Forecasting Groundwater Level by Characterizing Multiple Spatial Dependencies of Environmental Factors Using Graph‐Based Deep Learning
Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared enviro...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems.
Plain Language Summary
The groundwater level variations between different monitoring wells within the same region exhibit correlations or interactions, which can be represented as complex spatial dependencies. These dependencies are influenced by various environmental factors, such as hydrological conditions, meteorology, and human activities. Characterizing multiple spatial dependencies provides significant value in capturing complex connections within groundwater systems. However, this advantage does not always lead to substantially improved prediction performance. This study captures multiple forms of spatial dependencies (e.g., distance and correlation) of groundwater and integrates them into a temporal graph convolutional network for regional groundwater level forecasting. The model adaptively captures the spatial dependencies between nodes during training based on a predefined graph structure and updates the graph using a weighted averaging mechanism. Comparative analysis with single spatial dependency models shows that the updated graph structure reflects more reasonable spatial dependencies, consistent with the temporal dynamics of observed data. This study contributes to understanding and forecasting complex spatial dependency structures in regional monitoring networks of geosciences.
Key Points
A graph neural network characterizes multiple spatial dependencies of environmental factors for groundwater level forecasting
Characterizing spatial dependencies aids in understanding groundwater dynamics, but its effectiveness depends on spatial interactions
The latent associations within the dynamic time‐series of groundwater levels can be uncovered |
---|---|
AbstractList | Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems.
Plain Language Summary
The groundwater level variations between different monitoring wells within the same region exhibit correlations or interactions, which can be represented as complex spatial dependencies. These dependencies are influenced by various environmental factors, such as hydrological conditions, meteorology, and human activities. Characterizing multiple spatial dependencies provides significant value in capturing complex connections within groundwater systems. However, this advantage does not always lead to substantially improved prediction performance. This study captures multiple forms of spatial dependencies (e.g., distance and correlation) of groundwater and integrates them into a temporal graph convolutional network for regional groundwater level forecasting. The model adaptively captures the spatial dependencies between nodes during training based on a predefined graph structure and updates the graph using a weighted averaging mechanism. Comparative analysis with single spatial dependency models shows that the updated graph structure reflects more reasonable spatial dependencies, consistent with the temporal dynamics of observed data. This study contributes to understanding and forecasting complex spatial dependency structures in regional monitoring networks of geosciences.
Key Points
A graph neural network characterizes multiple spatial dependencies of environmental factors for groundwater level forecasting
Characterizing spatial dependencies aids in understanding groundwater dynamics, but its effectiveness depends on spatial interactions
The latent associations within the dynamic time‐series of groundwater levels can be uncovered Abstract Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems. Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels exhibit a complex spatial dependency structure due to the physical proximity of monitoring wells, hydrological connectivity, and shared environmental characteristics. However, existing research has mostly overlooked the multiple spatial dependencies between monitoring wells, limiting the understanding of the added value that graph‐based models bring to groundwater dynamics prediction. In this study, we characterize spatial dependencies of groundwater from multiple perspectives and investigate the impact on the forecasting results of groundwater dynamics using graph‐based deep learning. Characterizing spatial dependencies helps improve the understanding of groundwater dynamics, but its effectiveness in enhancing prediction accuracy depends on the characteristics of spatial interactions. Graph neural networks facilitate learning from diverse spatial associations, allowing for a more comprehensive representation of spatial dependencies and uncovering potential connections between monitoring wells. Results based on real data sets contribute to understanding how multiple spatial dependencies influence groundwater level forecasting. Our research provides insights into exploiting potential spatial dependencies in similarly complex and highly interconnected earth systems. The groundwater level variations between different monitoring wells within the same region exhibit correlations or interactions, which can be represented as complex spatial dependencies. These dependencies are influenced by various environmental factors, such as hydrological conditions, meteorology, and human activities. Characterizing multiple spatial dependencies provides significant value in capturing complex connections within groundwater systems. However, this advantage does not always lead to substantially improved prediction performance. This study captures multiple forms of spatial dependencies (e.g., distance and correlation) of groundwater and integrates them into a temporal graph convolutional network for regional groundwater level forecasting. The model adaptively captures the spatial dependencies between nodes during training based on a predefined graph structure and updates the graph using a weighted averaging mechanism. Comparative analysis with single spatial dependency models shows that the updated graph structure reflects more reasonable spatial dependencies, consistent with the temporal dynamics of observed data. This study contributes to understanding and forecasting complex spatial dependency structures in regional monitoring networks of geosciences. A graph neural network characterizes multiple spatial dependencies of environmental factors for groundwater level forecasting Characterizing spatial dependencies aids in understanding groundwater dynamics, but its effectiveness depends on spatial interactions The latent associations within the dynamic time‐series of groundwater levels can be uncovered |
Author | Peng, Jianbing Wu, Yinghan Xu, Nengxiong Mei, Gang Shao, Kaixuan |
Author_xml | – sequence: 1 givenname: Yinghan orcidid: 0009-0008-1475-1741 surname: Wu fullname: Wu, Yinghan organization: China University of Geosciences – sequence: 2 givenname: Gang orcidid: 0000-0003-0026-5423 surname: Mei fullname: Mei, Gang email: gang.mei@cugb.edu.cn organization: China University of Geosciences – sequence: 3 givenname: Kaixuan orcidid: 0009-0002-6411-2450 surname: Shao fullname: Shao, Kaixuan organization: China University of Geosciences – sequence: 4 givenname: Nengxiong surname: Xu fullname: Xu, Nengxiong organization: China University of Geosciences – sequence: 5 givenname: Jianbing orcidid: 0000-0002-3263-8872 surname: Peng fullname: Peng, Jianbing organization: Chang'an University |
BookMark | eNp9kcFO3DAQhq0KpFLg1gfwA3TbsRM79rHdsgtoq0ptOUcTZwJGwY7sAFpOPXLkGfskNd2q4tTT_Jr_-_85zBu2F2Igxt4KeC9A2g8SZH1-CgBKwit2IK2tFkoK2HuhX7PjnK8LU1USDDQH7HEVEznMsw-XfJ3ibejvcabEN3RHI--2fHmFCV1Z-Ydn5svtOPtpJP59wtnjyD_TRKGn4DxlHgd-Eu58iuGGwlzcVYnGlPlF3h3A6erXz6dPmKkvSZrKHUyheEdsf8Ax0_HfecguVic_lqeLzdf12fLjZuGEUbBwtamhN9hQo3qNoOygrZRKSyQS4KzTpI1Fp52tSRWYdOMMatsMsnZYHbKzXW8f8bqdkr_BtG0j-vbPIqbLFtPs3UgtmY6sUx2R07XoXNfXHTRWilqQaowpXe92XS7FnBMN__oEtM9PaV8-peDVDr_3I23_y7bn62-iKRKq35PpkhA |
Cites_doi | 10.1029/2020GL089829 10.1016/j.scitotenv.2018.07.269 10.1029/2021WR030884 10.1016/j.eswa.2024.125379 10.12029/gc20210409 10.1007/s12665‐019‐8474‐y 10.3390/w14193068 10.1007/s11269‐014‐0810‐0 10.1016/j.scitotenv.2019.05.236 10.1016/j.jhydrol.2024.130667 10.1016/j.marpetgeo.2023.106168 10.1038/s43017‐022‐00378‐6 10.1515/jwld‐2017‐0012 10.1038/s43017‐024‐00519‐z 10.1039/9781847558039 10.1038/s41558‐018‐0386‐4 10.1155/2015/742138 10.1029/2018WR023886 10.1016/j.jhydrol.2022.127630 10.2166/hydro.2020.095 10.1016/j.jhydrol.2023.130079 10.1007/s11269‐010‐9628‐6 10.1016/j.jhydrol.2023.129962 10.1016/j.jhydrol.2022.128262 10.1109/72.279181 10.1623/hysj.48.3.349.45288 10.48550/arXiv.1406.1078 10.1109/ACCESS.2020.2982433 10.1029/2004WR003800 10.1016/j.agwat.2020.106649 10.1029/2022EA002411 10.1029/WR019i003p00779 10.1029/2021WR030394 10.1007/s12040‐014‐0478‐0 10.1007/s10661‐006‐9361‐z 10.1029/2018WR022643 10.1038/nature20584 10.1080/19942060.2022.2104928 10.1038/s43017‐023‐00450‐9 10.1016/j.envsoft.2005.05.001 10.1038/s41467‐021‐26107‐z 10.1038/s41467‐020‐17581‐y 10.1007/978-3-540-74048-3_4 10.1038/s41598‐023‐32548‐x 10.1016/j.ecolind.2023.110782 10.1007/s12665‐010‐0617‐0 10.1016/j.acha.2010.04.005 10.1029/2024JH000520 10.1007/s11442‐009‐0175‐0 10.48550/arXiv.1609.02907 10.5194/hess‐26‐5163‐2022 10.5194/hess‐16‐3699‐2012 10.1007/978-3-319-10247-4 10.1016/j.cageo.2016.03.002 10.1088/1748‐9326/ab1b7d 10.1109/TITS.2019.2935152 10.1002/2016wr019933 10.1016/j.hydroa.2020.100071 10.1038/nclimate1744 10.1016/j.aqpro.2015.02.089 10.1109/TKDE.2006.46 10.1002/2016WR019856 10.1016/j.jhydrol.2018.05.019 10.1198/016214506000001437 10.1016/j.jhydrol.2020.125776 10.1016/j.neucom.2014.05.026 10.12029/gc20210301 10.1002/2015WR017806 10.1016/j.ijheatmasstransfer.2023.125149 10.1016/j.jhydrol.2018.12.037 10.1029/2020JG005689 10.1007/s10489‐022‐03716‐9 10.1002/hyp.7129 10.3390/environments10090157 10.5194/hess‐25‐1671‐2021 10.1016/j.isprsjprs.2025.01.006 10.1007/s13201‐018‐0742‐6 10.1016/j.advwatres.2024.104797 10.1002/hyp.9732 10.1029/2022JB024401 10.1111/j.1752‐1688.2009.00335.x 10.1162/neco.1997.9.8.1735 10.1007/s10040‐023‐02745‐z 10.1002/hyp.5881 10.1007/s11269‐009‐9527‐x 10.1016/j.jhydrol.2022.128792 10.1016/j.earscirev.2015.02.002 10.1007/s13762‐022‐04553‐6 10.1007/s10706‐018‐0713‐6 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1029/2024JH000520 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e8be9c5beec641bcbd4b0792141e5788 10_1029_2024JH000520 JGR170050 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China Technology Innovation Special Project funderid: 2022XAGG0400 – fundername: National Science Foundation of China funderid: 42230709; 42277161 |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E AAYXX CITATION WIN |
ID | FETCH-LOGICAL-c1850-c4840d8a7e75d6a059f6922562aee10c9c6e689ac6c94e5840e67c8a697f24ca3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Thu Jul 10 07:41:43 EDT 2025 Sun Jul 06 04:45:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1850-c4840d8a7e75d6a059f6922562aee10c9c6e689ac6c94e5840e67c8a697f24ca3 |
ORCID | 0009-0002-6411-2450 0000-0003-0026-5423 0009-0008-1475-1741 0000-0002-3263-8872 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000520 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8be9c5beec641bcbd4b0792141e5788 crossref_primary_10_1029_2024JH000520 wiley_primary_10_1029_2024JH000520_JGR170050 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2021; 25 2009; 45 2018; 562 2007; 102 2013; 3 2022b; 127 1983; 19 2023; 4 2019; 55 2021; 126 2015; 72 2015; 143 2019; 14 2016; 32 2016; 540 2024; 32 2022a; 53 2024; 222 2012; 16 2022; 616 2023; 625 2020; 11 2025 2014; 28 2020; 245 2019; 646 2022; 612 1997; 9 2019; 684 2010; 62 2022b; 608 2023; 20 2020; 8 1856; 1 2018; 8 2010; 24 2016; 90 2024; 5 2000 2006; 21 2003; 48 2020; 47 2008; 22 2024; 631 2011; 25 2009; 19 2024; 193 2014; 123 2022a; 26 2023; 10 2019; 9 2021; 48 2007; 129 2023; 13 2015; 4 2010 2019; 78 2019; 37 2011; 30 2007 2016; 52 2006; 18 2025; 259 2021; 57 2017; 53 2005; 19 2006; 42 2021; 12 2021; 11 2025; 220 2023; 150 2022; 9 2023; 154 2022; 14 2018 2022; 58 2016 2015 2014 2020; 22 2020; 21 2020; 597 2018; 54 1994; 5 2022; 16 1990; 6 2014; 145 2019; 572 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Darcy H. (e_1_2_8_16_1) 1856 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Cleveland R. B. (e_1_2_8_14_1) 1990; 6 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 Tavenard R. (e_1_2_8_67_1) 2020; 21 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Fetter C. W. (e_1_2_8_23_1) 2018 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_96_1 Seabold S. (e_1_2_8_55_1) 2010 Winter T. C. (e_1_2_8_78_1) 2000 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 220 start-page: 621 year: 2025 end-page: 636 article-title: Learning transferable land cover semantics for open vocabulary interactions with remote sensing images publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 28 start-page: 5433 issue: 15 year: 2014 end-page: 5446 article-title: Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro‐fuzzy inference system (ANFIS) publication-title: Water Resources Management – volume: 13 issue: 1 year: 2023 article-title: A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features publication-title: Scientific Reports – volume: 54 start-page: 8558 issue: 11 year: 2018 end-page: 8593 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resources Research – volume: 143 start-page: 147 year: 2015 end-page: 160 article-title: Graph theory in the geosciences publication-title: Earth‐Science Reviews – volume: 21 start-page: 991 issue: 7 year: 2006 end-page: 1000 article-title: Evaluation and optimisation of groundwater observation networks using the kriging methodology publication-title: Environmental Modelling and Software – volume: 26 start-page: 5163 issue: 19 year: 2022a end-page: 5184 article-title: A graph neural network (GNN) approach to basin‐scale river network learning: The role of physics‐based connectivity and data fusion publication-title: Hydrology and Earth System Sciences – volume: 126 issue: 10 year: 2021 article-title: Seasonal river export of nitrogen to Guanting and Baiyangdian Lakes in the Hai He Basin publication-title: Journal of Geophysical Research: Biogeosciences – year: 2016 article-title: Semi‐supervised classification with graph convolutional networks publication-title: arXiv preprint arXiv:1609.02907 – start-page: 92 year: 2010 end-page: 96 – volume: 55 start-page: 5784 issue: 7 year: 2019 end-page: 5806 article-title: From points to patterns: Using groundwater time series clustering to investigate subsurface hydrological connectivity and runoff source area dynamics publication-title: Water Resources Research – volume: 4 start-page: 552 issue: 8 year: 2023 end-page: 567 article-title: Differentiable modelling to unify machine learning and physical models for geosciences publication-title: Nature Reviews Earth and Environment – volume: 9 start-page: 137 issue: 2 year: 2019 end-page: 141 article-title: Global patterns and dynamics of climate–Groundwater interactions publication-title: Nature Climate Change – volume: 57 issue: 12 year: 2021 article-title: Explore spatio‐temporal learning of large sample hydrology using graph neural networks publication-title: Water Resources Research – volume: 616 year: 2022 article-title: Graph neural network for groundwater level forecasting publication-title: Journal of Hydrology – start-page: 69 year: 2007 end-page: 84 – volume: 28 start-page: 1797 issue: 4 year: 2014 end-page: 1808 article-title: Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain publication-title: Hydrological Processes – volume: 5 start-page: 312 issue: 4 year: 2024 end-page: 328 article-title: Arsenic and other geogenic contaminants in global groundwater publication-title: Nature Reviews Earth and Environment – volume: 18 start-page: 304 year: 2006 end-page: 319 article-title: Enhancing data analysis with noise removal. Knowledge and Data Engineering publication-title: IEEE Transactions on – volume: 53 start-page: 3878 issue: 5 year: 2017 end-page: 3895 article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the United States publication-title: Water Resources Research – volume: 19 start-page: 779 issue: 3 year: 1983 end-page: 790 article-title: Identifying sources of groundwater pollution: An optimization approach publication-title: Water Resources Research – volume: 62 start-page: 1301 issue: 6 year: 2010 end-page: 1310 article-title: Comparison of FFNN and ANFIS models for estimating groundwater level publication-title: Environmental Earth Sciences – volume: 52 start-page: 2074 issue: 3 year: 2016 end-page: 2098 article-title: Enhancing multiple‐point geostatistical modeling: 1. Graph theory and pattern adjustment publication-title: Water Resources Research – volume: 222 year: 2024 article-title: Modeling transient natural convection in heterogeneous porous media with convolutional neural networks publication-title: International Journal of Heat and Mass Transfer – volume: 32 start-page: 577 issue: 2 year: 2024 end-page: 600 article-title: Shallow groundwater characterisation and hydrograph classification in the coastal city of ōtautahi/Christchurch, New Zealand publication-title: Hydrogeology Journal – year: 2018 – volume: 47 issue: 20 year: 2020 article-title: A fresh look at variography: Measuring dependence and possible sensitivities across geophysical systems from any given data publication-title: Geophysical Research Letters – volume: 25 start-page: 1671 issue: 3 year: 2021 end-page: 1687 article-title: Groundwater level forecasting with artificial neural networks: A comparison of long short‐term memory (LSTM), convolutional neural networks (CNNs), and non‐linear autoregressive networks with exogenous input (NARX) publication-title: Hydrology and Earth System Sciences – volume: 612 year: 2022 article-title: Groundwater level prediction with meteorologically sensitive gated recurrent unit (GRU) neural networks publication-title: Journal of Hydrology – volume: 14 issue: 19 year: 2022 article-title: Early warning and joint regulation of water quantity and quality in the Daqing River Basin publication-title: Water – volume: 150 year: 2023 article-title: Lithology identification using graph neural network in continental shale oil reservoirs: A case study in Mahu Sag, Junggar Basin, Western China publication-title: Marine and Petroleum Geology – volume: 1 year: 1856 – volume: 193 year: 2024 article-title: Modeling fluid flow in heterogeneous porous media with physics‐informed neural networks: Weighting strategies for the mixed pressure head‐velocity formulation publication-title: Advances in Water Resources – volume: 8 start-page: 60090 year: 2020 end-page: 60100 article-title: Water level prediction model based on GRU and CNN publication-title: IEEE Access – year: 2014 article-title: Learning phrase representations using RNN encoder‐decoder for statistical machine translation publication-title: arXiv preprint arXiv:1406.1078 – volume: 129 start-page: 277 issue: 1–3 year: 2007 end-page: 294 article-title: Geostatistical analysis of spatial and temporal variations of groundwater level publication-title: Environmental Monitoring and Assessment – volume: 8 start-page: 1 issue: 5 year: 2018 end-page: 12 article-title: Short‐term prediction of groundwater level using improved random forest regression with a combination of random features publication-title: Applied Water Science – year: 2025 – volume: 608 year: 2022b article-title: Data‐driven models for accurate groundwater level prediction and their practical significance in groundwater management publication-title: Journal of Hydrology – volume: 19 start-page: 175 issue: 2 year: 2009 end-page: 188 article-title: Shallow groundwater dynamics in North China Plain publication-title: Journal of Geographical Sciences – volume: 72 year: 2015 – volume: 37 start-page: 1661 issue: 3 year: 2019 end-page: 1670 article-title: Data‐driven modeling of groundwater level with least‐square support vector machine and spatial–temporal analysis publication-title: Geotechnical & Geological Engineering – volume: 42 start-page: 1 issue: 2 year: 2006 end-page: 11 article-title: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis publication-title: Water Resources Research – volume: 4 start-page: 87 issue: 2 year: 2023 end-page: 101 article-title: Global water resources and the role of groundwater in a resilient water future publication-title: Nature Reviews Earth and Environment – volume: 48 start-page: 677 issue: 3 year: 2021 end-page: 696 article-title: Analysis of natural resources and environment eco‐geological conditions in the xiong’an new area publication-title: Geology in China – volume: 127 issue: 11 year: 2022b article-title: Spatiotemporal graph convolutional networks for earthquake source characterization publication-title: Journal of Geophysical Research: Solid Earth – volume: 16 start-page: 3699 issue: 10 year: 2012 end-page: 3715 article-title: Hillslope characteristics as controls of subsurface flow variability publication-title: Hydrology and Earth System Sciences – volume: 625 year: 2023 article-title: Simulation of spring discharge using graph neural networks at Niangziguan Springs, China publication-title: Journal of Hydrology – volume: 90 start-page: 144 year: 2016 end-page: 155 article-title: A method to improve the stability and accuracy of ANN‐ and SVM‐based time series models for long‐term groundwater level predictions publication-title: Computers and Geosciences – volume: 572 start-page: 336 year: 2019 end-page: 351 article-title: A review of the artificial intelligence methods in groundwater level modeling publication-title: Journal of Hydrology – volume: 25 start-page: 1143 issue: 4 year: 2011 end-page: 1152 article-title: Artificial neural network (ANN) based modeling for karstic groundwater level simulation publication-title: Water Resources Management – volume: 19 start-page: 1705 issue: 8 year: 2005 end-page: 1714 article-title: A framework for broad‐scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? publication-title: Hydrological Processes: International Journal – volume: 78 start-page: 1 year: 2019 end-page: 15 article-title: Evaluation of data‐driven models (SVR and ANN) for groundwater‐level prediction in confined and unconfined systems publication-title: Environmental Earth Sciences – volume: 646 start-page: 1265 year: 2019 end-page: 1280 article-title: Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory publication-title: Science of the Total Environment – volume: 145 start-page: 324 year: 2014 end-page: 335 article-title: An integrated wavelet‐support vector machine for groundwater level prediction in Visakhapatnam, India publication-title: Neurocomputing – volume: 11 issue: 1 year: 2020 article-title: Divergent effects of climate change on future groundwater availability in key mid‐latitude aquifers publication-title: Nature Communications – volume: 48 start-page: 1112 issue: 4 year: 2021 end-page: 1126 article-title: Groundwater resources in xiong’an new area and its exploitation potential publication-title: Geology in China – volume: 53 start-page: 1 issue: 6 year: 2022a end-page: 16 article-title: A method for measuring similarity of time series based on series decomposition and dynamic time warping publication-title: Applied Intelligence – volume: 562 start-page: 530 year: 2018 end-page: 543 article-title: Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the US glacial aquifer system publication-title: Journal of Hydrology – volume: 102 start-page: 359 issue: 477 year: 2007 end-page: 378 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: Journal of the American Statistical Association – year: 2000 – year: 2007 article-title: Groundwater science and policy: An international overview publication-title: The Royal Society of Chemistry – volume: 58 issue: 2 year: 2022 article-title: Human intervention will stabilize groundwater storage across the North China Plain publication-title: Water Resources Research – volume: 259 year: 2025 article-title: Incorporating hydrological constraints with deep learning for streamflow prediction publication-title: Expert Systems with Applications – volume: 21 start-page: 3848 issue: 9 year: 2020 end-page: 3858 article-title: T‐GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 48 start-page: 349 issue: 3 year: 2003 end-page: 361 article-title: Estimation, forecasting and extrapolation of river flows by artificial neural networks publication-title: Hydrological Sciences Journal – volume: 684 start-page: 136 year: 2019 end-page: 154 article-title: A review of threats to groundwater quality in the anthropocene publication-title: Science of the Total Environment – volume: 10 issue: 9 year: 2023 article-title: Graph‐based deep learning model for forecasting chloride concentration in urban streams to protect salt‐vulnerable areas publication-title: Environments – volume: 625 year: 2023 article-title: A new real‐time groundwater level forecasting strategy: Coupling hybrid data‐driven models with remote sensing data publication-title: Journal of Hydrology – volume: 20 start-page: 10297 issue: 9 year: 2023 end-page: 10312 article-title: MGC‐LSTM: A deep learning model based on graph convolution of multiple graphs for PM prediction publication-title: International journal of Environmental Science and Technology – volume: 3 start-page: 322 issue: 4 year: 2013 end-page: 329 article-title: Ground water and climate change publication-title: Nature Climate Change – volume: 21 start-page: 1 issue: 118 year: 2020 end-page: 6 article-title: Tslearn, a machine learning toolkit for time series data publication-title: Journal of Machine Learning Research – volume: 123 start-page: 1541 issue: 7 year: 2014 end-page: 1566 article-title: Impact of over‐exploitation on groundwater quality: A case study from WR‐2 watershed, India publication-title: Journal of Earth System Science – volume: 24 start-page: 1845 issue: 9 year: 2010 end-page: 1865 article-title: Artificial neural network modeling for groundwater level forecasting in a river island of eastern India publication-title: Water Resources Management – volume: 16 start-page: 1655 issue: 1 year: 2022 end-page: 1672 article-title: Time series‐based groundwater level forecasting using gated recurrent unit deep neural networks publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 22 start-page: 541 issue: 3 year: 2020 end-page: 561 article-title: Deep learning convolutional neural network in rainfall–runoff modelling publication-title: Journal of Hydroinformatics – volume: 245 year: 2020 article-title: A hybrid CNN‐GRU model for predicting soil moisture in maize root zone publication-title: Agricultural Water Management – volume: 6 start-page: 3 issue: 1 year: 1990 end-page: 73 article-title: STL: A seasonal‐trend decomposition publication-title: Journal of Official Statistics – volume: 631 year: 2024 article-title: Data‐driven statistical optimization of a groundwater monitoring network publication-title: Journal of Hydrology – volume: 12 issue: 1 year: 2021 article-title: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling publication-title: Nature Communications – volume: 53 start-page: 3921 issue: 5 year: 2017 end-page: 3940 article-title: Groundwater similarity across a watershed derived from time‐warped and flow‐corrected time series publication-title: Water Resources Research – volume: 30 start-page: 129 issue: 2 year: 2011 end-page: 150 article-title: Wavelets on graphs via spectral graph theory publication-title: Applied and Computational Harmonic Analysis – volume: 45 start-page: 894 issue: 4 year: 2009 end-page: 906 article-title: GIS‐based spatial precipitation estimation: A comparison of geostatistical approaches publication-title: JAWRA Journal of the American Water Resources Association – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Computation MIT‐Press – volume: 597 year: 2020 article-title: Reconstruction of missing groundwater level data by using long short‐term memory (LSTM) deep neural network publication-title: Journal of Hydrology – volume: 22 start-page: 5054 issue: 26 year: 2008 end-page: 5066 article-title: An ANN‐based model for spatiotemporal groundwater level forecasting publication-title: Hydrological Processes – volume: 5 start-page: 157 issue: 2 year: 1994 end-page: 166 article-title: Learning long‐term dependencies with gradient descent is difficult publication-title: IEEE Transactions on Neural Networks / A Publication of the IEEE Neural Networks Council – volume: 14 issue: 7 year: 2019 article-title: How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directions publication-title: Environmental Research Letters – start-page: 1 year: 2015 end-page: 13 article-title: Comparison of groundwater level models based on artificial neural networks and ANFIS publication-title: The Scientific World Journal – volume: 32 start-page: 103 issue: 1 year: 2016 end-page: 112 article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction publication-title: Journal of Water and Land Development – volume: 9 issue: 9 year: 2022 article-title: A short‐term regional precipitation prediction model based on wind‐improved spatiotemporal convolutional network publication-title: Earth and Space Science – volume: 11 year: 2021 article-title: Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers publication-title: Journal of Hydrology X – volume: 540 start-page: 418 issue: 7633 year: 2016 end-page: 422 article-title: High‐resolution mapping of global surface water and its long‐term changes publication-title: Nature – volume: 4 start-page: 693 year: 2015 end-page: 699 article-title: Assessing suitability of GP modeling for groundwater level publication-title: Aquatic Procedia – volume: 154 year: 2023 article-title: A long‐term water quality prediction model for marine ranch based on time‐graph convolutional neural network publication-title: Ecological Indicators – ident: e_1_2_8_56_1 doi: 10.1029/2020GL089829 – ident: e_1_2_8_96_1 doi: 10.1016/j.scitotenv.2018.07.269 – ident: e_1_2_8_85_1 doi: 10.1029/2021WR030884 – ident: e_1_2_8_95_1 doi: 10.1016/j.eswa.2024.125379 – ident: e_1_2_8_29_1 doi: 10.12029/gc20210409 – ident: e_1_2_8_38_1 doi: 10.1007/s12665‐019‐8474‐y – ident: e_1_2_8_11_1 doi: 10.3390/w14193068 – ident: e_1_2_8_20_1 doi: 10.1007/s11269‐014‐0810‐0 – ident: e_1_2_8_8_1 doi: 10.1016/j.scitotenv.2019.05.236 – ident: e_1_2_8_37_1 doi: 10.1016/j.jhydrol.2024.130667 – ident: e_1_2_8_36_1 doi: 10.1016/j.marpetgeo.2023.106168 – volume-title: Applied hydrogeology year: 2018 ident: e_1_2_8_23_1 – ident: e_1_2_8_54_1 doi: 10.1038/s43017‐022‐00378‐6 – ident: e_1_2_8_83_1 doi: 10.1515/jwld‐2017‐0012 – ident: e_1_2_8_40_1 doi: 10.1038/s43017‐024‐00519‐z – ident: e_1_2_8_49_1 doi: 10.1039/9781847558039 – ident: e_1_2_8_15_1 doi: 10.1038/s41558‐018‐0386‐4 – ident: e_1_2_8_18_1 doi: 10.1155/2015/742138 – ident: e_1_2_8_52_1 doi: 10.1029/2018WR023886 – ident: e_1_2_8_63_1 doi: 10.1016/j.jhydrol.2022.127630 – ident: e_1_2_8_73_1 doi: 10.2166/hydro.2020.095 – ident: e_1_2_8_24_1 doi: 10.1016/j.jhydrol.2023.130079 – ident: e_1_2_8_70_1 doi: 10.1007/s11269‐010‐9628‐6 – volume: 6 start-page: 3 issue: 1 year: 1990 ident: e_1_2_8_14_1 article-title: STL: A seasonal‐trend decomposition publication-title: Journal of Official Statistics – ident: e_1_2_8_89_1 doi: 10.1016/j.jhydrol.2023.129962 – start-page: 92 volume-title: Proceedings of the Python in Science Conference year: 2010 ident: e_1_2_8_55_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.jhydrol.2022.128262 – ident: e_1_2_8_6_1 doi: 10.1109/72.279181 – ident: e_1_2_8_13_1 doi: 10.1623/hysj.48.3.349.45288 – ident: e_1_2_8_12_1 doi: 10.48550/arXiv.1406.1078 – volume-title: Les fontaines publiques de la ville de dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau year: 1856 ident: e_1_2_8_16_1 – ident: e_1_2_8_44_1 doi: 10.1109/ACCESS.2020.2982433 – ident: e_1_2_8_71_1 doi: 10.1029/2004WR003800 – ident: e_1_2_8_87_1 doi: 10.1016/j.agwat.2020.106649 – ident: e_1_2_8_48_1 doi: 10.1029/2022EA002411 – ident: e_1_2_8_28_1 doi: 10.1029/WR019i003p00779 – ident: e_1_2_8_60_1 doi: 10.1029/2021WR030394 – ident: e_1_2_8_47_1 doi: 10.1007/s12040‐014‐0478‐0 – ident: e_1_2_8_2_1 doi: 10.1007/s10661‐006‐9361‐z – ident: e_1_2_8_57_1 doi: 10.1029/2018WR022643 – ident: e_1_2_8_45_1 doi: 10.1038/nature20584 – ident: e_1_2_8_34_1 doi: 10.1080/19942060.2022.2104928 – ident: e_1_2_8_58_1 doi: 10.1038/s43017‐023‐00450‐9 – ident: e_1_2_8_69_1 doi: 10.1016/j.envsoft.2005.05.001 – ident: e_1_2_8_72_1 doi: 10.1038/s41467‐021‐26107‐z – ident: e_1_2_8_79_1 doi: 10.1038/s41467‐020‐17581‐y – ident: e_1_2_8_41_1 doi: 10.1007/978-3-540-74048-3_4 – ident: e_1_2_8_22_1 doi: 10.1038/s41598‐023‐32548‐x – ident: e_1_2_8_33_1 doi: 10.1016/j.ecolind.2023.110782 – ident: e_1_2_8_59_1 doi: 10.1007/s12665‐010‐0617‐0 – ident: e_1_2_8_30_1 doi: 10.1016/j.acha.2010.04.005 – ident: e_1_2_8_80_1 doi: 10.1029/2024JH000520 – ident: e_1_2_8_76_1 doi: 10.1007/s11442‐009‐0175‐0 – ident: e_1_2_8_32_1 doi: 10.48550/arXiv.1609.02907 – ident: e_1_2_8_61_1 doi: 10.5194/hess‐26‐5163‐2022 – ident: e_1_2_8_4_1 doi: 10.5194/hess‐16‐3699‐2012 – ident: e_1_2_8_25_1 doi: 10.1007/978-3-319-10247-4 – ident: e_1_2_8_86_1 doi: 10.1016/j.cageo.2016.03.002 – ident: e_1_2_8_62_1 doi: 10.1088/1748‐9326/ab1b7d – ident: e_1_2_8_93_1 doi: 10.1109/TITS.2019.2935152 – ident: e_1_2_8_53_1 doi: 10.1002/2016wr019933 – ident: e_1_2_8_21_1 doi: 10.1016/j.hydroa.2020.100071 – ident: e_1_2_8_68_1 doi: 10.1038/nclimate1744 – ident: e_1_2_8_10_1 doi: 10.1016/j.aqpro.2015.02.089 – ident: e_1_2_8_82_1 doi: 10.1109/TKDE.2006.46 – ident: e_1_2_8_51_1 doi: 10.1002/2016WR019856 – ident: e_1_2_8_19_1 doi: 10.1016/j.jhydrol.2018.05.019 – ident: e_1_2_8_27_1 doi: 10.1198/016214506000001437 – ident: e_1_2_8_75_1 doi: 10.1016/j.jhydrol.2020.125776 – volume-title: Ground water and surface water: A single resource year: 2000 ident: e_1_2_8_78_1 – ident: e_1_2_8_64_1 doi: 10.1016/j.neucom.2014.05.026 – ident: e_1_2_8_94_1 doi: 10.12029/gc20210301 – ident: e_1_2_8_65_1 doi: 10.1002/2015WR017806 – ident: e_1_2_8_74_1 doi: 10.1016/j.ijheatmasstransfer.2023.125149 – ident: e_1_2_8_50_1 doi: 10.1016/j.jhydrol.2018.12.037 – ident: e_1_2_8_84_1 doi: 10.1029/2020JG005689 – ident: e_1_2_8_90_1 doi: 10.1007/s10489‐022‐03716‐9 – ident: e_1_2_8_42_1 doi: 10.1002/hyp.7129 – ident: e_1_2_8_43_1 doi: 10.3390/environments10090157 – volume: 21 start-page: 1 issue: 118 year: 2020 ident: e_1_2_8_67_1 article-title: Tslearn, a machine learning toolkit for time series data publication-title: Journal of Machine Learning Research – ident: e_1_2_8_81_1 doi: 10.5194/hess‐25‐1671‐2021 – ident: e_1_2_8_88_1 doi: 10.1016/j.isprsjprs.2025.01.006 – ident: e_1_2_8_77_1 doi: 10.1007/s13201‐018‐0742‐6 – ident: e_1_2_8_3_1 doi: 10.1016/j.advwatres.2024.104797 – ident: e_1_2_8_9_1 doi: 10.1002/hyp.9732 – ident: e_1_2_8_91_1 doi: 10.1029/2022JB024401 – ident: e_1_2_8_92_1 doi: 10.1111/j.1752‐1688.2009.00335.x – ident: e_1_2_8_31_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_8_7_1 doi: 10.1007/s10040‐023‐02745‐z – ident: e_1_2_8_17_1 doi: 10.1002/hyp.5881 – ident: e_1_2_8_39_1 doi: 10.1007/s11269‐009‐9527‐x – ident: e_1_2_8_5_1 doi: 10.1016/j.jhydrol.2022.128792 – ident: e_1_2_8_46_1 doi: 10.1016/j.earscirev.2015.02.002 – ident: e_1_2_8_35_1 doi: 10.1007/s13762‐022‐04553‐6 – ident: e_1_2_8_66_1 doi: 10.1007/s10706‐018‐0713‐6 |
SSID | ssj0003320807 |
Score | 2.2932532 |
Snippet | Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater levels... Abstract Accurate forecasting for groundwater levels is essential for water resource management and sustainable development. Regional variations in groundwater... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | graph‐based deep learning groundwater level forecasting multiple spatial dependencies temporal graph convolutional network |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJ8yQNsRDiO7cQjLS1VRRkQlbpFtnOBqa3aIgQTIyO_kV_C2QmlXWBhixInju6c3Dv7-R0hpxkrRClkEklXYoJSMhFZZtMolsYprnnmwopu_1Z1B6I3lMOlUl-eE1bJA1eGu4DMgnbSAjglYutsISxLNY9FDDjawjZfjHlLyZT_BycJRyiU1kx3xrVP8kWvW_E-VmJQkOpfhaYhtnS2yGYNCull9TLbZA1GO-TdV810ZuZ5ydRPEY2KZwSGU3rjeT7UvtDWQmz51bfp19xA6ssM47CiV3WBW_x8Z3Rc0vbPpja82qkq7dBAGsAOzOTx8-2jiVGtwDthQmvp1YddMui071vdqK6bEDmMvixyArO2IjMppLJQBgFUqTR-t4obgJg57RSoTKMznBaACISBSl1mlE5LLpxJ9sj6aDyCfUIdPgCTRmmkSURipbFpUTDIAI9lpkWDnH1bMp9U8hh5WNbmOl-2eIM0vZkXbbyodTiBrs5rV-d_ubpBzoOTfu0p713fec1ByQ7-o89DssF9xd8w73JE1ufTJzhGGDK3J2HEfQEuRtro priority: 102 providerName: Directory of Open Access Journals |
Title | Forecasting Groundwater Level by Characterizing Multiple Spatial Dependencies of Environmental Factors Using Graph‐Based Deep Learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000520 https://doaj.org/article/e8be9c5beec641bcbd4b0792141e5788 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUKvXBBVG3VpYB8aG-NcBzbsY8FdrtadasKgcQtsp0JnHZXu1RVOaAee-xv5Jcw47gLXJB6iaLEsSXbk_nwmzeMfbCiVZ3SVaFjhw5KJ1QRRKiLUvtopJM2phPd6TczPleTC32RA26UC9PzQ6wDbiQZ6X9NAu7DKpMNEEcmeu1qMu6BHBvsJWXXEne-VN_XMZaqkqLPmJYEU0NNJTL2Hbs4fNzBE62UyPufGqtJ24x22HY2E_nnfl1fsRcwe83-UB3N6FeEVOYUNJq1P9FUXPKvhPzh4Rc_XtMv31CbaUYLcio8jBuNn-SStyjQKz7v-PAhzQ3fjvraOzzBCHAAv7i6-_33CPVci1_Cgmcy1ss37Hw0PDseF7mSQhFRH4siKvTjWutrqHVrPJpUnXEoyUZ6gFJEFw0Y63B5olOANokAU0frjas7qaKv3rLN2XwG7xiP2AG6kdprX6kqaB_qthVgAe-1dWrAPv6byWbRE2Y06aBbuubxjA_YEU3zug3RXKcH8-Vlk6WmARvARR0AolFliKFVQdROlqoE_NXYAfuUFunZkZrJl1NiIdRi9_-av2dbkqr9ppjLHtu8Xv6AfTRBrsNB2mcHyYHH6_R2eA-Vx9XI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHOCCQAWxLRQf2hsRjmM79rGvZbvdrRBqpd4i25m0p93VtqgqJ44c-xv5Jcw4ZmkvlbhFycSWbI_n4fH3MbZtRas6patCxw4DlE6oIohQF6X20UgnbUwnutMTMzpT43N9nnlO6S5Mjw-xSriRZqT9mhScEtIZbYBAMjFsV-NRX8nxlD1TRtakmVJ9XSVZqkqK_sq0pDo1NFUiF79jE5_vN_DALCX0_ofeajI3w1fsZfYT-W4_sa_ZE5its19EpBn9FZUqc8oazdob9BWXfEKlPzzc8v0V_vIPkpnmckFOzMO40vhB5rxFjb7i844f_rvnhl-HPfkOT3UE2IFfXP7-ebeHhq7FP2HBMxrrxRt2Njw83R8VmUqhiGiQRREVBnKt9TXUujUefarOOFRlIz1AKaKLBox1OD_RKUCnRICpo_XG1Z1U0Vdv2dpsPoN3jEdsAONI7bWvVBW0D3XbCrCAz9o6NWA7f0eyWfSIGU066ZauuT_iA7ZHw7ySIZzr9GK-vGiy2jRgA7ioA0A0qgwxtCqI2slSlYB7jR2wT2mSHu2pGX_5RjCEWmz8n_hH9nx0Op00k6OT4032QhL1b0rAvGdr18vv8AH9keuwldbcHxq91w4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlapeKiqouhSoD3AjquPYjn3ktd0uDyFUJG6RHxM47a4WEIITR478Rn4JY8dd4FKJW5Q4tjT2eB7-_A0h65oF0QpZFdK3GKC0TBSOuboopfWKG659OtE9PFKDUzE8k2c54RbvwnT8ELOEW9SMtF9HBZ-ENpMNRI5MjNrFcNABOebIx3TeF5mdxfEsx1JVnHU3pnmEqaGlYhn7jl38et3BG6uUyPvfOqvJ2vQXyJfsJtKtbl6_kg8wWiQPsY6mt5cRqUxj0mgUbtBVnNKDiPyh7pbuzOiX72Kbw4wWpLHwMC40uptL3qJCX9JxS_derrnh135Xe4cmGAEOYCcXT_eP22jnAv4JE5rJWM-XyGl_7-_OoMiVFAqP9pgVXmAcF7StoZZBWXSpWmVQkxW3ACXzxitQ2uD0eCMAJclA1V5bZeqWC2-rb2R-NB7Bd0I9doBhpLTSVqJy0ro6BAYa8FlqI3pk458km0lHmNGkg25umtcS75HtKOZZm0hznV6Mp-dN1poGtAPjpQPwSpTOuyAcqw0vRQm41ege2UyT9N-RmuHvk8hCKNny-5r_JJ-Od_vNwZ-j_R_kM4-Ff1P6ZYXMX02vYRW9kSu3lpbcM_lu1kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Groundwater+Level+by+Characterizing+Multiple+Spatial+Dependencies+of+Environmental+Factors+Using+Graph%E2%80%90Based+Deep+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Wu%2C+Yinghan&rft.au=Mei%2C+Gang&rft.au=Shao%2C+Kaixuan&rft.au=Xu%2C+Nengxiong&rft.date=2025-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000520&rft.externalDBID=10.1029%252F2024JH000520&rft.externalDocID=JGR170050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |