Investigation of a parallel contact force robotic end-effector for thin-walled parts grinding and deburring with uncertain position
This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force end-effector designed to address the challenge of contact force stabilization and response in robotic grinding and deburring of thin-walled p...
Saved in:
Published in | Precision engineering Vol. 96; pp. 587 - 599 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force end-effector designed to address the challenge of contact force stabilization and response in robotic grinding and deburring of thin-walled parts. Unlike conventional active force control methods that suffer from force overshoot due to dynamic response limitations, the proposed solution integrates a hybrid stiffness mechanism combining positive (multi-layer bending structures) and negative (inclined beams) stiffness elements to achieve sensor-less force regulation. The design features a parallel architecture with 120° distributed limbs, ensuring coaxial force distribution and vibration suppression. A comprehensive analytical model is developed, incorporating combined stiffness theory and elliptic integrals to characterize the negative stiffness beam's buckling behavior, with parameter optimization to maximize the constant-force stroke. Finite element analysis confirms uniform stress distribution under multi-axis loading (100N force/20N·m torque), while experimental validation on magnesium-aluminum alloy workpieces demonstrates the mechanism's ability to maintain contact force within ±5 % deviation over a 4.5 mm stroke range, even with ±2 mm positional errors. The passive design eliminates the need for complex control systems, offering significant advantages in cost reduction, process adaptability through quick-change couplings, and scalability for diverse thin-wall geometries. This paper provides an insight into the potential of purely passive methods in achieving accurate and smooth force control.
•An integrated passive compliant end-effector with positive and negative stiffness was proposed to achieve sensorless constant force regulation through a parallel architecture.•A comprehensive stiffness model is developed by combining elliptical integration and parameter optimization to analyze the buckling behavior of negative stiffness beams and maximize constant force range.•Smooth force control experiments were conducted for deburring and polishing tasks on Aluminium alloy thin-walled components, with contact force deviation stabilised within ±5%. |
---|---|
AbstractList | This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force end-effector designed to address the challenge of contact force stabilization and response in robotic grinding and deburring of thin-walled parts. Unlike conventional active force control methods that suffer from force overshoot due to dynamic response limitations, the proposed solution integrates a hybrid stiffness mechanism combining positive (multi-layer bending structures) and negative (inclined beams) stiffness elements to achieve sensor-less force regulation. The design features a parallel architecture with 120° distributed limbs, ensuring coaxial force distribution and vibration suppression. A comprehensive analytical model is developed, incorporating combined stiffness theory and elliptic integrals to characterize the negative stiffness beam's buckling behavior, with parameter optimization to maximize the constant-force stroke. Finite element analysis confirms uniform stress distribution under multi-axis loading (100N force/20N·m torque), while experimental validation on magnesium-aluminum alloy workpieces demonstrates the mechanism's ability to maintain contact force within ±5 % deviation over a 4.5 mm stroke range, even with ±2 mm positional errors. The passive design eliminates the need for complex control systems, offering significant advantages in cost reduction, process adaptability through quick-change couplings, and scalability for diverse thin-wall geometries. This paper provides an insight into the potential of purely passive methods in achieving accurate and smooth force control.
•An integrated passive compliant end-effector with positive and negative stiffness was proposed to achieve sensorless constant force regulation through a parallel architecture.•A comprehensive stiffness model is developed by combining elliptical integration and parameter optimization to analyze the buckling behavior of negative stiffness beams and maximize constant force range.•Smooth force control experiments were conducted for deburring and polishing tasks on Aluminium alloy thin-walled components, with contact force deviation stabilised within ±5%. |
Author | Zhong, Zhiguo Yin, Lairong Xu, Du Mo, Haijie |
Author_xml | – sequence: 1 givenname: Du surname: Xu fullname: Xu, Du email: xudu@csust.edu.com organization: College of Mechanical and Transportation Engineering, Changsha University of Science and Technology, 410003, Changsha, China – sequence: 2 givenname: Haijie surname: Mo fullname: Mo, Haijie email: 23203030726@stu.csust.edu.cn organization: College of Mechanical and Transportation Engineering, Changsha University of Science and Technology, 410003, Changsha, China – sequence: 3 givenname: Zhiguo surname: Zhong fullname: Zhong, Zhiguo email: zhiguozhong@stu.csust.edu.cn organization: College of Mechanical and Transportation Engineering, Changsha University of Science and Technology, 410003, Changsha, China – sequence: 4 givenname: Lairong orcidid: 0000-0001-6423-9713 surname: Yin fullname: Yin, Lairong email: yinlairong@hotmail.com organization: College of Mechanical and Transportation Engineering, Changsha University of Science and Technology, 410003, Changsha, China |
BookMark | eNqNkDtPwzAQgD0UibbwHyz2BDuJ04QNlVelSiwwWxf7nLoKdmW7rZj54ySCgZHpdHf67vEtyMx5h4TccJZzxuvbfX4IqGy0Y9n1ecEKkbM6ZwWfkTnjFc_qUrSXZBHjnjG2alg1J18bd8KYbA9p5Kg3FOgBAgwDDlR5l0AlanxQSIPvfLKKotMZGoMq-TC1aNpZl50nRE9sirQP1mnregpOU43dMYQpO9u0o0enMCSwjh58tNPWK3JhYIh4_RuX5P3p8W39km1fnzfr-22meFOlrGmEKEBwXaxKASBWqMtGYcHKBhBZ2ykDrWFdqZU2ZSGAQwVtjW3DuWobLJfk7meuCj7GgEYegv2A8Ck5k5NCuZd_FcpJoWS1HBWO8MMPjOOFJ4tBRmVx_EXbEUlSe_ufMd_yp4nU |
Cites_doi | 10.1016/j.eng.2022.08.022 10.1016/j.mechatronics.2023.103054 10.1108/AA-01-2022-0010 10.1080/10803548.2017.1373487 10.1109/TASE.2017.2733553 10.1007/s10846-023-01970-8 10.1016/j.mechmachtheory.2017.08.017 10.1177/00202940221090970 10.1038/35069035 10.1089/soro.2023.0116 10.1080/0951192X.2022.2027017 10.3390/act7040065 10.1115/1.4003922 10.1109/TMECH.2020.3003992 10.1016/j.jmsy.2021.01.004 10.1080/21642583.2019.1588804 10.1109/LRA.2022.3187866 10.1007/s00170-023-12792-1 10.1016/j.mechmachtheory.2016.10.007 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2025.06.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 599 |
ExternalDocumentID | 10_1016_j_precisioneng_2025_06_021 S0141635925002090 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AAYXX AFXIZ AGRNS BNPGV CITATION |
ID | FETCH-LOGICAL-c184t-88552a51d2735aa57ed38ce2038aee09bcfa9f0b3dcdf325a1a4a96e9811c98e3 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Thu Jul 31 00:32:45 EDT 2025 Sat Aug 16 17:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Precision machining Hybrid stiffness Constant-force mechanism Passive compliance Robotic deburring Thin-wall manufacturing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c184t-88552a51d2735aa57ed38ce2038aee09bcfa9f0b3dcdf325a1a4a96e9811c98e3 |
ORCID | 0000-0001-6423-9713 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2025_06_021 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2025_06_021 |
PublicationCentury | 2000 |
PublicationDate | October 2025 2025-10-00 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chu, Li, Huang (bib1) 2024; 130 Ren, Zhang, Zhang (bib27) 2019; 7 Liu, Chen (bib10) 2023; 10 Zhao, Jia, He, Wang (bib25) 2008 Wei, Xu (bib20) 2021; 26 Ying, Pourhejazy, Cheng, Wang (bib4) 2021; 58 Zhang, Zhou (bib26) 2022; 1 Bartyzel, Polchlopek, Rzepka (bib8) 2023; 109 Tang, Xin, Wang, Laschi (bib15) 2024 Yoon, Na, Song (bib6) 2024 Wang, Li, Men, Fu, Yang, Song (bib9) 2022; 12 Chen, Xie, Zhang (bib14) 2022; 71 Caldarelli, Colomé, Torras (bib11) 2022; 7 Wang, Xu (bib16) 2018; 119 Zhang, Wang, Xu (bib17) 2018; 7 Zhao, Chen, Qian, Tao, Ding (bib7) 2023; 30 Xu, Hu (bib13) 2024; 57 Xu (bib18) 2017; 9 Lakes, Lee, Bersie, Wang (bib21) 2001; 410 Bianchini, Ceruti, D'Anniballe, Rossi, Zompi (bib5) 2022; 42 Li, Wang, Wang, Wang (bib12) 2022; 35 Wei, Xu (bib22) 2020 Wang, Xu (bib19) 2018; 15 Shin, Park (bib3) 2019; 25 Wang, Xu (bib23) 2017; 108 Zhao, Chen, Li, Ding (bib2) 2023; 95 Holst, Teichert, Jensen (bib24) 2011; 133 Lakes (10.1016/j.precisioneng.2025.06.021_bib21) 2001; 410 Zhao (10.1016/j.precisioneng.2025.06.021_bib2) 2023; 95 Caldarelli (10.1016/j.precisioneng.2025.06.021_bib11) 2022; 7 Chu (10.1016/j.precisioneng.2025.06.021_bib1) 2024; 130 Tang (10.1016/j.precisioneng.2025.06.021_bib15) 2024 Yoon (10.1016/j.precisioneng.2025.06.021_bib6) 2024 Li (10.1016/j.precisioneng.2025.06.021_bib12) 2022; 35 Shin (10.1016/j.precisioneng.2025.06.021_bib3) 2019; 25 Ying (10.1016/j.precisioneng.2025.06.021_bib4) 2021; 58 Zhang (10.1016/j.precisioneng.2025.06.021_bib26) 2022; 1 Zhang (10.1016/j.precisioneng.2025.06.021_bib17) 2018; 7 Xu (10.1016/j.precisioneng.2025.06.021_bib13) 2024; 57 Wei (10.1016/j.precisioneng.2025.06.021_bib22) 2020 Holst (10.1016/j.precisioneng.2025.06.021_bib24) 2011; 133 Wang (10.1016/j.precisioneng.2025.06.021_bib16) 2018; 119 Wei (10.1016/j.precisioneng.2025.06.021_bib20) 2021; 26 Zhao (10.1016/j.precisioneng.2025.06.021_bib25) 2008 Liu (10.1016/j.precisioneng.2025.06.021_bib10) 2023; 10 Chen (10.1016/j.precisioneng.2025.06.021_bib14) 2022; 71 Bartyzel (10.1016/j.precisioneng.2025.06.021_bib8) 2023; 109 Xu (10.1016/j.precisioneng.2025.06.021_bib18) 2017; 9 Wang (10.1016/j.precisioneng.2025.06.021_bib23) 2017; 108 Wang (10.1016/j.precisioneng.2025.06.021_bib9) 2022; 12 Zhao (10.1016/j.precisioneng.2025.06.021_bib7) 2023; 30 Wang (10.1016/j.precisioneng.2025.06.021_bib19) 2018; 15 Bianchini (10.1016/j.precisioneng.2025.06.021_bib5) 2022; 42 Ren (10.1016/j.precisioneng.2025.06.021_bib27) 2019; 7 |
References_xml | – volume: 26 start-page: 818 year: 2021 end-page: 829 ident: bib20 article-title: Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism publication-title: IEEE ASME Trans Mechatron – volume: 95 year: 2023 ident: bib2 article-title: Robotic peg-in-hole assembly based on reversible dynamic movement primitives and trajectory optimization publication-title: Mechatronics – volume: 410 start-page: 565 year: 2001 end-page: 567 ident: bib21 article-title: Extreme damping in composite materials with negative-stiffness inclusions publication-title: Nature – volume: 108 start-page: 1 year: 2017 end-page: 13 ident: bib23 article-title: Design of a flexure-based constant-force XY precision positioning stage publication-title: Mech Mach Theor – volume: 7 year: 2018 ident: bib17 article-title: Design, analysis and testing of a new compliant compound constant-force mechanism publication-title: Actuators – volume: 42 start-page: 638 year: 2022 end-page: 652 ident: bib5 article-title: Inventive redesign for automatic assembly in the household appliances industry publication-title: Assem Autom – volume: 109 year: 2023 ident: bib8 article-title: Reinforcement learning with stereo-view observation for robust electronic component robotic insertion publication-title: J Intell Rob Syst – volume: 130 start-page: 1969 year: 2024 end-page: 1985 ident: bib1 article-title: Self-calibration method for installation angle of three-dimensional force sensor in active compliance assembly system publication-title: Int J Adv Des Manuf Technol – volume: 10 year: 2023 ident: bib10 article-title: Space robot On-Orbit operation of insertion and extraction impedance control based on adaptive neural network publication-title: Aerospace – volume: 1 start-page: 111 year: 2022 end-page: 119 ident: bib26 article-title: Recent advances in non-gaussian stochastic systems control theory and its applications publication-title: Int J Network Dyn Intell – volume: 15 start-page: 1114 year: 2018 end-page: 1126 ident: bib19 article-title: Design and testing of a flexure-based constant-force stage for biological cell micromanipulation publication-title: IEEE Trans Autom Sci Eng – volume: 57 start-page: 40 year: 2024 end-page: 50 ident: bib13 article-title: Modelling and continuous stiffness control of robot with compliant wrist for misalignment shaft-hole assembly publication-title: Meas Control – year: 2020 ident: bib22 article-title: Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism publication-title: IEEE ASME Trans Mechatron – start-page: 86 year: 2024 ident: bib6 article-title: Assembly of low-stiffness parts through admittance control with adaptive stiffness publication-title: Robot Comput Integrated Manuf – volume: 133 year: 2011 ident: bib24 article-title: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms publication-title: J Mech Des – volume: 30 start-page: 83 year: 2023 end-page: 92 ident: bib7 article-title: Human-robot collaboration framework based on impedance control in robotic assembly publication-title: Engineering – volume: 58 start-page: 452 year: 2021 end-page: 466 ident: bib4 article-title: Cyber-physical assembly system-based optimization for robotic assembly sequence planning publication-title: J Manuf Syst – volume: 7 start-page: 8823 year: 2022 end-page: 8830 ident: bib11 article-title: Perturbation-based stiffness inference in variable impedance control publication-title: IEEE Rob Autom Lett – volume: 9 year: 2017 ident: bib18 article-title: Design of a large-stroke bistable mechanism for the application in constant-force micropositioning stage publication-title: J Mech Robot Trans ASME – volume: 35 start-page: 873 year: 2022 end-page: 889 ident: bib12 article-title: An adaptive force and posture control strategy for automated wiring terminal assembly publication-title: Int J Comput Integrated Manuf – year: 2008 ident: bib25 article-title: Post-buckling and snap-through behavior of inclined slender beams – volume: 25 start-page: 110 year: 2019 end-page: 122 ident: bib3 article-title: Ergonomic interventions for prevention of work-related musculoskeletal disorders in a small manufacturing assembly line publication-title: Int J Occup Saf Ergon – volume: 7 start-page: 158 year: 2019 end-page: 170 ident: bib27 article-title: An introductory survey of probability density function control publication-title: Sys Sci Control Eng – volume: 12 year: 2022 ident: bib9 article-title: Deep deterministic policy gradient with reward function based on fuzzy logic for robotic Peg-in-Hole assembly tasks publication-title: Appl Sci-Basel – volume: 71 year: 2022 ident: bib14 article-title: Position/force visual-sensing-based robotic sheet-like peg-in-hole assembly publication-title: IEEE Trans Instrum Meas – volume: 119 start-page: 1 year: 2018 end-page: 21 ident: bib16 article-title: Design and modeling of constant-force mechanisms: a survey publication-title: Mech Mach Theor – year: 2024 ident: bib15 article-title: Learning-based control for soft robot-environment interaction with force/position tracking capability publication-title: Soft Robot – volume: 30 start-page: 83 year: 2023 ident: 10.1016/j.precisioneng.2025.06.021_bib7 article-title: Human-robot collaboration framework based on impedance control in robotic assembly publication-title: Engineering doi: 10.1016/j.eng.2022.08.022 – volume: 12 year: 2022 ident: 10.1016/j.precisioneng.2025.06.021_bib9 article-title: Deep deterministic policy gradient with reward function based on fuzzy logic for robotic Peg-in-Hole assembly tasks publication-title: Appl Sci-Basel – start-page: 86 year: 2024 ident: 10.1016/j.precisioneng.2025.06.021_bib6 article-title: Assembly of low-stiffness parts through admittance control with adaptive stiffness publication-title: Robot Comput Integrated Manuf – volume: 95 year: 2023 ident: 10.1016/j.precisioneng.2025.06.021_bib2 article-title: Robotic peg-in-hole assembly based on reversible dynamic movement primitives and trajectory optimization publication-title: Mechatronics doi: 10.1016/j.mechatronics.2023.103054 – volume: 42 start-page: 638 year: 2022 ident: 10.1016/j.precisioneng.2025.06.021_bib5 article-title: Inventive redesign for automatic assembly in the household appliances industry publication-title: Assem Autom doi: 10.1108/AA-01-2022-0010 – volume: 25 start-page: 110 year: 2019 ident: 10.1016/j.precisioneng.2025.06.021_bib3 article-title: Ergonomic interventions for prevention of work-related musculoskeletal disorders in a small manufacturing assembly line publication-title: Int J Occup Saf Ergon doi: 10.1080/10803548.2017.1373487 – volume: 9 year: 2017 ident: 10.1016/j.precisioneng.2025.06.021_bib18 article-title: Design of a large-stroke bistable mechanism for the application in constant-force micropositioning stage publication-title: J Mech Robot Trans ASME – volume: 15 start-page: 1114 year: 2018 ident: 10.1016/j.precisioneng.2025.06.021_bib19 article-title: Design and testing of a flexure-based constant-force stage for biological cell micromanipulation publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2017.2733553 – volume: 109 year: 2023 ident: 10.1016/j.precisioneng.2025.06.021_bib8 article-title: Reinforcement learning with stereo-view observation for robust electronic component robotic insertion publication-title: J Intell Rob Syst doi: 10.1007/s10846-023-01970-8 – volume: 119 start-page: 1 year: 2018 ident: 10.1016/j.precisioneng.2025.06.021_bib16 article-title: Design and modeling of constant-force mechanisms: a survey publication-title: Mech Mach Theor doi: 10.1016/j.mechmachtheory.2017.08.017 – volume: 57 start-page: 40 year: 2024 ident: 10.1016/j.precisioneng.2025.06.021_bib13 article-title: Modelling and continuous stiffness control of robot with compliant wrist for misalignment shaft-hole assembly publication-title: Meas Control doi: 10.1177/00202940221090970 – year: 2020 ident: 10.1016/j.precisioneng.2025.06.021_bib22 article-title: Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism publication-title: IEEE ASME Trans Mechatron – volume: 410 start-page: 565 year: 2001 ident: 10.1016/j.precisioneng.2025.06.021_bib21 article-title: Extreme damping in composite materials with negative-stiffness inclusions publication-title: Nature doi: 10.1038/35069035 – year: 2024 ident: 10.1016/j.precisioneng.2025.06.021_bib15 article-title: Learning-based control for soft robot-environment interaction with force/position tracking capability publication-title: Soft Robot doi: 10.1089/soro.2023.0116 – volume: 1 start-page: 111 year: 2022 ident: 10.1016/j.precisioneng.2025.06.021_bib26 article-title: Recent advances in non-gaussian stochastic systems control theory and its applications publication-title: Int J Network Dyn Intell – volume: 35 start-page: 873 year: 2022 ident: 10.1016/j.precisioneng.2025.06.021_bib12 article-title: An adaptive force and posture control strategy for automated wiring terminal assembly publication-title: Int J Comput Integrated Manuf doi: 10.1080/0951192X.2022.2027017 – year: 2008 ident: 10.1016/j.precisioneng.2025.06.021_bib25 – volume: 7 year: 2018 ident: 10.1016/j.precisioneng.2025.06.021_bib17 article-title: Design, analysis and testing of a new compliant compound constant-force mechanism publication-title: Actuators doi: 10.3390/act7040065 – volume: 133 year: 2011 ident: 10.1016/j.precisioneng.2025.06.021_bib24 article-title: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms publication-title: J Mech Des doi: 10.1115/1.4003922 – volume: 10 year: 2023 ident: 10.1016/j.precisioneng.2025.06.021_bib10 article-title: Space robot On-Orbit operation of insertion and extraction impedance control based on adaptive neural network publication-title: Aerospace – volume: 26 start-page: 818 year: 2021 ident: 10.1016/j.precisioneng.2025.06.021_bib20 article-title: Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism publication-title: IEEE ASME Trans Mechatron doi: 10.1109/TMECH.2020.3003992 – volume: 58 start-page: 452 year: 2021 ident: 10.1016/j.precisioneng.2025.06.021_bib4 article-title: Cyber-physical assembly system-based optimization for robotic assembly sequence planning publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.01.004 – volume: 7 start-page: 158 year: 2019 ident: 10.1016/j.precisioneng.2025.06.021_bib27 article-title: An introductory survey of probability density function control publication-title: Sys Sci Control Eng doi: 10.1080/21642583.2019.1588804 – volume: 7 start-page: 8823 year: 2022 ident: 10.1016/j.precisioneng.2025.06.021_bib11 article-title: Perturbation-based stiffness inference in variable impedance control publication-title: IEEE Rob Autom Lett doi: 10.1109/LRA.2022.3187866 – volume: 130 start-page: 1969 year: 2024 ident: 10.1016/j.precisioneng.2025.06.021_bib1 article-title: Self-calibration method for installation angle of three-dimensional force sensor in active compliance assembly system publication-title: Int J Adv Des Manuf Technol doi: 10.1007/s00170-023-12792-1 – volume: 108 start-page: 1 year: 2017 ident: 10.1016/j.precisioneng.2025.06.021_bib23 article-title: Design of a flexure-based constant-force XY precision positioning stage publication-title: Mech Mach Theor doi: 10.1016/j.mechmachtheory.2016.10.007 – volume: 71 year: 2022 ident: 10.1016/j.precisioneng.2025.06.021_bib14 article-title: Position/force visual-sensing-based robotic sheet-like peg-in-hole assembly publication-title: IEEE Trans Instrum Meas |
SSID | ssj0007804 |
Score | 2.4229672 |
Snippet | This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 587 |
SubjectTerms | Constant-force mechanism Hybrid stiffness Passive compliance Precision machining Robotic deburring Thin-wall manufacturing |
Title | Investigation of a parallel contact force robotic end-effector for thin-walled parts grinding and deburring with uncertain position |
URI | https://dx.doi.org/10.1016/j.precisioneng.2025.06.021 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMetChYYEE9RHpUHVtM87CQeGKqKqoDoRKVukZ-lqEqqEMTGwhfHl4cIEgMSoxNfFJ2tu7P1898IXSlLrTARI1YmmlCrKOGCRSQWPpMug1lV3Rn5OIumc3q_YIseGrdnYQCrbGJ_HdOraN08GTbeHG5WqyFgSa6YYNwlcVfzcFi3UxrDLL_--MY8QGCnxhh9Ar1b4dGK8doU7UU22dKtFQNWaXkG_u9JqpN4Jvtor6kY8aj-qQPUM9kh2u3oCB6hz45aRp7h3GKBQdN7vTZrDDC6UCV21akyuMhl7j6ETaZJzXLkBbzC5fMqI-9gosG2fMXLYlUdecEi01gbCZuFrgU7t9hlw5olwC31dYzmk9un8ZQ0tysQ5VZ1JUkSxgLBfO0KGCYEi40OE2UCL0yEMR6XygpuPRlqpW0YMOELKnhkeOL7iicmPEFbmfPcKcIeN8oqEUaRZVRFsdAy8CyTNJFALtI-Clt3pptaRCNt6bKXtDsIKQxCCqhd4PfRTev59MeUSF20_4P92T_tz9EOtGpy7wJtlcWbuXQVSCkH1RQboO3R3cN09gXEuuG_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JasMwEIZFSA5tD6UrTVcdehXxJkc69BBCg9MspwRyM1pbl2AH16UP0Bev5KW40EOhR1uMMSMxMxKf_gHgXuhAMxVipDmRKNAiQJThEA2Zi7nJYFqUPSMXyzBaB08bvOmAcXMXxmKVdeyvYnoZres3g9qbg12SDCyWZIoJTE0SNzUPNfv2nlWnwl3QG01n0fI7IFuNnYpkdJE1aLRHS8xrlze9bNJns130cCnn6bm_56lW7pkcgcO6aISj6r-OQUelJ-CgJSV4Cj5bghlZCjMNGbSy3tut2kLLozNRQFOgCgXzjGfmQ1ClElU4R5bbIVi8JCn6sCbS2hZv8DlPylsvkKUSSsXteaF5soe30CTECieADfh1BtaTx9U4QnWDBSTMxq5AhGDsMexKU8NgxvBQSZ8I5Tk-YUo5lAvNqHa4L4XUvoeZywJGQ0WJ6wpKlH8Ouqnx3AWADlVCC-aHocaBCIdMcs_RmAeEW3gx6AO_cWe8q3Q04gYwe43bkxDbSYgtbee5ffDQeD7-sSpiE_D_YH_5T_s7sBetFvN4Pl3OrsC-HalAvmvQLfJ3dWMKkoLf1gvuC3vO5HA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+a+parallel+contact+force+robotic+end-effector+for+thin-walled+parts+grinding+and+deburring+with+uncertain+position&rft.jtitle=Precision+engineering&rft.au=Xu%2C+Du&rft.au=Mo%2C+Haijie&rft.au=Zhong%2C+Zhiguo&rft.au=Yin%2C+Lairong&rft.date=2025-10-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.volume=96&rft.spage=587&rft.epage=599&rft_id=info:doi/10.1016%2Fj.precisioneng.2025.06.021&rft.externalDocID=S0141635925002090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |