenced by various environmental factors, such as hydrological conditions, meteorology, and human activities. Characterizing multiple spatial dependencies provides significant value in capturing complex connections within groundwater systems. However, this advantage does not always lead to substantially improved prediction performance. This study captures multiple forms of spatial dependencies (e.g., distance and correlation) of groundwater and integrates them into a temporal graph convolutional network for regional groundwater level forecasting. The model adaptively captures the spatial dependencies between nodes during training based on a predefined graph structure and updates the graph using a weighted averaging mechanism. Comparative analysis with single spatial dependency models shows that the updated graph structure reflects more reasonable spatial dependencies, consistent with the temporal dynamics of observed data. This study contributes to understanding and forecasting complex spatial dependency structures in regional monitoring networks of geosciences. Key Points A graph neural network characterizes multiple spatial dependencies of environmental factors for groundwater level forecasting Characterizing spatial dependencies aids in understanding groundwater dynamics, but its effectiveness depends on spatial interactions The latent associations within the dynamic time‐series of groundwater levels can be uncovered
Abstract Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems.
Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems. The groundwater level variations between different monitoring wells within the same region exhibit correlations or interactions, which can be represented as complex spatial dependencies. These dependencies are influenced by various environmental factors, such as hydrological conditions, meteorology, and human activities. Characterizing multiple spatial dependencies provides significant value in capturing complex connections within groundwater systems. However, this advantage does not always lead to substantially improved prediction performance. This study captures multiple forms of spatial dependencies (e.g., distance and correlation) of groundwater and integrates them into a temporal graph convolutional network for regional groundwater level forecasting. The model adaptively captures the spatial dependencies between nodes during training based on a predefined graph structure and updates the graph using a weighted averaging mechanism. Comparative analysis with single spatial dependency models shows that the updated graph structure reflects more reasonable spatial dependencies, consistent with the temporal dynamics of observed data. This study contributes to understanding and forecasting complex spatial dependency structures in regional monitoring networks of geosciences. A graph neural network characterizes multiple spatial dependencies of environmental factors for groundwater level forecasting Characterizing spatial dependencies aids in understanding groundwater dynamics, but its effectiveness depends on spatial interactions The latent associations within the dynamic time‐series of groundwater levels can be uncovered
Author Peng, Jianbing
Wu, Yinghan
Xu, Nengxiong
Mei, Gang
Shao, Kaixuan
Author_xml – sequence: 1
  givenname: Yinghan
  orcidid: 0009-0008-1475-1741
  surname: Wu
  fullname: Wu, Yinghan
  organization: China University of Geosciences
– sequence: 2
  givenname: Gang
  orcidid: 0000-0003-0026-5423
  surname: Mei
  fullname: Mei, Gang
  email: gang.mei@cugb.edu.cn
  organization: China University of Geosciences
– sequence: 3
  givenname: Kaixuan
  orcidid: 0009-0002-6411-2450
  surname: Shao
  fullname: Shao, Kaixuan
  organization: China University of Geosciences
– sequence: 4
  givenname: Nengxiong
  surname: Xu
  fullname: Xu, Nengxiong
  organization: China University of Geosciences
– sequence: 5
  givenname: Jianbing
  orcidid: 0000-0002-3263-8872
  surname: Peng
  fullname: Peng, Jianbing
  organization: Chang'an University
BookMark eNp9kcFO3DAQhq0KpFLg1gfwA3TbsRM79rHdsgtoq0ptOUcTZwJGwY7sAFpOPXLkGfskNd2q4tTT_Jr_-_85zBu2F2Igxt4KeC9A2g8SZH1-CgBKwit2IK2tFkoK2HuhX7PjnK8LU1USDDQH7HEVEznMsw-XfJ3ibejvcabEN3RHI--2fHmFCV1Z-Ydn5svtOPtpJP59wtnjyD_TRKGn4DxlHgd-Eu58iuGGwlzcVYnGlPlF3h3A6erXz6dPmKkvSZrKHUyheEdsf8Ax0_HfecguVic_lqeLzdf12fLjZuGEUbBwtamhN9hQo3qNoOygrZRKSyQS4KzTpI1Fp52tSRWYdOMMatsMsnZYHbKzXW8f8bqdkr_BtG0j-vbPIqbLFtPs3UgtmY6sUx2R07XoXNfXHTRWilqQaowpXe92XS7FnBMN__oEtM9PaV8-peDVDr_3I23_y7bn62-iKRKq35PpkhA
Cites_doi 10.1029/2020GL089829
10.1016/j.scitotenv.2018.07.269
10.1029/2021WR030884
10.1016/j.eswa.2024.125379
10.12029/gc20210409
10.1007/s12665‐019‐8474‐y
10.3390/w14193068
10.1007/s11269‐014‐0810‐0
10.1016/j.scitotenv.2019.05.236
10.1016/j.jhydrol.2024.130667
10.1016/j.marpetgeo.2023.106168
10.1038/s43017‐022‐00378‐6
10.1515/jwld‐2017‐0012
10.1038/s43017‐024‐00519‐z
10.1039/9781847558039
10.1038/s41558‐018‐0386‐4
10.1155/2015/742138
10.1029/2018WR023886
10.1016/j.jhydrol.2022.127630
10.2166/hydro.2020.095
10.1016/j.jhydrol.2023.130079
10.1007/s11269‐010‐9628‐6
10.1016/j.jhydrol.2023.129962
10.1016/j.jhydrol.2022.128262
10.1109/72.279181
10.1623/hysj.48.3.349.45288
10.48550/arXiv.1406.1078
10.1109/ACCESS.2020.2982433
10.1029/2004WR003800
10.1016/j.agwat.2020.106649
10.1029/2022EA002411
10.1029/WR019i003p00779
10.1029/2021WR030394
10.1007/s12040‐014‐0478‐0
10.1007/s10661‐006‐9361‐z
10.1029/2018WR022643
10.1038/nature20584
10.1080/19942060.2022.2104928
10.1038/s43017‐023‐00450‐9
10.1016/j.envsoft.2005.05.001
10.1038/s41467‐021‐26107‐z
10.1038/s41467‐020‐17581‐y
10.1007/978-3-540-74048-3_4
10.1038/s41598‐023‐32548‐x
10.1016/j.ecolind.2023.110782
10.1007/s12665‐010‐0617‐0
10.1016/j.acha.2010.04.005
10.1029/2024JH000520
10.1007/s11442‐009‐0175‐0
10.48550/arXiv.1609.02907
10.5194/hess‐26‐5163‐2022
10.5194/hess‐16‐3699‐2012
10.1007/978-3-319-10247-4
10.1016/j.cageo.2016.03.002
10.1088/1748‐9326/ab1b7d
10.1109/TITS.2019.2935152
10.1002/2016wr019933
10.1016/j.hydroa.2020.100071
10.1038/nclimate1744
10.1016/j.aqpro.2015.02.089
10.1109/TKDE.2006.46
10.1002/2016WR019856
10.1016/j.jhydrol.2018.05.019
10.1198/016214506000001437
10.1016/j.jhydrol.2020.125776
10.1016/j.neucom.2014.05.026
10.12029/gc20210301
10.1002/2015WR017806
10.1016/j.ijheatmasstransfer.2023.125149
10.1016/j.jhydrol.2018.12.037
10.1029/2020JG005689
10.1007/s10489‐022‐03716‐9
10.1002/hyp.7129
10.3390/environments10090157
10.5194/hess‐25‐1671‐2021
10.1016/j.isprsjprs.2025.01.006
10.1007/s13201‐018‐0742‐6
10.1016/j.advwatres.2024.104797
10.1002/hyp.9732
10.1029/2022JB024401
10.1111/j.1752‐1688.2009.00335.x
10.1162/neco.1997.9.8.1735
10.1007/s10040‐023‐02745‐z
10.1002/hyp.5881
10.1007/s11269‐009‐9527‐x
10.1016/j.jhydrol.2022.128792
10.1016/j.earscirev.2015.02.002
10.1007/s13762‐022‐04553‐6
10.1007/s10706‐018‐0713‐6
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000520
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e8be9c5beec641bcbd4b0792141e5788
10_1029_2024JH000520
JGR170050
Genre researchArticle
GrantInformation_xml – fundername: Ministry of Science and Technology of China Technology Innovation Special Project
  funderid: 2022XAGG0400
– fundername: National Science Foundation of China
  funderid: 42230709; 42277161
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
AAYXX
CITATION
WIN
ID FETCH-LOGICAL-c1850-c4840d8a7e75d6a059f6922562aee10c9c6e689ac6c94e5840e67c8a697f24ca3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Wed Aug 27 01:30:14 EDT 2025
Thu Jul 10 07:41:43 EDT 2025
Sun Jul 06 04:45:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1850-c4840d8a7e75d6a059f6922562aee10c9c6e689ac6c94e5840e67c8a697f24ca3
ORCID 0009-0002-6411-2450
0000-0003-0026-5423
0009-0008-1475-1741
0000-0002-3263-8872
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000520
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_e8be9c5beec641bcbd4b0792141e5788
crossref_primary_10_1029_2024JH000520
wiley_primary_10_1029_2024JH000520_JGR170050
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 25
2009; 45
2018; 562
2007; 102
2013; 3
2022b; 127
1983; 19
2023; 4
2019; 55
2021; 126
2015; 72
2015; 143
2019; 14
2016; 32
2016; 540
2024; 32
2022a; 53
2024; 222
2012; 16
2022; 616
2023; 625
2020; 11
2025
2014; 28
2020; 245
2019; 646
2022; 612
1997; 9
2019; 684
2010; 62
2022b; 608
2023; 20
2020; 8
1856; 1
2018; 8
2010; 24
2016; 90
2024; 5
2000
2006; 21
2003; 48
2020; 47
2008; 22
2024; 631
2011; 25
2009; 19
2024; 193
2014; 123
2022a; 26
2023; 10
2019; 9
2021; 48
2007; 129
2023; 13
2015; 4
2010
2019; 78
2019; 37
2011; 30
2007
2016; 52
2006; 18
2025; 259
2021; 57
2017; 53
2005; 19
2006; 42
2021; 12
2021; 11
2025; 220
2023; 150
2022; 9
2023; 154
2022; 14
2018
2022; 58
2016
2015
2014
2020; 22
2020; 21
2020; 597
2018; 54
1994; 5
2022; 16
1990; 6
2014; 145
2019; 572
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Darcy H. (e_1_2_8_16_1) 1856
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Cleveland R. B. (e_1_2_8_14_1) 1990; 6
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
Tavenard R. (e_1_2_8_67_1) 2020; 21
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Fetter C. W. (e_1_2_8_23_1) 2018
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_96_1
Seabold S. (e_1_2_8_55_1) 2010
Winter T. C. (e_1_2_8_78_1) 2000
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 220
  start-page: 621
  year: 2025
  end-page: 636
  article-title: Learning transferable land cover semantics for open vocabulary interactions with remote sensing images
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 28
  start-page: 5433
  issue: 15
  year: 2014
  end-page: 5446
  article-title: Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro‐fuzzy inference system (ANFIS)
  publication-title: Water Resources Management
– volume: 13
  issue: 1
  year: 2023
  article-title: A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features
  publication-title: Scientific Reports
– volume: 54
  start-page: 8558
  issue: 11
  year: 2018
  end-page: 8593
  article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists
  publication-title: Water Resources Research
– volume: 143
  start-page: 147
  year: 2015
  end-page: 160
  article-title: Graph theory in the geosciences
  publication-title: Earth‐Science Reviews
– volume: 21
  start-page: 991
  issue: 7
  year: 2006
  end-page: 1000
  article-title: Evaluation and optimisation of groundwater observation networks using the kriging methodology
  publication-title: Environmental Modelling and Software
– volume: 26
  start-page: 5163
  issue: 19
  year: 2022a
  end-page: 5184
  article-title: A graph neural network (GNN) approach to basin‐scale river network learning: The role of physics‐based connectivity and data fusion
  publication-title: Hydrology and Earth System Sciences
– volume: 126
  issue: 10
  year: 2021
  article-title: Seasonal river export of nitrogen to Guanting and Baiyangdian Lakes in the Hai He Basin
  publication-title: Journal of Geophysical Research: Biogeosciences
– year: 2016
  article-title: Semi‐supervised classification with graph convolutional networks
  publication-title: arXiv preprint arXiv:1609.02907
– start-page: 92
  year: 2010
  end-page: 96
– volume: 55
  start-page: 5784
  issue: 7
  year: 2019
  end-page: 5806
  article-title: From points to patterns: Using groundwater time series clustering to investigate subsurface hydrological connectivity and runoff source area dynamics
  publication-title: Water Resources Research
– volume: 4
  start-page: 552
  issue: 8
  year: 2023
  end-page: 567
  article-title: Differentiable modelling to unify machine learning and physical models for geosciences
  publication-title: Nature Reviews Earth and Environment
– volume: 9
  start-page: 137
  issue: 2
  year: 2019
  end-page: 141
  article-title: Global patterns and dynamics of climate–Groundwater interactions
  publication-title: Nature Climate Change
– volume: 57
  issue: 12
  year: 2021
  article-title: Explore spatio‐temporal learning of large sample hydrology using graph neural networks
  publication-title: Water Resources Research
– volume: 616
  year: 2022
  article-title: Graph neural network for groundwater level forecasting
  publication-title: Journal of Hydrology
– start-page: 69
  year: 2007
  end-page: 84
– volume: 28
  start-page: 1797
  issue: 4
  year: 2014
  end-page: 1808
  article-title: Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain
  publication-title: Hydrological Processes
– volume: 5
  start-page: 312
  issue: 4
  year: 2024
  end-page: 328
  article-title: Arsenic and other geogenic contaminants in global groundwater
  publication-title: Nature Reviews Earth and Environment
– volume: 18
  start-page: 304
  year: 2006
  end-page: 319
  article-title: Enhancing data analysis with noise removal. Knowledge and Data Engineering
  publication-title: IEEE Transactions on
– volume: 53
  start-page: 3878
  issue: 5
  year: 2017
  end-page: 3895
  article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the United States
  publication-title: Water Resources Research
– volume: 19
  start-page: 779
  issue: 3
  year: 1983
  end-page: 790
  article-title: Identifying sources of groundwater pollution: An optimization approach
  publication-title: Water Resources Research
– volume: 62
  start-page: 1301
  issue: 6
  year: 2010
  end-page: 1310
  article-title: Comparison of FFNN and ANFIS models for estimating groundwater level
  publication-title: Environmental Earth Sciences
– volume: 52
  start-page: 2074
  issue: 3
  year: 2016
  end-page: 2098
  article-title: Enhancing multiple‐point geostatistical modeling: 1. Graph theory and pattern adjustment
  publication-title: Water Resources Research
– volume: 222
  year: 2024
  article-title: Modeling transient natural convection in heterogeneous porous media with convolutional neural networks
  publication-title: International Journal of Heat and Mass Transfer
– volume: 32
  start-page: 577
  issue: 2
  year: 2024
  end-page: 600
  article-title: Shallow groundwater characterisation and hydrograph classification in the coastal city of ōtautahi/Christchurch, New Zealand
  publication-title: Hydrogeology Journal
– year: 2018
– volume: 47
  issue: 20
  year: 2020
  article-title: A fresh look at variography: Measuring dependence and possible sensitivities across geophysical systems from any given data
  publication-title: Geophysical Research Letters
– volume: 25
  start-page: 1671
  issue: 3
  year: 2021
  end-page: 1687
  article-title: Groundwater level forecasting with artificial neural networks: A comparison of long short‐term memory (LSTM), convolutional neural networks (CNNs), and non‐linear autoregressive networks with exogenous input (NARX)
  publication-title: Hydrology and Earth System Sciences
– volume: 612
  year: 2022
  article-title: Groundwater level prediction with meteorologically sensitive gated recurrent unit (GRU) neural networks
  publication-title: Journal of Hydrology
– volume: 14
  issue: 19
  year: 2022
  article-title: Early warning and joint regulation of water quantity and quality in the Daqing River Basin
  publication-title: Water
– volume: 150
  year: 2023
  article-title: Lithology identification using graph neural network in continental shale oil reservoirs: A case study in Mahu Sag, Junggar Basin, Western China
  publication-title: Marine and Petroleum Geology
– volume: 1
  year: 1856
– volume: 193
  year: 2024
  article-title: Modeling fluid flow in heterogeneous porous media with physics‐informed neural networks: Weighting strategies for the mixed pressure head‐velocity formulation
  publication-title: Advances in Water Resources
– volume: 8
  start-page: 60090
  year: 2020
  end-page: 60100
  article-title: Water level prediction model based on GRU and CNN
  publication-title: IEEE Access
– year: 2014
  article-title: Learning phrase representations using RNN encoder‐decoder for statistical machine translation
  publication-title: arXiv preprint arXiv:1406.1078
– volume: 129
  start-page: 277
  issue: 1–3
  year: 2007
  end-page: 294
  article-title: Geostatistical analysis of spatial and temporal variations of groundwater level
  publication-title: Environmental Monitoring and Assessment
– volume: 8
  start-page: 1
  issue: 5
  year: 2018
  end-page: 12
  article-title: Short‐term prediction of groundwater level using improved random forest regression with a combination of random features
  publication-title: Applied Water Science
– year: 2025
– volume: 608
  year: 2022b
  article-title: Data‐driven models for accurate groundwater level prediction and their practical significance in groundwater management
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 175
  issue: 2
  year: 2009
  end-page: 188
  article-title: Shallow groundwater dynamics in North China Plain
  publication-title: Journal of Geographical Sciences
– volume: 72
  year: 2015
– volume: 37
  start-page: 1661
  issue: 3
  year: 2019
  end-page: 1670
  article-title: Data‐driven modeling of groundwater level with least‐square support vector machine and spatial–temporal analysis
  publication-title: Geotechnical & Geological Engineering
– volume: 42
  start-page: 1
  issue: 2
  year: 2006
  end-page: 11
  article-title: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis
  publication-title: Water Resources Research
– volume: 4
  start-page: 87
  issue: 2
  year: 2023
  end-page: 101
  article-title: Global water resources and the role of groundwater in a resilient water future
  publication-title: Nature Reviews Earth and Environment
– volume: 48
  start-page: 677
  issue: 3
  year: 2021
  end-page: 696
  article-title: Analysis of natural resources and environment eco‐geological conditions in the xiong’an new area
  publication-title: Geology in China
– volume: 127
  issue: 11
  year: 2022b
  article-title: Spatiotemporal graph convolutional networks for earthquake source characterization
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 16
  start-page: 3699
  issue: 10
  year: 2012
  end-page: 3715
  article-title: Hillslope characteristics as controls of subsurface flow variability
  publication-title: Hydrology and Earth System Sciences
– volume: 625
  year: 2023
  article-title: Simulation of spring discharge using graph neural networks at Niangziguan Springs, China
  publication-title: Journal of Hydrology
– volume: 90
  start-page: 144
  year: 2016
  end-page: 155
  article-title: A method to improve the stability and accuracy of ANN‐ and SVM‐based time series models for long‐term groundwater level predictions
  publication-title: Computers and Geosciences
– volume: 572
  start-page: 336
  year: 2019
  end-page: 351
  article-title: A review of the artificial intelligence methods in groundwater level modeling
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 1143
  issue: 4
  year: 2011
  end-page: 1152
  article-title: Artificial neural network (ANN) based modeling for karstic groundwater level simulation
  publication-title: Water Resources Management
– volume: 19
  start-page: 1705
  issue: 8
  year: 2005
  end-page: 1714
  article-title: A framework for broad‐scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider?
  publication-title: Hydrological Processes: International Journal
– volume: 78
  start-page: 1
  year: 2019
  end-page: 15
  article-title: Evaluation of data‐driven models (SVR and ANN) for groundwater‐level prediction in confined and unconfined systems
  publication-title: Environmental Earth Sciences
– volume: 646
  start-page: 1265
  year: 2019
  end-page: 1280
  article-title: Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory
  publication-title: Science of the Total Environment
– volume: 145
  start-page: 324
  year: 2014
  end-page: 335
  article-title: An integrated wavelet‐support vector machine for groundwater level prediction in Visakhapatnam, India
  publication-title: Neurocomputing
– volume: 11
  issue: 1
  year: 2020
  article-title: Divergent effects of climate change on future groundwater availability in key mid‐latitude aquifers
  publication-title: Nature Communications
– volume: 48
  start-page: 1112
  issue: 4
  year: 2021
  end-page: 1126
  article-title: Groundwater resources in xiong’an new area and its exploitation potential
  publication-title: Geology in China
– volume: 53
  start-page: 1
  issue: 6
  year: 2022a
  end-page: 16
  article-title: A method for measuring similarity of time series based on series decomposition and dynamic time warping
  publication-title: Applied Intelligence
– volume: 562
  start-page: 530
  year: 2018
  end-page: 543
  article-title: Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the US glacial aquifer system
  publication-title: Journal of Hydrology
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  end-page: 378
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: Journal of the American Statistical Association
– year: 2000
– year: 2007
  article-title: Groundwater science and policy: An international overview
  publication-title: The Royal Society of Chemistry
– volume: 58
  issue: 2
  year: 2022
  article-title: Human intervention will stabilize groundwater storage across the North China Plain
  publication-title: Water Resources Research
– volume: 259
  year: 2025
  article-title: Incorporating hydrological constraints with deep learning for streamflow prediction
  publication-title: Expert Systems with Applications
– volume: 21
  start-page: 3848
  issue: 9
  year: 2020
  end-page: 3858
  article-title: T‐GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 48
  start-page: 349
  issue: 3
  year: 2003
  end-page: 361
  article-title: Estimation, forecasting and extrapolation of river flows by artificial neural networks
  publication-title: Hydrological Sciences Journal
– volume: 684
  start-page: 136
  year: 2019
  end-page: 154
  article-title: A review of threats to groundwater quality in the anthropocene
  publication-title: Science of the Total Environment
– volume: 10
  issue: 9
  year: 2023
  article-title: Graph‐based deep learning model for forecasting chloride concentration in urban streams to protect salt‐vulnerable areas
  publication-title: Environments
– volume: 625
  year: 2023
  article-title: A new real‐time groundwater level forecasting strategy: Coupling hybrid data‐driven models with remote sensing data
  publication-title: Journal of Hydrology
– volume: 20
  start-page: 10297
  issue: 9
  year: 2023
  end-page: 10312
  article-title: MGC‐LSTM: A deep learning model based on graph convolution of multiple graphs for PM prediction
  publication-title: International journal of Environmental Science and Technology
– volume: 3
  start-page: 322
  issue: 4
  year: 2013
  end-page: 329
  article-title: Ground water and climate change
  publication-title: Nature Climate Change
– volume: 21
  start-page: 1
  issue: 118
  year: 2020
  end-page: 6
  article-title: Tslearn, a machine learning toolkit for time series data
  publication-title: Journal of Machine Learning Research
– volume: 123
  start-page: 1541
  issue: 7
  year: 2014
  end-page: 1566
  article-title: Impact of over‐exploitation on groundwater quality: A case study from WR‐2 watershed, India
  publication-title: Journal of Earth System Science
– volume: 24
  start-page: 1845
  issue: 9
  year: 2010
  end-page: 1865
  article-title: Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
  publication-title: Water Resources Management
– volume: 16
  start-page: 1655
  issue: 1
  year: 2022
  end-page: 1672
  article-title: Time series‐based groundwater level forecasting using gated recurrent unit deep neural networks
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 22
  start-page: 541
  issue: 3
  year: 2020
  end-page: 561
  article-title: Deep learning convolutional neural network in rainfall–runoff modelling
  publication-title: Journal of Hydroinformatics
– volume: 245
  year: 2020
  article-title: A hybrid CNN‐GRU model for predicting soil moisture in maize root zone
  publication-title: Agricultural Water Management
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  end-page: 73
  article-title: STL: A seasonal‐trend decomposition
  publication-title: Journal of Official Statistics
– volume: 631
  year: 2024
  article-title: Data‐driven statistical optimization of a groundwater monitoring network
  publication-title: Journal of Hydrology
– volume: 12
  issue: 1
  year: 2021
  article-title: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling
  publication-title: Nature Communications
– volume: 53
  start-page: 3921
  issue: 5
  year: 2017
  end-page: 3940
  article-title: Groundwater similarity across a watershed derived from time‐warped and flow‐corrected time series
  publication-title: Water Resources Research
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  end-page: 150
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Applied and Computational Harmonic Analysis
– volume: 45
  start-page: 894
  issue: 4
  year: 2009
  end-page: 906
  article-title: GIS‐based spatial precipitation estimation: A comparison of geostatistical approaches
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation MIT‐Press
– volume: 597
  year: 2020
  article-title: Reconstruction of missing groundwater level data by using long short‐term memory (LSTM) deep neural network
  publication-title: Journal of Hydrology
– volume: 22
  start-page: 5054
  issue: 26
  year: 2008
  end-page: 5066
  article-title: An ANN‐based model for spatiotemporal groundwater level forecasting
  publication-title: Hydrological Processes
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  article-title: Learning long‐term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks / A Publication of the IEEE Neural Networks Council
– volume: 14
  issue: 7
  year: 2019
  article-title: How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directions
  publication-title: Environmental Research Letters
– start-page: 1
  year: 2015
  end-page: 13
  article-title: Comparison of groundwater level models based on artificial neural networks and ANFIS
  publication-title: The Scientific World Journal
– volume: 32
  start-page: 103
  issue: 1
  year: 2016
  end-page: 112
  article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
  publication-title: Journal of Water and Land Development
– volume: 9
  issue: 9
  year: 2022
  article-title: A short‐term regional precipitation prediction model based on wind‐improved spatiotemporal convolutional network
  publication-title: Earth and Space Science
– volume: 11
  year: 2021
  article-title: Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers
  publication-title: Journal of Hydrology X
– volume: 540
  start-page: 418
  issue: 7633
  year: 2016
  end-page: 422
  article-title: High‐resolution mapping of global surface water and its long‐term changes
  publication-title: Nature
– volume: 4
  start-page: 693
  year: 2015
  end-page: 699
  article-title: Assessing suitability of GP modeling for groundwater level
  publication-title: Aquatic Procedia
– volume: 154
  year: 2023
  article-title: A long‐term water quality prediction model for marine ranch based on time‐graph convolutional neural network
  publication-title: Ecological Indicators
– ident: e_1_2_8_56_1
  doi: 10.1029/2020GL089829
– ident: e_1_2_8_96_1
  doi: 10.1016/j.scitotenv.2018.07.269
– ident: e_1_2_8_85_1
  doi: 10.1029/2021WR030884
– ident: e_1_2_8_95_1
  doi: 10.1016/j.eswa.2024.125379
– ident: e_1_2_8_29_1
  doi: 10.12029/gc20210409
– ident: e_1_2_8_38_1
  doi: 10.1007/s12665‐019‐8474‐y
– ident: e_1_2_8_11_1
  doi: 10.3390/w14193068
– ident: e_1_2_8_20_1
  doi: 10.1007/s11269‐014‐0810‐0
– ident: e_1_2_8_8_1
  doi: 10.1016/j.scitotenv.2019.05.236
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jhydrol.2024.130667
– ident: e_1_2_8_36_1
  doi: 10.1016/j.marpetgeo.2023.106168
– volume-title: Applied hydrogeology
  year: 2018
  ident: e_1_2_8_23_1
– ident: e_1_2_8_54_1
  doi: 10.1038/s43017‐022‐00378‐6
– ident: e_1_2_8_83_1
  doi: 10.1515/jwld‐2017‐0012
– ident: e_1_2_8_40_1
  doi: 10.1038/s43017‐024‐00519‐z
– ident: e_1_2_8_49_1
  doi: 10.1039/9781847558039
– ident: e_1_2_8_15_1
  doi: 10.1038/s41558‐018‐0386‐4
– ident: e_1_2_8_18_1
  doi: 10.1155/2015/742138
– ident: e_1_2_8_52_1
  doi: 10.1029/2018WR023886
– ident: e_1_2_8_63_1
  doi: 10.1016/j.jhydrol.2022.127630
– ident: e_1_2_8_73_1
  doi: 10.2166/hydro.2020.095
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jhydrol.2023.130079
– ident: e_1_2_8_70_1
  doi: 10.1007/s11269‐010‐9628‐6
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  ident: e_1_2_8_14_1
  article-title: STL: A seasonal‐trend decomposition
  publication-title: Journal of Official Statistics
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jhydrol.2023.129962
– start-page: 92
  volume-title: Proceedings of the Python in Science Conference
  year: 2010
  ident: e_1_2_8_55_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jhydrol.2022.128262
– ident: e_1_2_8_6_1
  doi: 10.1109/72.279181
– ident: e_1_2_8_13_1
  doi: 10.1623/hysj.48.3.349.45288
– ident: e_1_2_8_12_1
  doi: 10.48550/arXiv.1406.1078
– volume-title: Les fontaines publiques de la ville de dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau
  year: 1856
  ident: e_1_2_8_16_1
– ident: e_1_2_8_44_1
  doi: 10.1109/ACCESS.2020.2982433
– ident: e_1_2_8_71_1
  doi: 10.1029/2004WR003800
– ident: e_1_2_8_87_1
  doi: 10.1016/j.agwat.2020.106649
– ident: e_1_2_8_48_1
  doi: 10.1029/2022EA002411
– ident: e_1_2_8_28_1
  doi: 10.1029/WR019i003p00779
– ident: e_1_2_8_60_1
  doi: 10.1029/2021WR030394
– ident: e_1_2_8_47_1
  doi: 10.1007/s12040‐014‐0478‐0
– ident: e_1_2_8_2_1
  doi: 10.1007/s10661‐006‐9361‐z
– ident: e_1_2_8_57_1
  doi: 10.1029/2018WR022643
– ident: e_1_2_8_45_1
  doi: 10.1038/nature20584
– ident: e_1_2_8_34_1
  doi: 10.1080/19942060.2022.2104928
– ident: e_1_2_8_58_1
  doi: 10.1038/s43017‐023‐00450‐9
– ident: e_1_2_8_69_1
  doi: 10.1016/j.envsoft.2005.05.001
– ident: e_1_2_8_72_1
  doi: 10.1038/s41467‐021‐26107‐z
– ident: e_1_2_8_79_1
  doi: 10.1038/s41467‐020‐17581‐y
– ident: e_1_2_8_41_1
  doi: 10.1007/978-3-540-74048-3_4
– ident: e_1_2_8_22_1
  doi: 10.1038/s41598‐023‐32548‐x
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ecolind.2023.110782
– ident: e_1_2_8_59_1
  doi: 10.1007/s12665‐010‐0617‐0
– ident: e_1_2_8_30_1
  doi: 10.1016/j.acha.2010.04.005
– ident: e_1_2_8_80_1
  doi: 10.1029/2024JH000520
– ident: e_1_2_8_76_1
  doi: 10.1007/s11442‐009‐0175‐0
– ident: e_1_2_8_32_1
  doi: 10.48550/arXiv.1609.02907
– ident: e_1_2_8_61_1
  doi: 10.5194/hess‐26‐5163‐2022
– ident: e_1_2_8_4_1
  doi: 10.5194/hess‐16‐3699‐2012
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-319-10247-4
– ident: e_1_2_8_86_1
  doi: 10.1016/j.cageo.2016.03.002
– ident: e_1_2_8_62_1
  doi: 10.1088/1748‐9326/ab1b7d
– ident: e_1_2_8_93_1
  doi: 10.1109/TITS.2019.2935152
– ident: e_1_2_8_53_1
  doi: 10.1002/2016wr019933
– ident: e_1_2_8_21_1
  doi: 10.1016/j.hydroa.2020.100071
– ident: e_1_2_8_68_1
  doi: 10.1038/nclimate1744
– ident: e_1_2_8_10_1
  doi: 10.1016/j.aqpro.2015.02.089
– ident: e_1_2_8_82_1
  doi: 10.1109/TKDE.2006.46
– ident: e_1_2_8_51_1
  doi: 10.1002/2016WR019856
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jhydrol.2018.05.019
– ident: e_1_2_8_27_1
  doi: 10.1198/016214506000001437
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jhydrol.2020.125776
– volume-title: Ground water and surface water: A single resource
  year: 2000
  ident: e_1_2_8_78_1
– ident: e_1_2_8_64_1
  doi: 10.1016/j.neucom.2014.05.026
– ident: e_1_2_8_94_1
  doi: 10.12029/gc20210301
– ident: e_1_2_8_65_1
  doi: 10.1002/2015WR017806
– ident: e_1_2_8_74_1
  doi: 10.1016/j.ijheatmasstransfer.2023.125149
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jhydrol.2018.12.037
– ident: e_1_2_8_84_1
  doi: 10.1029/2020JG005689
– ident: e_1_2_8_90_1
  doi: 10.1007/s10489‐022‐03716‐9
– ident: e_1_2_8_42_1
  doi: 10.1002/hyp.7129
– ident: e_1_2_8_43_1
  doi: 10.3390/environments10090157
– volume: 21
  start-page: 1
  issue: 118
  year: 2020
  ident: e_1_2_8_67_1
  article-title: Tslearn, a machine learning toolkit for time series data
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_81_1
  doi: 10.5194/hess‐25‐1671‐2021
– ident: e_1_2_8_88_1
  doi: 10.1016/j.isprsjprs.2025.01.006
– ident: e_1_2_8_77_1
  doi: 10.1007/s13201‐018‐0742‐6
– ident: e_1_2_8_3_1
  doi: 10.1016/j.advwatres.2024.104797
– ident: e_1_2_8_9_1
  doi: 10.1002/hyp.9732
– ident: e_1_2_8_91_1
  doi: 10.1029/2022JB024401
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1752‐1688.2009.00335.x
– ident: e_1_2_8_31_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_8_7_1
  doi: 10.1007/s10040‐023‐02745‐z
– ident: e_1_2_8_17_1
  doi: 10.1002/hyp.5881
– ident: e_1_2_8_39_1
  doi: 10.1007/s11269‐009‐9527‐x
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jhydrol.2022.128792
– ident: e_1_2_8_46_1
  doi: 10.1016/j.earscirev.2015.02.002
– ident: e_1_2_8_35_1
  doi: 10.1007/s13762‐022‐04553‐6
– ident: e_1_2_8_66_1
  doi: 10.1007/s10706‐018‐0713‐6
SSID ssj0003320807
Score 2.2932532
Snippet Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels...
Abstract Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms graph‐based deep learning
groundwater level forecasting
multiple spatial dependencies
temporal graph convolutional network
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJ8yQNsRDiO7cQjLS1VRRkQlbpFtnOBqa3aIgQTIyO_kV_C2QmlXWBhixInju6c3Dv7-R0hpxkrRClkEklXYoJSMhFZZtMolsYprnnmwopu_1Z1B6I3lMOlUl-eE1bJA1eGu4DMgnbSAjglYutsISxLNY9FDDjawjZfjHlLyZT_BycJRyiU1kx3xrVP8kWvW_E-VmJQkOpfhaYhtnS2yGYNCull9TLbZA1GO-TdV810ZuZ5ydRPEY2KZwSGU3rjeT7UvtDWQmz51bfp19xA6ssM47CiV3WBW_x8Z3Rc0vbPpja82qkq7dBAGsAOzOTx8-2jiVGtwDthQmvp1YddMui071vdqK6bEDmMvixyArO2IjMppLJQBgFUqTR-t4obgJg57RSoTKMznBaACISBSl1mlE5LLpxJ9sj6aDyCfUIdPgCTRmmkSURipbFpUTDIAI9lpkWDnH1bMp9U8hh5WNbmOl-2eIM0vZkXbbyodTiBrs5rV-d_ubpBzoOTfu0p713fec1ByQ7-o89DssF9xd8w73JE1ufTJzhGGDK3J2HEfQEuRtro
  priority: 102
  providerName: Directory of Open Access Journals
Title Forecasting Groundwater Level by Characterizing Multiple Spatial Dependencies of Environmental Factors Using Graph‐Based Deep Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000520
https://doaj.org/article/e8be9c5beec641bcbd4b0792141e5788
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUKvXBBVG3VpYB8aG-NcBzbsY8FdrtadasKgcQtsp0JnHZXu1RVOaAee-xv5Jcw47gLXJB6iaLEsSXbk_nwmzeMfbCiVZ3SVaFjhw5KJ1QRRKiLUvtopJM2phPd6TczPleTC32RA26UC9PzQ6wDbiQZ6X9NAu7DKpMNEEcmeu1qMu6BHBvsJWXXEne-VN_XMZaqkqLPmJYEU0NNJTL2Hbs4fNzBE62UyPufGqtJ24x22HY2E_nnfl1fsRcwe83-UB3N6FeEVOYUNJq1P9FUXPKvhPzh4Rc_XtMv31CbaUYLcio8jBuNn-SStyjQKz7v-PAhzQ3fjvraOzzBCHAAv7i6-_33CPVci1_Cgmcy1ss37Hw0PDseF7mSQhFRH4siKvTjWutrqHVrPJpUnXEoyUZ6gFJEFw0Y63B5olOANokAU0frjas7qaKv3rLN2XwG7xiP2AG6kdprX6kqaB_qthVgAe-1dWrAPv6byWbRE2Y06aBbuubxjA_YEU3zug3RXKcH8-Vlk6WmARvARR0AolFliKFVQdROlqoE_NXYAfuUFunZkZrJl1NiIdRi9_-av2dbkqr9ppjLHtu8Xv6AfTRBrsNB2mcHyYHH6_R2eA-Vx9XI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHOCCQAWxLRQf2hsRjmM79rGvZbvdrRBqpd4i25m0p93VtqgqJ44c-xv5Jcw4ZmkvlbhFycSWbI_n4fH3MbZtRas6patCxw4DlE6oIohQF6X20UgnbUwnutMTMzpT43N9nnlO6S5Mjw-xSriRZqT9mhScEtIZbYBAMjFsV-NRX8nxlD1TRtakmVJ9XSVZqkqK_sq0pDo1NFUiF79jE5_vN_DALCX0_ofeajI3w1fsZfYT-W4_sa_ZE5its19EpBn9FZUqc8oazdob9BWXfEKlPzzc8v0V_vIPkpnmckFOzMO40vhB5rxFjb7i844f_rvnhl-HPfkOT3UE2IFfXP7-ebeHhq7FP2HBMxrrxRt2Njw83R8VmUqhiGiQRREVBnKt9TXUujUefarOOFRlIz1AKaKLBox1OD_RKUCnRICpo_XG1Z1U0Vdv2dpsPoN3jEdsAONI7bWvVBW0D3XbCrCAz9o6NWA7f0eyWfSIGU066ZauuT_iA7ZHw7ySIZzr9GK-vGiy2jRgA7ioA0A0qgwxtCqI2slSlYB7jR2wT2mSHu2pGX_5RjCEWmz8n_hH9nx0Op00k6OT4032QhL1b0rAvGdr18vv8AH9keuwldbcHxq91w4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlapeKiqouhSoD3AjquPYjn3ktd0uDyFUJG6RHxM47a4WEIITR478Rn4JY8dd4FKJW5Q4tjT2eB7-_A0h65oF0QpZFdK3GKC0TBSOuboopfWKG659OtE9PFKDUzE8k2c54RbvwnT8ELOEW9SMtF9HBZ-ENpMNRI5MjNrFcNABOebIx3TeF5mdxfEsx1JVnHU3pnmEqaGlYhn7jl38et3BG6uUyPvfOqvJ2vQXyJfsJtKtbl6_kg8wWiQPsY6mt5cRqUxj0mgUbtBVnNKDiPyh7pbuzOiX72Kbw4wWpLHwMC40uptL3qJCX9JxS_derrnh135Xe4cmGAEOYCcXT_eP22jnAv4JE5rJWM-XyGl_7-_OoMiVFAqP9pgVXmAcF7StoZZBWXSpWmVQkxW3ACXzxitQ2uD0eCMAJclA1V5bZeqWC2-rb2R-NB7Bd0I9doBhpLTSVqJy0ro6BAYa8FlqI3pk458km0lHmNGkg25umtcS75HtKOZZm0hznV6Mp-dN1poGtAPjpQPwSpTOuyAcqw0vRQm41ege2UyT9N-RmuHvk8hCKNny-5r_JJ-Od_vNwZ-j_R_kM4-Ff1P6ZYXMX02vYRW9kSu3lpbcM_lu1kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Groundwater+Level+by+Characterizing+Multiple+Spatial+Dependencies+of+Environmental+Factors+Using+Graph%E2%80%90Based+Deep+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Wu%2C+Yinghan&rft.au=Mei%2C+Gang&rft.au=Shao%2C+Kaixuan&rft.au=Xu%2C+Nengxiong&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000520&rft.externalDBID=10.1029%252F2024JH000520&rft.externalDocID=JGR170050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon