The I-PREDICT 50th Percentile Male Finite Element Model: Development and Validation of the Torso
Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can range from minor to fatal injuries. The current standard to evaluate PPE uses Roma Plastilina No. 1 clay and has a poor correlation to human inju...
Saved in:
Published in | Annals of biomedical engineering |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
18.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0090-6964 1573-9686 1573-9686 |
DOI | 10.1007/s10439-025-03704-3 |
Cover
Loading…
Abstract | Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can range from minor to fatal injuries. The current standard to evaluate PPE uses Roma Plastilina No. 1 clay and has a poor correlation to human injuries. To provide a more suitable human surrogate for evaluating risk of injury and functional incapacitation due to BABT, the Incapacitation Prediction for Readiness in Expeditionary Domains: an Integrated Computational Tool (I-PREDICT) has developed a 50th percentile male human body model (HBM) to better understand injury mechanisms in the BABT environment. The model was developed using a hierarchical validation approach including component, regional, and whole torso level tests. Material properties were sourced from literature and I-PREDICT experimental test data, and the model was simulated in 25 different validation cases ranging from component level quasi-static tests to high-rate BABT impacts. The model was stable in all 25 simulations. CORrelation and Analysis (CORA) and BioRank were used to objectively quantify the model response. The average CORA and BioRank across all validation cases were 0.78 ± 0.18 and 0.68 ± 0.27, respectively, indicating 'good' agreement by CORA standards and 'excellent' by BioRank standards. When compared to high-rate BABT experimental impacts on post-mortem human subjects, the I-PREDICT HBM accurately predicted rib fracture probability. The ultimate goal of the I-PREDICT model is to predict injury and functional incapacitation for various in theater military applications. This study highlights the development and validation of the I-PREDICT torso and highlights initial BABT use cases. |
---|---|
AbstractList | Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can range from minor to fatal injuries. The current standard to evaluate PPE uses Roma Plastilina No. 1 clay and has a poor correlation to human injuries. To provide a more suitable human surrogate for evaluating risk of injury and functional incapacitation due to BABT, the Incapacitation Prediction for Readiness in Expeditionary Domains: an Integrated Computational Tool (I-PREDICT) has developed a 50th percentile male human body model (HBM) to better understand injury mechanisms in the BABT environment. The model was developed using a hierarchical validation approach including component, regional, and whole torso level tests. Material properties were sourced from literature and I-PREDICT experimental test data, and the model was simulated in 25 different validation cases ranging from component level quasi-static tests to high-rate BABT impacts. The model was stable in all 25 simulations. CORrelation and Analysis (CORA) and BioRank were used to objectively quantify the model response. The average CORA and BioRank across all validation cases were 0.78 ± 0.18 and 0.68 ± 0.27, respectively, indicating 'good' agreement by CORA standards and 'excellent' by BioRank standards. When compared to high-rate BABT experimental impacts on post-mortem human subjects, the I-PREDICT HBM accurately predicted rib fracture probability. The ultimate goal of the I-PREDICT model is to predict injury and functional incapacitation for various in theater military applications. This study highlights the development and validation of the I-PREDICT torso and highlights initial BABT use cases.Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can range from minor to fatal injuries. The current standard to evaluate PPE uses Roma Plastilina No. 1 clay and has a poor correlation to human injuries. To provide a more suitable human surrogate for evaluating risk of injury and functional incapacitation due to BABT, the Incapacitation Prediction for Readiness in Expeditionary Domains: an Integrated Computational Tool (I-PREDICT) has developed a 50th percentile male human body model (HBM) to better understand injury mechanisms in the BABT environment. The model was developed using a hierarchical validation approach including component, regional, and whole torso level tests. Material properties were sourced from literature and I-PREDICT experimental test data, and the model was simulated in 25 different validation cases ranging from component level quasi-static tests to high-rate BABT impacts. The model was stable in all 25 simulations. CORrelation and Analysis (CORA) and BioRank were used to objectively quantify the model response. The average CORA and BioRank across all validation cases were 0.78 ± 0.18 and 0.68 ± 0.27, respectively, indicating 'good' agreement by CORA standards and 'excellent' by BioRank standards. When compared to high-rate BABT experimental impacts on post-mortem human subjects, the I-PREDICT HBM accurately predicted rib fracture probability. The ultimate goal of the I-PREDICT model is to predict injury and functional incapacitation for various in theater military applications. This study highlights the development and validation of the I-PREDICT torso and highlights initial BABT use cases. Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can range from minor to fatal injuries. The current standard to evaluate PPE uses Roma Plastilina No. 1 clay and has a poor correlation to human injuries. To provide a more suitable human surrogate for evaluating risk of injury and functional incapacitation due to BABT, the Incapacitation Prediction for Readiness in Expeditionary Domains: an Integrated Computational Tool (I-PREDICT) has developed a 50th percentile male human body model (HBM) to better understand injury mechanisms in the BABT environment. The model was developed using a hierarchical validation approach including component, regional, and whole torso level tests. Material properties were sourced from literature and I-PREDICT experimental test data, and the model was simulated in 25 different validation cases ranging from component level quasi-static tests to high-rate BABT impacts. The model was stable in all 25 simulations. CORrelation and Analysis (CORA) and BioRank were used to objectively quantify the model response. The average CORA and BioRank across all validation cases were 0.78 ± 0.18 and 0.68 ± 0.27, respectively, indicating 'good' agreement by CORA standards and 'excellent' by BioRank standards. When compared to high-rate BABT experimental impacts on post-mortem human subjects, the I-PREDICT HBM accurately predicted rib fracture probability. The ultimate goal of the I-PREDICT model is to predict injury and functional incapacitation for various in theater military applications. This study highlights the development and validation of the I-PREDICT torso and highlights initial BABT use cases. |
Author | DiSerafino, Drew Frazer, Lance Kalmar-Gonzalo, Alex Nicolella, Dan Jones, Derek Davis, Matthew Hostetler, Zachary S. |
Author_xml | – sequence: 1 givenname: Zachary S. surname: Hostetler fullname: Hostetler, Zachary S. – sequence: 2 givenname: Drew surname: DiSerafino fullname: DiSerafino, Drew – sequence: 3 givenname: Alex surname: Kalmar-Gonzalo fullname: Kalmar-Gonzalo, Alex – sequence: 4 givenname: Derek surname: Jones fullname: Jones, Derek – sequence: 5 givenname: Lance surname: Frazer fullname: Frazer, Lance – sequence: 6 givenname: Dan surname: Nicolella fullname: Nicolella, Dan – sequence: 7 givenname: Matthew surname: Davis fullname: Davis, Matthew |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40100612$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kM1OwzAQBi0EoqXwAhyQj1wM69ixHW6oP1CpFQgVrsZONiIojUucIvH2BFq47EqfRnOYE3LYhAYJOedwxQH0deQgRcYgSRkIDZKJAzLkqRYsU0YdkiFABkxlSg7ISYzvAJwbkR6TgYReoHgyJK-rN6Rz9vg0nczHK5pC90Yfsc2x6aoa6dL1Z1Y1VYd0WuO6n-kyFFjf0Al-Yh02v5NrCvri6qpwXRUaGkra9dpVaGM4JUelqyOe7f-IPM-mq_E9Wzzczce3C5ZzIzuWJV7nqTMStfEi194pZwBkrkXpUCSIEhQq48rCeZV6WapSy9K7TKbceylG5HLn3bThY4uxs-sq5ljXrsGwjVZwbUySCZ716MUe3fo1FnbTVmvXftm_Kj2Q7IC8DTG2WP4jHOxPertLb_v09je9FeIblyx0lA |
Cites_doi | 10.1016/j.jbiomech.2007.06.020 10.4271/2018-22-0004 10.1080/13588265.2010.542335 10.15761/BEM.1000118 10.1080/15389588.2015.1015000 10.6028/NIST.IR.7627 10.1016/j.ijimpeng.2004.11.010 10.1080/10255842.2011.641122 10.4271/2020-22-0001 10.1080/10803548.2006.11076702 10.4271/2010-22-0015 10.21236/ADA005575 10.1007/s10439-024-03571-4 10.1016/S0021-9290(03)00238-0 10.1111/joa.13045 10.1016/j.jbiomech.2007.02.001 10.3389/fbioe.2022.918904 10.1080/15389588.2015.1021418 10.4271/2022-22-0004 10.1016/j.jmbbm.2015.01.017 10.1016/j.ijimpeng.2011.12.009 10.4271/2018-22-0005 10.1016/j.jmbbm.2019.103410 10.1080/10255842.2010.515984 10.1115/1.4049105 10.1002/jbmr.2241 10.1016/j.jbiomech.2014.06.004 10.21236/ADA089163 10.1115/1.4048644 10.3389/fbioe.2022.843148 10.4324/9781315151731 10.1093/milmed/usad272 10.1007/s11340-018-00456-1 10.1016/j.jmbbm.2016.02.031 10.3389/fbioe.2021.712656 10.1016/j.medengphy.2010.06.015 10.1007/s10439-020-02613-x 10.4271/2001-22-0001 10.1007/s10439-024-03522-z |
ContentType | Journal Article |
Copyright | 2025. The Author(s) under exclusive licence to Biomedical Engineering Society. |
Copyright_xml | – notice: 2025. The Author(s) under exclusive licence to Biomedical Engineering Society. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s10439-025-03704-3 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
ExternalDocumentID | 40100612 10_1007_s10439_025_03704_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Office of Naval Research grantid: W81XWH1590001 |
GroupedDBID | --- -DZ -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5RE 5VS 67N 67Z 6J9 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BENPR BGNMA BHPHI BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L7B LAK LLZTM M4Y M7P MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S1Z S27 S3A S3B SAP SBL SBY SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~EX ~KM NPM 7X8 ABRTQ TUS |
ID | FETCH-LOGICAL-c184t-92b7c5a84e78b3c7ba6a8004c73fae32ee406e68afdab65b4f6f74fba9451bb43 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Fri Sep 05 10:17:04 EDT 2025 Thu Mar 20 02:20:31 EDT 2025 Sun Jul 06 05:08:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thoracic injury Incapacitation prediction Finite element modeling Blunt trauma Behind armor blunt trauma |
Language | English |
License | 2025. The Author(s) under exclusive licence to Biomedical Engineering Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c184t-92b7c5a84e78b3c7ba6a8004c73fae32ee406e68afdab65b4f6f74fba9451bb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40100612 |
PQID | 3178829319 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3178829319 pubmed_primary_40100612 crossref_primary_10_1007_s10439_025_03704_3 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-18 2025-Mar-18 20250318 |
PublicationDateYYYYMMDD | 2025-03-18 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2025 |
References | 3704_CR53 3704_CR55 3704_CR56 3704_CR50 3704_CR17 ML Davis (3704_CR35) 2017 3704_CR57 3704_CR58 N Yoganandan (3704_CR5) 2023; 188 3704_CR15 J Lindner (3704_CR24) 2017; 2 HJ Mertz (3704_CR54) 1984; 93 3704_CR6 3704_CR7 3704_CR9 W Zeng (3704_CR23) 2021; 9 D Schwartz (3704_CR8) 2015; 16 OA Shergold (3704_CR33) 2006; 32 VB Kote (3704_CR16) 2024 X Zhai (3704_CR30) 2019; 59 P Gaur (3704_CR28) 2016; 60 Z Li (3704_CR21) 2013; 16 3704_CR29 B Song (3704_CR31) 2007; 40 3704_CR26 K Comley (3704_CR32) 2012; 46 Y-S Kang (3704_CR52) 2021; 49 C Bir (3704_CR47) 2004; 37 J John (3704_CR11) 2022; 10 J Andermahr (3704_CR59) 2007; 20 Q Zhang (3704_CR41) 2014; 47 TL Bredbenner (3704_CR60) 2014; 29 A Hagedorn (3704_CR39) 2022; 10 CR Bass (3704_CR1) 2006; 12 L Cannon (3704_CR2) 2001; 147 3704_CR34 Z Li (3704_CR19) 2010; 32 CM Weaver (3704_CR12) 2021; 7 3704_CR36 3704_CR37 CK Kroell (3704_CR49) 1974; 83 M Franklyn (3704_CR4) 2017 ZS Hostetler (3704_CR13) 2023; 66 MJ Katzenberger (3704_CR20) 2020; 102 D DiSerafino (3704_CR18) 2024 JR Kerrigan (3704_CR42) 2010; 46 3704_CR44 3704_CR45 AL Forster (3704_CR3) 2009 EDP de Dios (3704_CR43) 2011; 16 DP Nicolella (3704_CR61) 2012; 15 DC Hartlen (3704_CR40) 2022; 10 3704_CR46 3704_CR48 S Duprey (3704_CR22) 2008; 41 D Cronin (3704_CR14) 2021; 143 SA Holcombe (3704_CR25) 2019; 235 C Thunert (3704_CR38) 2017 M Iwamoto (3704_CR10) 2015; 16 DC Viano (3704_CR51) 1989; 98 D Poulard (3704_CR27) 2015; 45 |
References_xml | – ident: 3704_CR26 – volume: 41 start-page: 200 issue: 1 year: 2008 ident: 3704_CR22 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.06.020 – ident: 3704_CR44 doi: 10.4271/2018-22-0004 – volume: 16 start-page: 169 issue: 2 year: 2011 ident: 3704_CR43 publication-title: Int. J. Crashworthiness doi: 10.1080/13588265.2010.542335 – ident: 3704_CR36 – ident: 3704_CR55 – volume: 2 start-page: 1 issue: 2 year: 2017 ident: 3704_CR24 publication-title: Biol. Eng. Med. doi: 10.15761/BEM.1000118 – volume: 16 start-page: S36 issue: sup1 year: 2015 ident: 3704_CR10 publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2015.1015000 – volume-title: Development of Soft Armor Conditioning Protocols for NIJ Standard-0101.06: Analytical Results year: 2009 ident: 3704_CR3 doi: 10.6028/NIST.IR.7627 – volume: 32 start-page: 1384 issue: 9 year: 2006 ident: 3704_CR33 publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2004.11.010 – volume: 16 start-page: 819 issue: 8 year: 2013 ident: 3704_CR21 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.641122 – ident: 3704_CR37 doi: 10.4271/2020-22-0001 – volume: 12 start-page: 429 issue: 4 year: 2006 ident: 3704_CR1 publication-title: Int. J. Occup. Saf. Ergon. doi: 10.1080/10803548.2006.11076702 – ident: 3704_CR46 doi: 10.4271/2010-22-0015 – ident: 3704_CR7 doi: 10.21236/ADA005575 – year: 2024 ident: 3704_CR16 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-024-03571-4 – volume: 20 start-page: 48 issue: 1 year: 2007 ident: 3704_CR59 publication-title: Clin. Anat. Off. J. Am. Assoc. Clin. Anat. Br. Assoc. Clin. Anat. – ident: 3704_CR15 – volume-title: Development and Full Body Validation of a 5th Percentile Female Finite Element Model year: 2017 ident: 3704_CR35 – volume: 37 start-page: 73 issue: 1 year: 2004 ident: 3704_CR47 publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00238-0 – volume: 235 start-page: 883 issue: 5 year: 2019 ident: 3704_CR25 publication-title: J. Anat. doi: 10.1111/joa.13045 – volume: 40 start-page: 2999 issue: 13 year: 2007 ident: 3704_CR31 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.02.001 – volume: 98 start-page: 1690 year: 1989 ident: 3704_CR51 publication-title: SAE Trans. – volume: 10 year: 2022 ident: 3704_CR11 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.918904 – ident: 3704_CR56 – ident: 3704_CR29 – volume: 16 start-page: S49 issue: sup1 year: 2015 ident: 3704_CR8 publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2015.1021418 – volume: 66 start-page: 2022 issue: 1 year: 2023 ident: 3704_CR13 publication-title: Stapp Car Crash J. doi: 10.4271/2022-22-0004 – volume: 45 start-page: 45 year: 2015 ident: 3704_CR27 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.01.017 – volume: 46 start-page: 1 year: 2012 ident: 3704_CR32 publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2011.12.009 – ident: 3704_CR45 doi: 10.4271/2018-22-0005 – volume: 83 start-page: 3724 year: 1974 ident: 3704_CR49 publication-title: SAE Trans. – volume: 102 year: 2020 ident: 3704_CR20 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.103410 – ident: 3704_CR53 – volume: 147 start-page: 87 issue: 1 year: 2001 ident: 3704_CR2 publication-title: BMJ Mil. Health – volume: 15 start-page: 101 issue: 2 year: 2012 ident: 3704_CR61 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2010.515984 – volume: 7 start-page: 021004 issue: 2 year: 2021 ident: 3704_CR12 publication-title: ASCE–ASME J. Risk Uncertain. Eng. Syst. B doi: 10.1115/1.4049105 – ident: 3704_CR34 – volume-title: CORAPlus Release 4.0. 4 User’s Manual year: 2017 ident: 3704_CR38 – volume: 29 start-page: 2090 issue: 9 year: 2014 ident: 3704_CR60 publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2241 – volume: 47 start-page: 2563 issue: 11 year: 2014 ident: 3704_CR41 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.06.004 – ident: 3704_CR6 doi: 10.21236/ADA089163 – volume: 143 issue: 3 year: 2021 ident: 3704_CR14 publication-title: J. Biomech. Eng. doi: 10.1115/1.4048644 – volume: 10 year: 2022 ident: 3704_CR40 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.843148 – ident: 3704_CR57 – volume-title: Military Injury Biomechanics: The Cause and Prevention of Impact Injuries year: 2017 ident: 3704_CR4 doi: 10.4324/9781315151731 – volume: 188 start-page: 598 issue: Supplement_6 year: 2023 ident: 3704_CR5 publication-title: Mil. Med. doi: 10.1093/milmed/usad272 – ident: 3704_CR50 – ident: 3704_CR17 – volume: 10 start-page: 291 issue: 09-10-02-0013 year: 2022 ident: 3704_CR39 publication-title: SAE Int. J. Transp. Saf. – volume: 59 start-page: 1299 year: 2019 ident: 3704_CR30 publication-title: Exp. Mech. doi: 10.1007/s11340-018-00456-1 – volume: 93 start-page: 351 year: 1984 ident: 3704_CR54 publication-title: SAE Trans. – ident: 3704_CR9 – volume: 60 start-page: 603 year: 2016 ident: 3704_CR28 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.02.031 – volume: 9 year: 2021 ident: 3704_CR23 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.712656 – ident: 3704_CR58 – volume: 32 start-page: 998 issue: 9 year: 2010 ident: 3704_CR19 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.06.015 – volume: 49 start-page: 900 year: 2021 ident: 3704_CR52 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02613-x – ident: 3704_CR48 doi: 10.4271/2001-22-0001 – volume: 46 start-page: 440 year: 2010 ident: 3704_CR42 publication-title: Biomed. Sci. Instrum. – year: 2024 ident: 3704_CR18 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-024-03522-z |
SSID | ssj0011835 |
Score | 2.4430578 |
SecondaryResourceType | online_first |
Snippet | Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | The I-PREDICT 50th Percentile Male Finite Element Model: Development and Validation of the Torso |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40100612 https://www.proquest.com/docview/3178829319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegkxB7QDA-Vr5kJN6ioDSxY4e3bW3ZYC0vKap4CXZii0pdO5Xsgf31nB0n7j6QBi9RFamOdPfL5Xe--50Res8oVYopDrlJRczWTRoKTUUoKdeRkCyTdkjSZJoez8jnOZ37U1GtuqSWH8rLW3Ul_-NVuAd-NSrZf_BstyjcgN_gX7iCh-F6Zx-fhGDE4clRHtCo_mk62k2_JbzrwQRifzBeGFIZjJoucXv02dLsAmw1C9n6wTfg41VHHw0bzdfAxbe5q5-13Gj2rXuVn2fYIcToRmqnMPwujK7rt99hHS4gPAm9sEd-B8ONL0x8EcszsQk_rVeXYtmpb3yLjztUYKg2bsCw26yIqenWuhpfWRJmaTv9-ua9GxE9ahXOwJzCZkVmijn--9XW7Kdfi_Hs9LTIR_P8PtqJIW-IemjnYHx4OO0KSxDBqB2h657pdFROTXntGVe5yl8SEEtE8sfokcsg8EEDhyfonlrtod2tuZJ76MHEdUw8RT8AI7jDCDYYwR4j2GAENxjBDiPYYuQj3kIIBoRgjxC81hgQgi1CnqHZeJQfHYfuVI2whGy-DrNYspIKThTjMimZFKmArIGULNFCJbFSwPFUyoWuhEypJDrVjGgpMkIHUpLkOeqtwOX7COs4qTLOBC_LikDo5yUsXaU8gdd_AGv3UdDarzhvhqcUfky2sXYB1i6stYukj961Ji4gxpnClVip9cWvAjguJIIZfC366EVj-249Eg0sTX95h3-_Qg89KF-jXr25UG-AU9byrcPJH38jc9Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+I-PREDICT+50th+Percentile+Male+Finite+Element+Model%3A+Development+and+Validation+of+the+Torso&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Hostetler%2C+Zachary+S&rft.au=DiSerafino%2C+Drew&rft.au=Kalmar-Gonzalo%2C+Alex&rft.au=Jones%2C+Derek&rft.date=2025-03-18&rft.issn=1573-9686&rft.eissn=1573-9686&rft_id=info:doi/10.1007%2Fs10439-025-03704-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |