Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient K D (q e/C e) or Freundlich Constant (K F): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions

Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant K Eq o ; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the...

Full description

Saved in:
Bibliographic Details
Published inAdsorption science & technology Vol. 2022
Main Author Tran, Hai Nguyen
Format Journal Article
LanguageEnglish
Published Hindawi 2022
Online AccessGet full text
ISSN0263-6174
2048-4038
DOI10.1155/2022/5553212

Cover

Loading…
Abstract Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant K Eq o ; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the standard Gibbs energy change (∆G°; kJ/mol), the standard change in enthalpy (∆H°; kJ/mol), and the standard change in entropy [∆S°; J/(mol × K)] of an adsorption process. Misconception of the derivation of the K Eq o constant that can cause calculative errors in values (magnitude and sign) of the thermodynamic parameters has been intensively reflected through certain kinds of papers (i.e., letters to editor, discussions, short communications, and correspondence like comment/rebuttal). The distribution coefficient (K D) and Freundlich constant (K F) have been intensively applied for calculating the thermodynamic parameters. However, a critical question is whether K D or K F is equal to K Eq o . This paper gives (1) thorough discussion on the derivation of thermodynamic equilibrium constant of solid–liquid adsorption process, (2) reasonable explanation on the inconsistency of (direct and indirect) application of K D or K F for calculating the thermodynamic parameters based on the derivation of K Eq o , and (3) helpful suggestions for improving the quality of papers published in this field.
AbstractList Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant [Formula: see text]; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the standard Gibbs energy change (∆ G°; kJ/mol), the standard change in enthalpy (∆ H°; kJ/mol), and the standard change in entropy [∆ S°; J/(mol × K)] of an adsorption process. Misconception of the derivation of the [Formula: see text] constant that can cause calculative errors in values (magnitude and sign) of the thermodynamic parameters has been intensively reflected through certain kinds of papers (i.e., letters to editor, discussions, short communications, and correspondence like comment/rebuttal). The distribution coefficient ( K D ) and Freundlich constant ( K F ) have been intensively applied for calculating the thermodynamic parameters. However, a critical question is whether K D or K F is equal to [Formula: see text]. This paper gives (1) thorough discussion on the derivation of thermodynamic equilibrium constant of solid–liquid adsorption process, (2) reasonable explanation on the inconsistency of (direct and indirect) application of K D or K F for calculating the thermodynamic parameters based on the derivation of [Formula: see text], and (3) helpful suggestions for improving the quality of papers published in this field.
Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant K Eq o ; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the standard Gibbs energy change (∆G°; kJ/mol), the standard change in enthalpy (∆H°; kJ/mol), and the standard change in entropy [∆S°; J/(mol × K)] of an adsorption process. Misconception of the derivation of the K Eq o constant that can cause calculative errors in values (magnitude and sign) of the thermodynamic parameters has been intensively reflected through certain kinds of papers (i.e., letters to editor, discussions, short communications, and correspondence like comment/rebuttal). The distribution coefficient (K D) and Freundlich constant (K F) have been intensively applied for calculating the thermodynamic parameters. However, a critical question is whether K D or K F is equal to K Eq o . This paper gives (1) thorough discussion on the derivation of thermodynamic equilibrium constant of solid–liquid adsorption process, (2) reasonable explanation on the inconsistency of (direct and indirect) application of K D or K F for calculating the thermodynamic parameters based on the derivation of K Eq o , and (3) helpful suggestions for improving the quality of papers published in this field.
Author Tran, Hai Nguyen
Author_xml – sequence: 1
  givenname: Hai Nguyen
  orcidid: 0000-0001-8361-2616
  surname: Tran
  fullname: Tran, Hai Nguyen
BookMark eNp1kU9P3DAQxa2KSl1ob_0Ac2SlLms7dhJ6Q_sHEEhFgp4jbzLeHZTYi-204ov33BAQSKg9jUbzm6c38w7ZgfMOGfsq-IkQWs8ll3Kutc6kkB_YRHJVzhTPygM24TLPZrko1Cd2GOM950IWupiwP5fdPvg9BljFRJ1J5B14C3c7DJ1vHp3pqIYbE0yHCUMEcnDWRB_2I3mb-oYwwm9KO1hSTIE2_ThZeLSWakKX4AqWcPwAOF8ATsEHWAfsXdNSvRs4F5MZoOMrWE-_jz01GEYnEWzwHaQdwhID_Xq1t6QOB867FmN8Z3b10FNLm0B996ZuXAO3_XaLcdT9zD5a00b88lKP2M_16m5xMbv-cX65OLue1aJUaXiYlDpTp3mZSS202pS2lAVvamO0VaWSudWFykVdKC3UBuvM4KnJlW1KbrjJsyP27Vm3Dj7GgLbah-HL4bESvHrKrHrKrHrJbMDlO7ymNB6dgqH2f0vT56Votljd-z644aR_s38BnsysNA
CitedBy_id crossref_primary_10_3390_molecules29245853
crossref_primary_10_3390_molecules28083349
crossref_primary_10_35118_apjmbb_2024_032_4_Special__11
crossref_primary_10_1177_02636174241280029
crossref_primary_10_1016_j_ijbiomac_2024_133417
crossref_primary_10_1002_slct_202403556
crossref_primary_10_1016_j_diamond_2025_112085
crossref_primary_10_1016_j_jece_2024_112336
crossref_primary_10_3390_molecules28145552
crossref_primary_10_2166_wst_2023_045
crossref_primary_10_1080_01932691_2023_2194383
crossref_primary_10_1016_j_molliq_2023_121652
crossref_primary_10_1007_s11270_023_06317_5
crossref_primary_10_1016_j_molliq_2025_127243
crossref_primary_10_3390_w16142037
crossref_primary_10_1080_01932691_2023_2271062
crossref_primary_10_1016_j_molliq_2024_124097
crossref_primary_10_1007_s10924_023_03169_2
crossref_primary_10_1016_j_cherd_2023_02_033
crossref_primary_10_1016_j_cej_2024_149588
crossref_primary_10_1016_j_cjche_2025_01_014
crossref_primary_10_1016_j_scitotenv_2024_171118
crossref_primary_10_1007_s11356_024_32199_z
crossref_primary_10_1016_j_jtice_2024_105369
crossref_primary_10_1016_j_molliq_2023_123424
crossref_primary_10_1016_j_biortech_2023_129225
crossref_primary_10_1007_s11270_024_07241_y
crossref_primary_10_1016_j_jenvman_2022_116475
crossref_primary_10_3390_molecules28083353
crossref_primary_10_5004_dwt_2023_29567
crossref_primary_10_1016_j_cej_2024_150387
crossref_primary_10_1016_j_jece_2024_112208
crossref_primary_10_1007_s41207_024_00630_z
crossref_primary_10_1021_jacs_4c07530
crossref_primary_10_1016_j_heliyon_2024_e28188
crossref_primary_10_1016_j_cej_2025_159768
crossref_primary_10_1016_j_dwt_2024_100835
crossref_primary_10_1007_s11356_024_32968_w
crossref_primary_10_1016_j_carbon_2024_119822
crossref_primary_10_1016_j_jenvman_2023_119279
crossref_primary_10_1016_j_measurement_2024_114129
crossref_primary_10_5004_dwt_2023_29750
crossref_primary_10_3390_en16186544
crossref_primary_10_1016_j_jclepro_2024_142801
crossref_primary_10_3390_polym15051269
crossref_primary_10_1007_s10570_022_04933_8
crossref_primary_10_1186_s12302_023_00742_3
crossref_primary_10_1016_j_mtcomm_2024_110488
crossref_primary_10_1007_s10967_023_09058_1
crossref_primary_10_1021_acs_langmuir_2c03105
crossref_primary_10_1016_j_diamond_2024_110912
crossref_primary_10_1016_j_jece_2023_110091
crossref_primary_10_1016_j_jenvman_2024_122757
crossref_primary_10_1016_j_diamond_2025_112116
crossref_primary_10_1021_acsomega_3c09864
crossref_primary_10_3390_w15020293
crossref_primary_10_1002_jctb_7258
crossref_primary_10_3390_w14233806
crossref_primary_10_1016_j_scitotenv_2024_173370
crossref_primary_10_1016_j_jece_2024_112668
crossref_primary_10_1061_JOEEDU_EEENG_7074
crossref_primary_10_1016_j_envres_2022_114927
crossref_primary_10_1016_j_molliq_2024_125372
crossref_primary_10_3390_w15030493
crossref_primary_10_1007_s11356_023_30159_7
crossref_primary_10_1016_j_chemosphere_2023_140736
crossref_primary_10_1016_j_jece_2022_108886
crossref_primary_10_1016_j_colsurfa_2024_133244
crossref_primary_10_3390_ma16144961
crossref_primary_10_1016_j_foodchem_2023_138064
crossref_primary_10_1080_01496395_2024_2349928
Cites_doi 10.1016/j.jhazmat.2016.05.073
10.1016/j.jenvrad.2008.09.008
10.1016/j.jct.2004.09.013
10.1016/j.molliq.2016.11.058
10.1080/01496395.2019.1706579
10.1021/i260055a019
10.1016/j.watres.2017.09.055
10.1016/j.jece.2021.106674
10.1039/C9TA11420C
10.1016/j.chemphys.2018.06.022
10.1016/j.jtice.2012.08.005
10.1006/jcht.1995.0001
10.1016/j.desal.2012.01.001
10.2136/sssaj1973.03615995003700060022x
10.1016/j.jhazmat.2020.123292
10.1016/j.jhazmat.2016.11.061
10.1016/B978-0-444-64114-4.00004-2
10.1021/acs.est.0c00919
10.1016/j.jct.2013.09.013
10.1016/S0009-2509(99)00540-0
10.1260/026361709788921605
10.1016/j.envres.2022.112958
10.1016/j.seppur.2007.10.002
10.1007/s10668-019-00424-2
10.1021/acsomega.0c05674
10.1016/j.scitotenv.2020.137828
10.1016/j.jhazmat.2022.129015
10.1016/j.chemosphere.2020.126444
10.1063/1.1746922
10.1016/j.molliq.2022.118762
10.1016/j.jhazmat.2020.122903
10.1016/j.jhazmat.2022.128407
10.1006/jcis.1997.5041
10.1016/S0009-2614(02)00830-8
10.1016/B978-0-323-85768-0.00004-X
10.1080/01496395.2019.1706578
10.1016/j.jhazmat.2014.12.047
10.1016/j.jenvman.2021.112167
10.1016/j.chemphys.2018.10.007
10.1002/9781118131473.ch5
10.1016/j.chemosphere.2004.08.091
10.1016/j.carbpol.2012.01.073
10.1016/j.jconhyd.2022.104044
10.1002/adma.201905988
10.1006/jcis.2000.7057
10.1016/j.watres.2004.12.003
10.1016/j.molliq.2019.01.160
10.1080/00986445.2013.818541
10.1016/j.jhazmat.2008.03.076
10.1016/j.molliq.2018.01.073
10.1016/j.watres.2012.05.040
10.1080/01496395.2019.1580734
10.1351/pac199466030533
10.1016/j.carbon.2003.09.022
10.1016/j.colsurfa.2015.05.014
10.1016/j.cej.2005.07.009
10.1016/j.molliq.2018.10.010
10.1016/j.molliq.2019.112378
10.1515/zpch-1907-5723
10.5539/ijc.v3n4p116
10.1016/j.molliq.2018.11.086
10.1016/j.indcrop.2020.112613
10.2298/JSC0712363M
10.3390/macromol1040018
10.1021/je010102k
10.1080/00986445.2013.819352
10.1016/0166-6622(87)80259-7
10.1016/j.jece.2020.104161
10.1039/C5RA20538G
10.4067/S0717-97072013000100009
10.1016/j.dyepig.2004.06.016
10.1021/j150508a014
10.1260/0263-6174.30.7.647
10.1016/j.molliq.2018.10.048
10.1016/j.jes.2020.01.015
10.1016/j.molliq.2018.02.033
10.1016/j.jece.2020.104105
10.1016/0300-9467(90)80067-M
10.1016/j.molliq.2021.116542
10.1039/D1RA08212D
10.1016/j.watres.2017.04.014
10.1016/j.molliq.2020.113315
10.1016/j.jenvrad.2019.106106
10.1016/S0048-9697(19)31643-2
10.1016/j.colsurfa.2005.08.029
10.1016/j.jct.2017.08.026
10.1080/00986445.2016.1245185
10.1016/j.scitotenv.2018.08.434
10.1016/j.chemphys.2018.10.005
10.1016/j.molliq.2020.114980
10.1080/15422119.2021.1888299
10.1016/j.jece.2020.103969
10.1016/j.colcom.2021.100369
10.1016/j.jenvrad.2009.06.014
10.1021/je800661q
10.1016/S0168-1656(03)00030-0
10.1016/j.jhazmat.2020.123318
10.1016/B978-0-12-398256-8.00001-3
10.1016/j.biortech.2013.12.053
10.1039/C8EW00854J
10.1021/ie9703898
10.1016/j.envres.2021.111218
10.1016/j.jece.2016.05.009
ContentType Journal Article
DBID AFRWT
AAYXX
CITATION
DOI 10.1155/2022/5553212
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2048-4038
Editor Bonilla-Petriciolet, Adrián
Editor_xml – sequence: 1
  givenname: Adrián
  surname: Bonilla-Petriciolet
  fullname: Bonilla-Petriciolet, Adrián
ExternalDocumentID 10_1155_2022_5553212
10.1155_2022_5553212
GroupedDBID 0R~
23M
4.4
5GY
AABPG
AAFWJ
AAJEY
AAJPV
AATZT
ABAWP
ABDBF
ACDXX
ACGFS
ACUHS
ADBBV
ADMLS
AENEX
AEWDL
AFKRA
AFKRG
AFPKN
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYAKG
BCNDV
BENPR
CCPQU
CS3
EBS
ESX
GROUPED_DOAJ
I-F
K.F
MET
MV1
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
Q1R
ROL
SAUOL
SFC
TUS
AAOTM
AASGM
AAYXX
ACHEB
ADEBD
AFCOW
AI.
BDDNI
CITATION
CKLRP
EJD
H13
IL9
J8X
SCNPE
VH1
ID FETCH-LOGICAL-c184t-6122534968325154b8f8270dcaa5f48426f57461c74514bec3ae9a64fd80a0a63
IEDL.DBID AFRWT
ISSN 0263-6174
IngestDate Thu Apr 24 22:58:21 EDT 2025
Sun Jul 06 05:05:09 EDT 2025
Tue Jun 17 22:27:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c184t-6122534968325154b8f8270dcaa5f48426f57461c74514bec3ae9a64fd80a0a63
ORCID 0000-0001-8361-2616
OpenAccessLink https://journals.sagepub.com/doi/full/10.1155/2022/5553212?utm_source=summon&utm_medium=discovery-provider
ParticipantIDs crossref_primary_10_1155_2022_5553212
crossref_citationtrail_10_1155_2022_5553212
sage_journals_10_1155_2022_5553212
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle Adsorption science & technology
PublicationYear 2022
Publisher Hindawi
Publisher_xml – name: Hindawi
References Lima, Hosseini-Bandegharaei, Moreno-Piraján, Anastopoulos 2019; 273
Ghosh, Chopra 1975; 14
Zuyi, Taiwei 2000; 231
Sohn, Kim 2005; 58
Shen, Pan, Zhang, Sun, Hou, Zhang, Zou 2020; n/a, no. n/a
Qu, Wang, Tian, Jiang, Deng, Tao, Jiang, Wang, Zhang 2021; 401, article 123292
Shahwan 2021; 41, article 100369
Tran, You, Hosseini-Bandegharaei, Chao 2017; 120
Moreno-Marenco, Giraldo, Moreno-Piraján 2020; 8
Maimaitiniyazi, Zhou 2022; 210, article 112958
Chen, Da, Ma 2021; 322, article 114980
Tran 2020; 746
Sips 1948; 16
Rahmani-Sani, Hosseini-Bandegharaei, Hosseini, Kharghani, Zarei, Rastegar 2015; 286
Yang, Cheng, Han, Luo, Li, Tang, Yue, Li 2021; 401, article 123318
Kopinke, Georgi, Goss 2018; 129
Xiaofu, Fang, Mingli, Zhihui, Qun 2009; 27
Moreno-Castilla 2004; 42
Saeed, Naeem, Din, Farooq, Khan, Hamayun, Malik 2022; 435, article 129015
Bollinger 2019; 261, article 113824
Senthil Kumar, Fernando, Ahmed, Srinath, Priyadharshini, Vignesh, Thanjiappan 2014; 201
Lima, Sher, Saeb, Abatal, Seliem 2021; 334, article 116542
Salvestrini, Ambrosone, Kopinke 2022; 352, article 118762
Reddy, Seshaiah, Reddy, Lee 2012; 88
Jin, Yang, Xiong, Zhou, Xu, Zhang, Cao, Li, Zhou 2019; 650
Liu, Lee 2014; 160
Hubbe 2022; 51
Canzano, Iovino, Salvestrini, Capasso 2012; 46
Najaflou, Rad, Baghdadi, Bidhendi 2021; 286, article 112167
Zhou, Zhou 2020; 213, article 106106
Sawafta, Shahwan 2019; 273
Seifikar, Azizian 2019; 275
Tomul, Arslan, Kabak, Trak, Kendüzler, Lima, Tran 2020; 726, article 137828
Salvestrini, Leone, Iovino, Canzano, Capasso 2014; 68
Húmpola, Odetti, Fertitta, Vicente 2013; 58
Ghosal, Gupta 2015; 5
Khosravi, Moussavi, Ghaneian, Ehrampoush, Barikbin, Ebrahimi, Sharifzadeh 2018; 256
Lin, Pan, Chen, Cheng, Xu 2009; 161
Ewing, Lilley, Olofsson, Rätzsch, Somsen 1994; 66
Liu 2009; 54
Tran 2022; 10
Fenti, Iovino, Salvestrini 2019; 273
Publisher 2019; 671
Rochaa, da Silvaa, Borosb, Krahenbuhlb, Guirardellob 2014; 37
Salunkhe, Schuman 2021; 1
Zhou 2020; 187, article 109610
Ioannidis, Anderko, Sanders 2000; 55
Bollinger, Tran, Lima 2022; 12
Zhou, Zhou 2020; 90
Thue, Umpierres, Lima, Lima, Machado, dos Reis, da Silva, Pavan, Tran 2020; 398, article 122903
Allen, Addison 1990; 44
Ghosal, Gupta 2017; 225
Freundlich 1907; 57
Chao, Lee, Juang, Hsieh 2013; 44
Graham 1953; 57
Romero-Gonzalez, Peralta-Videa, Rodrıguez, Ramirez, Gardea-Torresdey 2005; 37
Tong, Mayer, McNamara 2019; 5
Liu 2006; 274
Rahmani-Sani, Shan, Yan, Hosseini-Bandegharaei 2017; 325
Ewing, Lilley, Olofsson, Rätzsch, Somsen 1995; 27
Tran, You, Chao 2016; 4
Petrus, Warchoł 2005; 39
Liu, Xu, Yang, Tay 2003; 102
Zhou, Yu, Hao, Liu 2022; 429, article 128407
Shuibo, Chun, Xinghuo, Jing, Xiaojian, Jingsong 2009; 100
Khan, Singh 1987; 24
Salvestrini, Fenti, Chianese, Iovino, Musmarra 2020; 8
Tran, Bollinger, Lima
Taraba, Bulavová 2018; 116
Milonjić 2007; 72
Lima, Gomes, Tran 2020; 311, article 113315
Bollinger 2020; 55
Lima, Hosseini-Bandegharaei, Anastopoulos 2019; 273
Tran, Lima, Juang, Bollinger, Chao 2021; 9
Lin, Juang 2005; 112
Valverde, Lucas, Gonzalez, Rodríguez 2001; 46
Salvestrini, Iovino, Capasso 2019; 517
Bhattacharyya, Sharma 2005; 65
Ma, Liu, Zhang, Liu, Di 2011; 3
Tran 2020; 54
Zhou 2017; 323
Patel, Kumar, Pittman, Mohan 2021; 201, article 111218
Lipkowski, Koll, Karpfen, Wolschann 2002; 360
Hai 2017; 204
Tan, Sen 2020; 55
Barakan, Aghazadeh, Samiee Beyragh, Mohammadi 2020; 22
Gupta 1998; 37
Zhou, Liu, Hao 2012; 30
Li, Deng, Wu, Ye, Jiang 2021; 6
Biggar, Cheung 1973; 37
Kopinke, Georgi, Goss 2019; 517
Saravanan, Jeevanantham, Senthil Kumar, Varjani, Yaashikaa, Karishma 2020; 153, article 112613
Hu, Wang, Feng, Zhang, Lei, Shimizu 2018; 254
Azizian, Eris, Wilson 2018; 513
Cherkasov 2020; 301, article 112378
Milonjić 2009; 100
Zhou, Zhou 2014; 201
Liu, Liu 2008; 61
Khan, Ataullah, Al-Haddad 1997; 194
Luo, Gao, Yang, Yang 2015; 482
Zhou, Maimaitiniyazi, Wang 2022; 249, article 104044
Zhou, Wu, Chen, Liao, Xie 2020; 8
Tran 2020; 257, article 126444
Aniceto, Cardoso, Faria, Lito, Silva 2012; 290
bibr38-2022_5553212
bibr88-2022_5553212
bibr19-2022_5553212
Atkins P. (bibr34-2022_5553212) 2006
bibr53-2022_5553212
bibr115-2022_5553212
bibr80-2022_5553212
Rochaa S. A. (bibr49-2022_5553212) 2014; 37
Chan R. (bibr55-2022_5553212) 2014
bibr15-2022_5553212
bibr69-2022_5553212
bibr65-2022_5553212
bibr111-2022_5553212
bibr11-2022_5553212
bibr84-2022_5553212
bibr96-2022_5553212
bibr95-2022_5553212
bibr41-2022_5553212
bibr92-2022_5553212
bibr107-2022_5553212
bibr91-2022_5553212
bibr46-2022_5553212
bibr99-2022_5553212
bibr104-2022_5553212
bibr45-2022_5553212
Bollinger J.-C. (bibr57-2022_5553212) 2019; 261
bibr8-2022_5553212
bibr103-2022_5553212
bibr4-2022_5553212
bibr5-2022_5553212
bibr58-2022_5553212
Chang R. (bibr117-2022_5553212) 2014
bibr100-2022_5553212
Iupac (bibr42-2022_5553212) 2014; 528
bibr89-2022_5553212
bibr87-2022_5553212
Chang R. (bibr29-2022_5553212) 2008
bibr81-2022_5553212
bibr9-2022_5553212
bibr18-2022_5553212
bibr14-2022_5553212
bibr71-2022_5553212
bibr12-2022_5553212
bibr10-2022_5553212
bibr16-2022_5553212
bibr83-2022_5553212
bibr108-2022_5553212
Tran H. N. (bibr54-2022_5553212) 2020; 746
bibr79-2022_5553212
bibr61-2022_5553212
bibr26-2022_5553212
bibr63-2022_5553212
bibr28-2022_5553212
bibr73-2022_5553212
bibr75-2022_5553212
bibr20-2022_5553212
bibr24-2022_5553212
bibr22-2022_5553212
bibr77-2022_5553212
bibr51-2022_5553212
bibr2-2022_5553212
bibr113-2022_5553212
bibr82-2022_5553212
bibr17-2022_5553212
bibr36-2022_5553212
bibr13-2022_5553212
Iupac (bibr39-2022_5553212) 2007
bibr67-2022_5553212
bibr70-2022_5553212
bibr48-2022_5553212
bibr32-2022_5553212
bibr109-2022_5553212
bibr43-2022_5553212
bibr98-2022_5553212
bibr93-2022_5553212
bibr47-2022_5553212
bibr97-2022_5553212
bibr90-2022_5553212
bibr106-2022_5553212
bibr105-2022_5553212
bibr101-2022_5553212
bibr56-2022_5553212
bibr102-2022_5553212
bibr3-2022_5553212
bibr6-2022_5553212
Tran H. N. (bibr85-2022_5553212)
bibr94-2022_5553212
bibr40-2022_5553212
bibr59-2022_5553212
bibr37-2022_5553212
bibr118-2022_5553212
bibr50-2022_5553212
bibr35-2022_5553212
bibr1-2022_5553212
bibr116-2022_5553212
bibr33-2022_5553212
bibr52-2022_5553212
bibr112-2022_5553212
Zhou X. (bibr86-2022_5553212) 2022; 249
bibr114-2022_5553212
Sawyer C. N. (bibr30-2022_5553212) 2003
bibr66-2022_5553212
bibr64-2022_5553212
bibr31-2022_5553212
bibr110-2022_5553212
bibr68-2022_5553212
Monk P. M. (bibr44-2022_5553212) 2008
bibr25-2022_5553212
bibr62-2022_5553212
Zhou X. (bibr7-2022_5553212) 2020; 187
bibr27-2022_5553212
bibr72-2022_5553212
bibr21-2022_5553212
bibr74-2022_5553212
bibr60-2022_5553212
bibr78-2022_5553212
bibr23-2022_5553212
bibr76-2022_5553212
References_xml – volume: 201
  start-page: 1526
  issue: 11
  year: 2014
  end-page: 1547
  article-title: Effect of temperature on the adsorption of methylene blue dye onto sulfuric acid–treated orange peel
– volume: 4
  start-page: 2671
  issue: 3
  year: 2016
  end-page: 2682
  article-title: Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study
– volume: 55
  start-page: 823
  issue: 5
  year: 2020
  end-page: 824
  article-title: Comments on “aqueous-phase methylene blue (MB) dye removal by mixture of eucalyptus bark (EB) biomass and kaolin clay (KC) adsorbents: kinetics, thermodynamics, and isotherm modeling”
– volume: 257, article 126444
  year: 2020
  article-title: Comments on "High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar"
– volume: 16
  start-page: 490
  issue: 5
  year: 1948
  end-page: 495
  article-title: On the structure of a catalyst surface
– volume: 46
  start-page: 1404
  issue: 6
  year: 2001
  end-page: 1409
  article-title: Ion-exchange equilibria of Cu2+, Cd2+, Zn2+, and Na+ ions on the cationic exchanger Amberlite IR-120
– volume: 8
  issue: 5, article 104105
  year: 2020
  article-title: Diclofenac sorption from synthetic water: kinetic and thermodynamic analysis
– volume: 213, article 106106
  year: 2020
  article-title: Comments on ''Removal of uranium (VI) from aqueous solution by adsorption of hematite'', by X. Shuibo, Z. Chun, Z. Xinghuo, Y. Jing, Z. Xiaojian, W. Jingsong
– volume: 325
  start-page: 367
  year: 2017
  end-page: 368
  article-title: Response to “Letter to Editor: Minor correction to the thermodynamic calculation using the distribution constant by Shan et al. and Rahmani-Sani et al.”
– volume: n/a, no. n/a
  start-page: 1905988
  year: 2020
  article-title: Low-spin-state hematite with superior adsorption of anionic contaminations for water purification
– volume: 517
  start-page: 265
  year: 2019
  end-page: 267
  article-title: Comment on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution", published by Azizian et al. [Chemical physics 513 (2018) 99-104]
– volume: 273
  start-page: 425
  year: 2019
  end-page: 434
  article-title: Some remarks on “a critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't hoof equation for calculation of thermodynamic parameters of adsorption”
– volume: 30
  start-page: 647
  issue: 7
  year: 2012
  end-page: 649
  article-title: Letters to the Editor
– volume: 161
  start-page: 231
  issue: 1
  year: 2009
  end-page: 240
  article-title: Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders
– volume: 37
  start-page: 535
  year: 2014
  end-page: 540
  article-title: Solid-liquid equilibrium calculation and parameters determination in thermodynamic models for binary and ternary fatty mixtures
– volume: 51
  start-page: 212
  issue: 2
  year: 2022
  end-page: 225
  article-title: Insisting upon meaningful results from adsorption experiments
– volume: 249, article 104044
  year: 2022
  article-title: Discussion on the thermodynamic calculation by distribution constant in Journal of Contaminant Hydrology 243 (2021) 103906
– volume: 275
  start-page: 394
  year: 2019
  end-page: 401
  article-title: A facile method for precipitating of dispersed carbon particles prepared by microwave heating and its application for dye removal
– volume: 517
  start-page: 270
  year: 2019
  end-page: 271
  article-title: Comments on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution"
– volume: 100
  start-page: 162
  issue: 2
  year: 2009
  end-page: 166
  article-title: Removal of uranium (VI) from aqueous solution by adsorption of hematite
– volume: 55
  start-page: 2687
  issue: 14
  year: 2000
  end-page: 2698
  article-title: Internally consistent representation of binary ion exchange equilibria
– volume: 22
  start-page: 5273
  issue: 6
  year: 2020
  end-page: 5295
  article-title: Thermodynamic, kinetic and equilibrium isotherm studies of as(V) adsorption by Fe(III)-impregnated bentonite
– volume: 201, article 111218
  year: 2021
  article-title: Ciprofloxacin and acetaminophen sorption onto banana peel biochars: environmental and process parameter influences
– volume: 6
  start-page: 7402
  issue: 11
  year: 2021
  end-page: 7412
  article-title: Strong adsorption of phosphorus by ZnAl-LDO-activated Banana biochar: an analysis of adsorption efficiency, thermodynamics, and internal mechanisms
– volume: 129
  start-page: 520
  year: 2018
  end-page: 521
  article-title: Comment on "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran et al. [Water Research 120, 2017, 88-116]"
– volume: 39
  start-page: 819
  issue: 5
  year: 2005
  end-page: 830
  article-title: Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems
– volume: 482
  start-page: 222
  year: 2015
  end-page: 230
  article-title: Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: mechanism, kinetics and thermodynamics studies
– volume: 435, article 129015
  year: 2022
  article-title: Response to comments on "Correction to the thermodynamic calculation using the Langmuir isotherm model"
– volume: 286
  start-page: 152
  year: 2015
  end-page: 163
  article-title: Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid
– volume: 58
  start-page: 115
  issue: 1
  year: 2005
  end-page: 123
  article-title: Modification of Langmuir isotherm in solution systems--definition and utilization of concentration dependent factor
– volume: 37
  start-page: 863
  issue: 6
  year: 1973
  end-page: 868
  article-title: Adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) on panoche, Ephrata, and Palouse soils: a thermodynamic approach to the adsorption mechanism
– volume: 112
  start-page: 211
  issue: 1-3
  year: 2005
  end-page: 218
  article-title: Ion-exchange equilibria of Cu(II) and Zn(II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins
– volume: 37
  start-page: 343
  issue: 4
  year: 2005
  end-page: 347
  article-title: Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto biomass
– volume: 256
  start-page: 163
  year: 2018
  end-page: 174
  article-title: Chromium adsorption from aqueous solution using novel green nanocomposite: adsorbent characterization, isotherm, kinetic and thermodynamic investigation
– volume: 72
  start-page: 1363
  issue: 12
  year: 2007
  end-page: 1367
  article-title: A consideration of the correct calculation of thermodynamic parameters of adsorption
– volume: 274
  start-page: 34
  issue: 1-3
  year: 2006
  end-page: 36
  article-title: Some consideration on the Langmuir isotherm equation
– volume: 301, article 112378
  year: 2020
  article-title: Liquid-phase adsorption: common problems and how we could do better
– volume: 210, article 112958
  year: 2022
  article-title: Comment on the calculation of equilibrium constant and thermodynamic parameters by the distribution coefficient in environmental research 203 (2022) 111814
– volume: 1
  start-page: 256
  issue: 4
  year: 2021
  end-page: 275
  article-title: Super-adsorbent hydrogels for removal of methylene blue from aqueous solution: dye adsorption isotherms, kinetics, and thermodynamic properties
– volume: 323
  start-page: 735
  year: 2017
  end-page: 736
  article-title: Minor correction to the thermodynamic calculation using the distribution constant by Shan et al. and Rahmani-Sani et al.
– volume: 57
  start-page: 665
  issue: 7
  year: 1953
  end-page: 669
  article-title: The characterization of physical adsorption systems. I. the equilibrium function and standard free energy of adsorption
– volume: 513
  start-page: 99
  year: 2018
  end-page: 104
  article-title: Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution
– volume: 44
  start-page: 113
  issue: 3
  year: 1990
  end-page: 118
  article-title: Ion exchange equilibria for ternary systems from binary exchange data
– volume: 58
  start-page: 1541
  issue: 1
  year: 2013
  end-page: 1544
  article-title: Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons
– volume: 334, article 116542
  year: 2021
  article-title: Comments on “Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant, Journal of Molecular Liquids 322 (2021) 114980”
– volume: 3
  start-page: 116
  issue: 4
  year: 2011
  end-page: 120
  article-title: Kinetics and thermodynamic studies on the adsorption of Co2+ onto chitosan-aluminium oxide composite material
– issue: article e13913
  article-title: Comments on “Biosorption of nickel from aqueous solution onto Liagora viscida: Kinetics, isotherm, and thermodynamics”
– volume: 352, article 118762
  year: 2022
  article-title: Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data
– volume: 153, article 112613
  year: 2020
  article-title: Enhanced Zn(II) ion adsorption on surface modified mixed biomass - _Borassus flabellifer_ and _Aspergillus tamarii_ : Equilibrium, kinetics and thermodynamics study
– volume: 204
  start-page: 134
  issue: 1
  year: 2017
  end-page: 139
  article-title: Comments on “effect of temperature on the adsorption of methylene blue dye onto sulfuric acid–treated orange peel”
– volume: 273
  start-page: 425
  year: 2019
  end-page: 434
  article-title: A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't hoof equation for calculation of thermodynamic parameters of adsorption
– volume: 14
  start-page: 304
  issue: 3
  year: 1975
  end-page: 308
  article-title: Activity coefficients from the Wilson equation
– volume: 225
  start-page: 137
  year: 2017
  end-page: 146
  article-title: Determination of thermodynamic parameters from Langmuir isotherm constant- revisited
– volume: 8
  issue: 5, article 104161
  year: 2020
  article-title: Fabrication of hydrophobic/hydrophilic bifunctional adsorbent for the removal of sulfamethoxazole and bisphenol a in Water
– volume: 261, article 113824
  year: 2019
  article-title: Letter to the editor: comments on “adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water”
– volume: 650
  start-page: 408
  year: 2019
  end-page: 418
  article-title: Cu and co nanoparticles Co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions
– volume: 27
  start-page: 1
  issue: 1
  year: 1995
  end-page: 16
  article-title: IUPAC: a report of IUPAC commission 1.2 on thermodynamics: standard quantities in chemical thermodynamics. Fugacities, activities, and equilibrium constants for pure and mixed phases
– volume: 5
  start-page: 1132
  issue: 6
  year: 2019
  end-page: 1144
  article-title: Adsorption of organic micropollutants to biosolids-derived biochar: estimation of thermodynamic parameters
– volume: 37
  start-page: 192
  issue: 1
  year: 1998
  end-page: 202
  article-title: Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent
– volume: 116
  start-page: 97
  year: 2018
  end-page: 106
  article-title: Adsorption enthalpy of lead(II) and phenol on coals and activated carbon in the view of thermodynamic analysis and calorimetric measurements
– volume: 12
  start-page: 5769
  issue: 10
  year: 2022
  end-page: 5771
  article-title: Comments on “removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay – a comparative study” by M. M. Tarekegn, R. M. Balakrishnan, A. M. Hiruy and A. H. Dekebo, RSC Adv., 2021, 11, 30109
– volume: 160
  start-page: 24
  year: 2014
  end-page: 31
  article-title: Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters
– volume: 27
  start-page: 1
  issue: 1
  year: 2009
  end-page: 17
  article-title: A simple way of calculating the change in the Gibbs' free energy of ion adsorption reactions
– volume: 24
  start-page: 33
  issue: 1
  year: 1987
  end-page: 42
  article-title: Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H , Na and Ca forms
– volume: 286, article 112167
  year: 2021
  article-title: Removal of Pb(II) from contaminated waters using cellulose sulfate/chitosan aerogel: Equilibrium, kinetics, and thermodynamic studies
– volume: 102
  start-page: 233
  issue: 3
  year: 2003
  end-page: 239
  article-title: A general model for biosorption of Cd , Cu and Zn by aerobic granules
– volume: 5
  start-page: 105889
  issue: 128
  year: 2015
  end-page: 105900
  article-title: An insight into thermodynamics of adsorptive removal of fluoride by calcined ca–Al–(NO3) layered double hydroxide
– volume: 311, article 113315
  year: 2020
  article-title: Comparison of the nonlinear and linear forms of the van't Hoff equation for calculation of adsorption thermodynamic parameters (∆ ° and ∆ °)
– volume: 100
  start-page: 921
  issue: 10
  year: 2009
  end-page: 922
  article-title: Comments on "removal of uranium (VI) from aqueous solution by adsorption of hematite", by X. Shuibo, Z. Chun, Z. Xinghuo, Y. Jing, Z. Xiaojian, W. Jingsong
– volume: 273
  start-page: 425
  year: 2019
  end-page: 434
  article-title: Response to “Some remarks on a critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the van't Hoff equation for calculation of thermodynamic parameters of adsorption”
– volume: 88
  start-page: 1077
  issue: 3
  year: 2012
  end-page: 1086
  article-title: Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder
– volume: 68
  start-page: 310
  year: 2014
  end-page: 316
  article-title: Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms
– volume: 322, article 114980
  year: 2021
  article-title: Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant
– volume: 254
  start-page: 20
  year: 2018
  end-page: 25
  article-title: Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters
– volume: 120
  start-page: 88
  year: 2017
  end-page: 116
  article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review
– volume: 54
  start-page: 7725
  issue: 12
  year: 2020
  end-page: 7726
  article-title: Comment on “Puffed Rice carbon with coupled sulfur and metal iron for high-efficiency mercury removal in aqueous solution”
– volume: 55
  start-page: 1036
  issue: 6
  year: 2020
  end-page: 1050
  article-title: Aqueous-phase methylene blue (MB) dye removal by mixture of eucalyptus bark (EB) biomass and kaolin clay (KC) adsorbents: kinetics, thermodynamics, and isotherm modeling
– volume: 273
  start-page: 274
  year: 2019
  end-page: 281
  article-title: A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions
– volume: 65
  start-page: 51
  issue: 1
  year: 2005
  end-page: 59
  article-title: Kinetics and thermodynamics of Methylene Blue adsorption on Neem ( ) leaf powder
– volume: 401, article 123318
  year: 2021
  article-title: Heavy metal ions' poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice
– volume: 66
  start-page: 533
  year: 1994
  end-page: 552
  article-title: Standard quantities in chemical thermodynamics. Fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC Recommendations 1994)
– volume: 10
  start-page: 6809
  issue: 12
  year: 2022
  end-page: 6814
  article-title: Comment on “Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution” by X.-S. Hu, R. Liang and G. Sun, J. Mater. Chem. A, 2018, 6, 17612–17624
– volume: 55
  start-page: 825
  issue: 5
  year: 2020
  end-page: 827
  article-title: Author’s responses to the comment by Jean-Claude Bollinger and also corrigendum to our recent article published in separation science and technology online march 4, 2019
– volume: 726, article 137828
  year: 2020
  article-title: Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water
– volume: 671
  start-page: ii
  year: 2019
  article-title: Editorial Board
– volume: 42
  start-page: 83
  issue: 1
  year: 2004
  end-page: 94
  article-title: Adsorption of organic molecules from aqueous solutions on carbon materials
– volume: 90
  start-page: 409
  year: 2020
  end-page: 410
  article-title: Comments on "Efficient adsorption of Mn(II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. J. Environ. Sci. 85, 56-65"
– volume: 398, article 122903
  year: 2020
  article-title: Single-step pyrolysis for producing magnetic activated carbon from tucuma ( ) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol
– volume: 61
  start-page: 229
  issue: 3
  year: 2008
  end-page: 242
  article-title: Biosorption isotherms, kinetics and thermodynamics
– volume: 429, article 128407
  year: 2022
  article-title: Comments on the calculation of the standard equilibrium constant using the Langmuir model in journal of hazardous materials 422 (2022) 126863
– volume: 44
  start-page: 111
  issue: 1
  year: 2013
  end-page: 116
  article-title: Sorption of organic compounds with different water solubility on octadecyltrichlorosilane-modified titanate nanotubes
– volume: 401, article 123292
  year: 2021
  article-title: KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration
– volume: 290
  start-page: 43
  year: 2012
  end-page: 53
  article-title: Modeling ion exchange equilibrium: analysis of exchanger phase non-ideality
– volume: 54
  start-page: 1981
  issue: 7
  year: 2009
  end-page: 1985
  article-title: Is the free energy change of adsorption correctly calculated?
– volume: 9
  issue: 6, article 106674
  year: 2021
  article-title: Thermodynamic parameters of liquid-phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study
– volume: 194
  start-page: 154
  issue: 1
  year: 1997
  end-page: 165
  article-title: Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures
– volume: 46
  start-page: 4314
  issue: 13
  year: 2012
  end-page: 4315
  article-title: Comment on "Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design"
– volume: 231
  start-page: 8
  issue: 1
  year: 2000
  end-page: 12
  article-title: On the applicability of the Langmuir equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution
– volume: 201
  start-page: 1459
  issue: 11
  year: 2014
  end-page: 1467
  article-title: The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation
– volume: 360
  start-page: 256
  issue: 3-4
  year: 2002
  end-page: 263
  article-title: An approach to estimate the energy of the intramolecular hydrogen bond
– volume: 8
  issue: 4, article 103969
  year: 2020
  article-title: Adsorption of n-butylparaben from aqueous solution on surface of modified granular activated carbons prepared from African palm shell. Thermodynamic study of interactions
– volume: 746
  issue: article 139854
  year: 2020
  article-title: Comments on “Fast and efficient removal of Cr(VI) to ppb level together with Cr(III) sequestration in water using layered double hydroxide interclated with diethyldithiocarbamate”
– volume: 57
  start-page: 385
  issue: 1
  year: 1907
  end-page: 470
  article-title: Über die adsorption in Lösungen
– volume: 187, article 109610
  year: 2020
  article-title: Comment on the thermodynamic calculation using the non-standard equilibrium constant re Jemutai-Kimosop et al. (2020) and Conde-Cid et al. (2019)
– volume: 41, article 100369
  year: 2021
  article-title: Critical insights into the limitations and interpretations of the determination of ∆G°, ∆H°, and ∆S° of sorption of aqueous pollutants on different sorbents
– ident: bibr80-2022_5553212
  doi: 10.1016/j.jhazmat.2016.05.073
– ident: bibr109-2022_5553212
  doi: 10.1016/j.jenvrad.2008.09.008
– ident: bibr37-2022_5553212
  doi: 10.1016/j.jct.2004.09.013
– ident: bibr33-2022_5553212
  doi: 10.1016/j.molliq.2016.11.058
– ident: bibr81-2022_5553212
  doi: 10.1080/01496395.2019.1706579
– ident: bibr48-2022_5553212
  doi: 10.1021/i260055a019
– ident: bibr100-2022_5553212
  doi: 10.1016/j.watres.2017.09.055
– ident: bibr24-2022_5553212
  doi: 10.1016/j.jece.2021.106674
– ident: bibr95-2022_5553212
  doi: 10.1039/C9TA11420C
– volume-title: Chapter 4. Reaction Spontaneity and the Direction of Thermodynamic Change. Physical Chemistry: Understanding our Chemical World
  year: 2008
  ident: bibr44-2022_5553212
– ident: bibr4-2022_5553212
  doi: 10.1016/j.chemphys.2018.06.022
– ident: bibr96-2022_5553212
  doi: 10.1016/j.jtice.2012.08.005
– ident: bibr40-2022_5553212
  doi: 10.1006/jcht.1995.0001
– ident: bibr64-2022_5553212
  doi: 10.1016/j.desal.2012.01.001
– ident: bibr78-2022_5553212
  doi: 10.2136/sssaj1973.03615995003700060022x
– volume: 528
  volume-title: Compendium of Chemical Terminology
  year: 2014
  ident: bibr42-2022_5553212
– ident: bibr14-2022_5553212
  doi: 10.1016/j.jhazmat.2020.123292
– ident: bibr90-2022_5553212
  doi: 10.1016/j.jhazmat.2016.11.061
– ident: bibr38-2022_5553212
  doi: 10.1016/B978-0-444-64114-4.00004-2
– ident: bibr19-2022_5553212
  doi: 10.1021/acs.est.0c00919
– ident: bibr5-2022_5553212
  doi: 10.1016/j.jct.2013.09.013
– ident: bibr46-2022_5553212
  doi: 10.1016/S0009-2509(99)00540-0
– ident: bibr67-2022_5553212
  doi: 10.1260/026361709788921605
– volume-title: Quantities, Units, And Symbols in Physical Chemistry
  year: 2007
  ident: bibr39-2022_5553212
– ident: bibr84-2022_5553212
  doi: 10.1016/j.envres.2022.112958
– ident: bibr106-2022_5553212
  doi: 10.1016/j.seppur.2007.10.002
– ident: bibr15-2022_5553212
  doi: 10.1007/s10668-019-00424-2
– volume: 37
  start-page: 535
  year: 2014
  ident: bibr49-2022_5553212
  publication-title: Chemical Engineering
– ident: bibr112-2022_5553212
  doi: 10.1021/acsomega.0c05674
– ident: bibr59-2022_5553212
  doi: 10.1016/j.scitotenv.2020.137828
– ident: bibr73-2022_5553212
  doi: 10.1016/j.jhazmat.2022.129015
– ident: bibr94-2022_5553212
  doi: 10.1016/j.chemosphere.2020.126444
– ident: bibr107-2022_5553212
  doi: 10.1063/1.1746922
– ident: bibr65-2022_5553212
  doi: 10.1016/j.molliq.2022.118762
– ident: bibr104-2022_5553212
  doi: 10.1016/j.jhazmat.2020.122903
– ident: bibr61-2022_5553212
  doi: 10.1016/j.jhazmat.2022.128407
– ident: bibr25-2022_5553212
  doi: 10.1006/jcis.1997.5041
– ident: bibr118-2022_5553212
  doi: 10.1016/S0009-2614(02)00830-8
– ident: bibr102-2022_5553212
  doi: 10.1016/B978-0-323-85768-0.00004-X
– ident: bibr20-2022_5553212
  doi: 10.1080/01496395.2019.1706578
– ident: bibr12-2022_5553212
  doi: 10.1016/j.jhazmat.2014.12.047
– ident: bibr76-2022_5553212
  doi: 10.1016/j.jenvman.2021.112167
– ident: bibr114-2022_5553212
  doi: 10.1016/j.chemphys.2018.10.007
– ident: bibr36-2022_5553212
  doi: 10.1002/9781118131473.ch5
– ident: bibr41-2022_5553212
  doi: 10.1016/j.chemosphere.2004.08.091
– ident: bibr77-2022_5553212
  doi: 10.1016/j.carbpol.2012.01.073
– volume: 249
  year: 2022
  ident: bibr86-2022_5553212
  publication-title: Journal of Contaminant Hydrology
  doi: 10.1016/j.jconhyd.2022.104044
– ident: bibr10-2022_5553212
  doi: 10.1002/adma.201905988
– ident: bibr28-2022_5553212
  doi: 10.1006/jcis.2000.7057
– ident: bibr51-2022_5553212
  doi: 10.1016/j.watres.2004.12.003
– ident: bibr66-2022_5553212
  doi: 10.1016/j.molliq.2019.01.160
– ident: bibr74-2022_5553212
  doi: 10.1080/00986445.2013.818541
– ident: bibr101-2022_5553212
  doi: 10.1016/j.jhazmat.2008.03.076
– ident: bibr116-2022_5553212
  doi: 10.1016/j.molliq.2018.01.073
– ident: bibr75-2022_5553212
  doi: 10.1016/j.watres.2012.05.040
– ident: bibr9-2022_5553212
  doi: 10.1080/01496395.2019.1580734
– ident: bibr45-2022_5553212
  doi: 10.1351/pac199466030533
– ident: bibr83-2022_5553212
  doi: 10.1016/j.carbon.2003.09.022
– ident: bibr68-2022_5553212
  doi: 10.1016/j.colsurfa.2015.05.014
– issue: 13913
  ident: bibr85-2022_5553212
  publication-title: Environmental Progress & Sustainable Energy
– ident: bibr35-2022_5553212
  doi: 10.1016/j.cej.2005.07.009
– ident: bibr91-2022_5553212
  doi: 10.1016/j.molliq.2018.10.010
– ident: bibr27-2022_5553212
  doi: 10.1016/j.molliq.2019.112378
– ident: bibr43-2022_5553212
– ident: bibr93-2022_5553212
  doi: 10.1515/zpch-1907-5723
– ident: bibr17-2022_5553212
  doi: 10.5539/ijc.v3n4p116
– ident: bibr56-2022_5553212
  doi: 10.1016/j.molliq.2018.11.086
– ident: bibr88-2022_5553212
  doi: 10.1016/j.indcrop.2020.112613
– start-page: 10
  volume-title: Chemistry for environmental engineering and science
  year: 2003
  ident: bibr30-2022_5553212
– ident: bibr87-2022_5553212
  doi: 10.2298/JSC0712363M
– ident: bibr97-2022_5553212
  doi: 10.3390/macromol1040018
– ident: bibr47-2022_5553212
  doi: 10.1021/je010102k
– ident: bibr11-2022_5553212
  doi: 10.1080/00986445.2013.819352
– volume: 746
  issue: 139854
  year: 2020
  ident: bibr54-2022_5553212
  publication-title: Science of The Total Environment
– volume: 261
  year: 2019
  ident: bibr57-2022_5553212
  publication-title: Environmental Pollution
– ident: bibr79-2022_5553212
  doi: 10.1016/0166-6622(87)80259-7
– ident: bibr110-2022_5553212
  doi: 10.1016/j.jece.2020.104161
– start-page: 305
  volume-title: Physical Chemistry for the Chemical Sciences
  year: 2014
  ident: bibr55-2022_5553212
– ident: bibr16-2022_5553212
  doi: 10.1039/C5RA20538G
– ident: bibr69-2022_5553212
  doi: 10.4067/S0717-97072013000100009
– ident: bibr13-2022_5553212
  doi: 10.1016/j.dyepig.2004.06.016
– ident: bibr32-2022_5553212
  doi: 10.1021/j150508a014
– ident: bibr22-2022_5553212
  doi: 10.1260/0263-6174.30.7.647
– ident: bibr2-2022_5553212
  doi: 10.1016/j.molliq.2018.10.048
– ident: bibr60-2022_5553212
  doi: 10.1016/j.jes.2020.01.015
– ident: bibr70-2022_5553212
  doi: 10.1016/j.molliq.2018.02.033
– ident: bibr72-2022_5553212
  doi: 10.1016/j.jece.2020.104105
– volume-title: General Chemistry: The Essential Concepts
  year: 2008
  ident: bibr29-2022_5553212
– ident: bibr50-2022_5553212
  doi: 10.1016/0300-9467(90)80067-M
– ident: bibr21-2022_5553212
  doi: 10.1016/j.molliq.2021.116542
– start-page: 779
  volume-title: Physical Chemistry for Chemical Sciences
  year: 2014
  ident: bibr117-2022_5553212
– ident: bibr18-2022_5553212
  doi: 10.1039/D1RA08212D
– ident: bibr52-2022_5553212
  doi: 10.1016/j.watres.2017.04.014
– ident: bibr53-2022_5553212
  doi: 10.1016/j.molliq.2020.113315
– ident: bibr58-2022_5553212
  doi: 10.1016/j.jenvrad.2019.106106
– ident: bibr6-2022_5553212
  doi: 10.1016/S0048-9697(19)31643-2
– ident: bibr23-2022_5553212
  doi: 10.1016/j.colsurfa.2005.08.029
– ident: bibr8-2022_5553212
  doi: 10.1016/j.jct.2017.08.026
– ident: bibr89-2022_5553212
  doi: 10.1080/00986445.2016.1245185
– ident: bibr111-2022_5553212
  doi: 10.1016/j.scitotenv.2018.08.434
– volume-title: Physical Chemistry
  year: 2006
  ident: bibr34-2022_5553212
– ident: bibr113-2022_5553212
  doi: 10.1016/j.chemphys.2018.10.005
– ident: bibr92-2022_5553212
  doi: 10.1016/j.molliq.2020.114980
– ident: bibr108-2022_5553212
  doi: 10.1080/15422119.2021.1888299
– ident: bibr63-2022_5553212
  doi: 10.1016/j.jece.2020.103969
– ident: bibr3-2022_5553212
  doi: 10.1016/j.molliq.2018.10.048
– ident: bibr31-2022_5553212
  doi: 10.1016/j.colcom.2021.100369
– ident: bibr82-2022_5553212
  doi: 10.1016/j.jenvrad.2009.06.014
– ident: bibr1-2022_5553212
  doi: 10.1021/je800661q
– ident: bibr103-2022_5553212
  doi: 10.1016/S0168-1656(03)00030-0
– ident: bibr105-2022_5553212
  doi: 10.1016/j.jhazmat.2020.123318
– ident: bibr62-2022_5553212
  doi: 10.1016/B978-0-12-398256-8.00001-3
– ident: bibr26-2022_5553212
  doi: 10.1016/j.biortech.2013.12.053
– ident: bibr99-2022_5553212
  doi: 10.1039/C8EW00854J
– ident: bibr115-2022_5553212
  doi: 10.1021/ie9703898
– volume: 187
  year: 2020
  ident: bibr7-2022_5553212
  publication-title: Environmental Research
– ident: bibr71-2022_5553212
  doi: 10.1016/j.envres.2021.111218
– ident: bibr98-2022_5553212
  doi: 10.1016/j.jece.2016.05.009
SSID ssj0012757
Score 2.5065215
Snippet Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard”...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
Title Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient K D (q e/C e) or Freundlich Constant (K F): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions
URI https://journals.sagepub.com/doi/full/10.1155/2022/5553212
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB5q-6IPUm9YrctBFFokdjeZS-KLLJsNxVoR22LfwmQuurKbtGki-Md9dk4mWWtR8DFhmBxyLnPmOzdCXqCLQXFGWCw0D2hiWCA504GWitnIJMwwrB0-_sAPz-i7c3a-Qb4NtTD9H7x6jWlVjqLOWKN2IxrtVZwxvLGHB4yxyBnet22zyj3SPQzUwDcYmm5XGNVWmAv5Ixgq226RrVBw6jRga5p9-ny6jjmEwvcFDXmEhXN0SJO_8b0_DrBr2V_dgZRtk7u9JwlTz_p7ZMOU98mda_0FH5CfHWRwYWqYO032RYpQWXCyUa8q7YfRw0eJCVrYZRMWJUz1VVV3dgT6HENArBZS7LDbD8eCWWW61hPuxIIjSGHvEszBDMw-VDVktWlLvVyorzDz3mcDe0eQ7b-BYTyohwkBa1vAeaCQOoK_r8lLceIAonhLZ4ZvEDu_bBddmUK7-r27LDWctF8wVIb7PiRn2fx0dhj0gx4C5S6Yjfvbzqpg53pnXpx_RYvYxqEYayUlszR2ToRlgvKJEtT5d07qImkSyanV8ViOJY8ekc2yKs1jAnYiJoWQlvNiQqXmSWyV4FZKKyxTSbFDXg3cy1XfBR2HcSzz7jbEWI68znte75CX69UXvvvHP9Y9R0HIB-n966In_7PoKbmNjx7k2SWbTd2aZ87taYqRk9f0-P3JqJfbUQcf_AJwzAUN
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF4hOLQ9VG0pKn2OKpBAlUti78PuLUpipQQQokFws9beXRop2GDi_vSeO-NHSlEr9ezxarQzO4_dmfkY26EQgxNGWKiM9HhkhaelMJ7RmXCBjYQV1Dt8fCIn5_zwUlyuMdH1wrQ7ePeZyqqQo9pYr063EJSs-wdCiMAnbOENjg4Lc66NQXx2MVs9H_iqGfHpy4B64HhX8f7g_z980b1Crtq3xM_Y0zYohEEjxedszeYv2JN7owI32c86-7-xJYzxUDb9hlA4QDGX14VpcOXhVFOtFQ3MhHkOA3NXlLVJgLZcEOjaFUY0LLfFuYJhYespEuh8YAoj2LsFezAEuw9FCXFpq9ws5tl3GDaB5BL2phDvf4EO6bO58QNqUwEMJmGEDP9YsTci8AC6kFugRX3A7Pi2mtcdB9X179V1buBbdUWvXrTuS3Yej2fDiddiNngZ5opL3G00EDSEHi0Fhko8DV3oq57JtBaOhxgPOKG47GcKJcdRgQJtIy25M2FP97QMtth6XuT2FQPXV_1UaSdl2ufayCh0mZJOa6ecyKJ0m33qpJdk7UBzwtVYJHViI0RCsk5aWW-z3RX1TTPI4x90H0kRkk4R_0r0-n-IPrBHk9nxUXL09WT6hj2mT83dzVu2viwr-w6jmWX6vtXdX-Iy79U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQJiF4mPgUY3ycEEibUFib-CPhrWoaDQrTBJvYW-TE9qjUJV3W8KfzzF2cljKBxHMuluU7n38-392PsdcEMThxhMXKyIAnVgRaChMYXQoX2URYQbXDn4_l0Rn_eC7ON6i--hW8fkdpVTijzlnT7l4Y53e4EHRhDw-FEFFI_MLbnKsIDXp7lH35drp-QgiVb_MZyojq4Pgq6_3G_3-cRxvJXN35kt1jOz0whJHX5H12y1YP2N2NdoEP2c8uArCwDUxwY_qaQ6gdoKqby9p4bnk40ZRvRU0zYVbByFzXTecWoE8ZBAq9QkoNc3uuKxjXtuskgQcQTCGF_Suwh2OwB1A3kDW2rcx8Vn6HsQeTS9ifQnbwHlZsnz7qB1SqAggoIcUJ_1hPLyUCAQrKzdGr3pjs5KqddVUH7eXv0XVl4Gt7QS9fNO4jdpZNTsdHQc_bEJR4X1ziaqOToEb06C0QLvEidnGoBqbUWjgeIyZwQnE5LBVHuIZGFGmbaMmdiQd6oGX0mG1VdWWfMHBDNSyUdlIWQ66NTGJXKum0dsqJMil22duV9vKyb2pO3BrzvLvcCJGTrvNe17vszVp64Zt5_EPuFRlCvjLGvwo9_R-hl-z2SZrlnz4cT_fYHfriwzfP2Nayae1zBDTL4kVvur8AgxTw7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improper+Estimation+of+Thermodynamic+Parameters+in+Adsorption+Studies+with+Distribution+Coefficient+K+D+%28+q+e+%2F+C+e+%29+or+Freundlich+Constant+%28+K+F+%29%3A+Considerations+from+the+Derivation+of+Dimensionless+Thermodynamic+Equilibrium+Constant+and+Suggestions&rft.jtitle=Adsorption+science+%26+technology&rft.au=Tran%2C+Hai+Nguyen&rft.date=2022&rft.issn=0263-6174&rft.eissn=2048-4038&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F5553212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_5553212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6174&client=summon