Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient K D (q e/C e) or Freundlich Constant (K F): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions
Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant K Eq o ; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the...
Saved in:
Published in | Adsorption science & technology Vol. 2022 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hindawi
2022
|
Online Access | Get full text |
ISSN | 0263-6174 2048-4038 |
DOI | 10.1155/2022/5553212 |
Cover
Loading…
Abstract | Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant
K
Eq
o
; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the standard Gibbs energy change (∆G°; kJ/mol), the standard change in enthalpy (∆H°; kJ/mol), and the standard change in entropy [∆S°; J/(mol × K)] of an adsorption process. Misconception of the derivation of the
K
Eq
o
constant that can cause calculative errors in values (magnitude and sign) of the thermodynamic parameters has been intensively reflected through certain kinds of papers (i.e., letters to editor, discussions, short communications, and correspondence like comment/rebuttal). The distribution coefficient (K
D) and Freundlich constant (K
F) have been intensively applied for calculating the thermodynamic parameters. However, a critical question is whether K
D or K
F is equal to
K
Eq
o
. This paper gives (1) thorough discussion on the derivation of thermodynamic equilibrium constant of solid–liquid adsorption process, (2) reasonable explanation on the inconsistency of (direct and indirect) application of K
D or K
F for calculating the thermodynamic parameters based on the derivation of
K
Eq
o
, and (3) helpful suggestions for improving the quality of papers published in this field. |
---|---|
AbstractList | Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant [Formula: see text]; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the standard Gibbs energy change (∆ G°; kJ/mol), the standard change in enthalpy (∆ H°; kJ/mol), and the standard change in entropy [∆ S°; J/(mol × K)] of an adsorption process. Misconception of the derivation of the [Formula: see text] constant that can cause calculative errors in values (magnitude and sign) of the thermodynamic parameters has been intensively reflected through certain kinds of papers (i.e., letters to editor, discussions, short communications, and correspondence like comment/rebuttal). The distribution coefficient ( K D ) and Freundlich constant ( K F ) have been intensively applied for calculating the thermodynamic parameters. However, a critical question is whether K D or K F is equal to [Formula: see text]. This paper gives (1) thorough discussion on the derivation of thermodynamic equilibrium constant of solid–liquid adsorption process, (2) reasonable explanation on the inconsistency of (direct and indirect) application of K D or K F for calculating the thermodynamic parameters based on the derivation of [Formula: see text], and (3) helpful suggestions for improving the quality of papers published in this field. Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard” thermodynamic equilibrium constant K Eq o ; dimensionless) plays an essential role in accurately calculating three thermodynamic parameters: the standard Gibbs energy change (∆G°; kJ/mol), the standard change in enthalpy (∆H°; kJ/mol), and the standard change in entropy [∆S°; J/(mol × K)] of an adsorption process. Misconception of the derivation of the K Eq o constant that can cause calculative errors in values (magnitude and sign) of the thermodynamic parameters has been intensively reflected through certain kinds of papers (i.e., letters to editor, discussions, short communications, and correspondence like comment/rebuttal). The distribution coefficient (K D) and Freundlich constant (K F) have been intensively applied for calculating the thermodynamic parameters. However, a critical question is whether K D or K F is equal to K Eq o . This paper gives (1) thorough discussion on the derivation of thermodynamic equilibrium constant of solid–liquid adsorption process, (2) reasonable explanation on the inconsistency of (direct and indirect) application of K D or K F for calculating the thermodynamic parameters based on the derivation of K Eq o , and (3) helpful suggestions for improving the quality of papers published in this field. |
Author | Tran, Hai Nguyen |
Author_xml | – sequence: 1 givenname: Hai Nguyen orcidid: 0000-0001-8361-2616 surname: Tran fullname: Tran, Hai Nguyen |
BookMark | eNp1kU9P3DAQxa2KSl1ob_0Ac2SlLms7dhJ6Q_sHEEhFgp4jbzLeHZTYi-204ov33BAQSKg9jUbzm6c38w7ZgfMOGfsq-IkQWs8ll3Kutc6kkB_YRHJVzhTPygM24TLPZrko1Cd2GOM950IWupiwP5fdPvg9BljFRJ1J5B14C3c7DJ1vHp3pqIYbE0yHCUMEcnDWRB_2I3mb-oYwwm9KO1hSTIE2_ThZeLSWakKX4AqWcPwAOF8ATsEHWAfsXdNSvRs4F5MZoOMrWE-_jz01GEYnEWzwHaQdwhID_Xq1t6QOB867FmN8Z3b10FNLm0B996ZuXAO3_XaLcdT9zD5a00b88lKP2M_16m5xMbv-cX65OLue1aJUaXiYlDpTp3mZSS202pS2lAVvamO0VaWSudWFykVdKC3UBuvM4KnJlW1KbrjJsyP27Vm3Dj7GgLbah-HL4bESvHrKrHrKrHrJbMDlO7ymNB6dgqH2f0vT56Votljd-z644aR_s38BnsysNA |
CitedBy_id | crossref_primary_10_3390_molecules29245853 crossref_primary_10_3390_molecules28083349 crossref_primary_10_35118_apjmbb_2024_032_4_Special__11 crossref_primary_10_1177_02636174241280029 crossref_primary_10_1016_j_ijbiomac_2024_133417 crossref_primary_10_1002_slct_202403556 crossref_primary_10_1016_j_diamond_2025_112085 crossref_primary_10_1016_j_jece_2024_112336 crossref_primary_10_3390_molecules28145552 crossref_primary_10_2166_wst_2023_045 crossref_primary_10_1080_01932691_2023_2194383 crossref_primary_10_1016_j_molliq_2023_121652 crossref_primary_10_1007_s11270_023_06317_5 crossref_primary_10_1016_j_molliq_2025_127243 crossref_primary_10_3390_w16142037 crossref_primary_10_1080_01932691_2023_2271062 crossref_primary_10_1016_j_molliq_2024_124097 crossref_primary_10_1007_s10924_023_03169_2 crossref_primary_10_1016_j_cherd_2023_02_033 crossref_primary_10_1016_j_cej_2024_149588 crossref_primary_10_1016_j_cjche_2025_01_014 crossref_primary_10_1016_j_scitotenv_2024_171118 crossref_primary_10_1007_s11356_024_32199_z crossref_primary_10_1016_j_jtice_2024_105369 crossref_primary_10_1016_j_molliq_2023_123424 crossref_primary_10_1016_j_biortech_2023_129225 crossref_primary_10_1007_s11270_024_07241_y crossref_primary_10_1016_j_jenvman_2022_116475 crossref_primary_10_3390_molecules28083353 crossref_primary_10_5004_dwt_2023_29567 crossref_primary_10_1016_j_cej_2024_150387 crossref_primary_10_1016_j_jece_2024_112208 crossref_primary_10_1007_s41207_024_00630_z crossref_primary_10_1021_jacs_4c07530 crossref_primary_10_1016_j_heliyon_2024_e28188 crossref_primary_10_1016_j_cej_2025_159768 crossref_primary_10_1016_j_dwt_2024_100835 crossref_primary_10_1007_s11356_024_32968_w crossref_primary_10_1016_j_carbon_2024_119822 crossref_primary_10_1016_j_jenvman_2023_119279 crossref_primary_10_1016_j_measurement_2024_114129 crossref_primary_10_5004_dwt_2023_29750 crossref_primary_10_3390_en16186544 crossref_primary_10_1016_j_jclepro_2024_142801 crossref_primary_10_3390_polym15051269 crossref_primary_10_1007_s10570_022_04933_8 crossref_primary_10_1186_s12302_023_00742_3 crossref_primary_10_1016_j_mtcomm_2024_110488 crossref_primary_10_1007_s10967_023_09058_1 crossref_primary_10_1021_acs_langmuir_2c03105 crossref_primary_10_1016_j_diamond_2024_110912 crossref_primary_10_1016_j_jece_2023_110091 crossref_primary_10_1016_j_jenvman_2024_122757 crossref_primary_10_1016_j_diamond_2025_112116 crossref_primary_10_1021_acsomega_3c09864 crossref_primary_10_3390_w15020293 crossref_primary_10_1002_jctb_7258 crossref_primary_10_3390_w14233806 crossref_primary_10_1016_j_scitotenv_2024_173370 crossref_primary_10_1016_j_jece_2024_112668 crossref_primary_10_1061_JOEEDU_EEENG_7074 crossref_primary_10_1016_j_envres_2022_114927 crossref_primary_10_1016_j_molliq_2024_125372 crossref_primary_10_3390_w15030493 crossref_primary_10_1007_s11356_023_30159_7 crossref_primary_10_1016_j_chemosphere_2023_140736 crossref_primary_10_1016_j_jece_2022_108886 crossref_primary_10_1016_j_colsurfa_2024_133244 crossref_primary_10_3390_ma16144961 crossref_primary_10_1016_j_foodchem_2023_138064 crossref_primary_10_1080_01496395_2024_2349928 |
Cites_doi | 10.1016/j.jhazmat.2016.05.073 10.1016/j.jenvrad.2008.09.008 10.1016/j.jct.2004.09.013 10.1016/j.molliq.2016.11.058 10.1080/01496395.2019.1706579 10.1021/i260055a019 10.1016/j.watres.2017.09.055 10.1016/j.jece.2021.106674 10.1039/C9TA11420C 10.1016/j.chemphys.2018.06.022 10.1016/j.jtice.2012.08.005 10.1006/jcht.1995.0001 10.1016/j.desal.2012.01.001 10.2136/sssaj1973.03615995003700060022x 10.1016/j.jhazmat.2020.123292 10.1016/j.jhazmat.2016.11.061 10.1016/B978-0-444-64114-4.00004-2 10.1021/acs.est.0c00919 10.1016/j.jct.2013.09.013 10.1016/S0009-2509(99)00540-0 10.1260/026361709788921605 10.1016/j.envres.2022.112958 10.1016/j.seppur.2007.10.002 10.1007/s10668-019-00424-2 10.1021/acsomega.0c05674 10.1016/j.scitotenv.2020.137828 10.1016/j.jhazmat.2022.129015 10.1016/j.chemosphere.2020.126444 10.1063/1.1746922 10.1016/j.molliq.2022.118762 10.1016/j.jhazmat.2020.122903 10.1016/j.jhazmat.2022.128407 10.1006/jcis.1997.5041 10.1016/S0009-2614(02)00830-8 10.1016/B978-0-323-85768-0.00004-X 10.1080/01496395.2019.1706578 10.1016/j.jhazmat.2014.12.047 10.1016/j.jenvman.2021.112167 10.1016/j.chemphys.2018.10.007 10.1002/9781118131473.ch5 10.1016/j.chemosphere.2004.08.091 10.1016/j.carbpol.2012.01.073 10.1016/j.jconhyd.2022.104044 10.1002/adma.201905988 10.1006/jcis.2000.7057 10.1016/j.watres.2004.12.003 10.1016/j.molliq.2019.01.160 10.1080/00986445.2013.818541 10.1016/j.jhazmat.2008.03.076 10.1016/j.molliq.2018.01.073 10.1016/j.watres.2012.05.040 10.1080/01496395.2019.1580734 10.1351/pac199466030533 10.1016/j.carbon.2003.09.022 10.1016/j.colsurfa.2015.05.014 10.1016/j.cej.2005.07.009 10.1016/j.molliq.2018.10.010 10.1016/j.molliq.2019.112378 10.1515/zpch-1907-5723 10.5539/ijc.v3n4p116 10.1016/j.molliq.2018.11.086 10.1016/j.indcrop.2020.112613 10.2298/JSC0712363M 10.3390/macromol1040018 10.1021/je010102k 10.1080/00986445.2013.819352 10.1016/0166-6622(87)80259-7 10.1016/j.jece.2020.104161 10.1039/C5RA20538G 10.4067/S0717-97072013000100009 10.1016/j.dyepig.2004.06.016 10.1021/j150508a014 10.1260/0263-6174.30.7.647 10.1016/j.molliq.2018.10.048 10.1016/j.jes.2020.01.015 10.1016/j.molliq.2018.02.033 10.1016/j.jece.2020.104105 10.1016/0300-9467(90)80067-M 10.1016/j.molliq.2021.116542 10.1039/D1RA08212D 10.1016/j.watres.2017.04.014 10.1016/j.molliq.2020.113315 10.1016/j.jenvrad.2019.106106 10.1016/S0048-9697(19)31643-2 10.1016/j.colsurfa.2005.08.029 10.1016/j.jct.2017.08.026 10.1080/00986445.2016.1245185 10.1016/j.scitotenv.2018.08.434 10.1016/j.chemphys.2018.10.005 10.1016/j.molliq.2020.114980 10.1080/15422119.2021.1888299 10.1016/j.jece.2020.103969 10.1016/j.colcom.2021.100369 10.1016/j.jenvrad.2009.06.014 10.1021/je800661q 10.1016/S0168-1656(03)00030-0 10.1016/j.jhazmat.2020.123318 10.1016/B978-0-12-398256-8.00001-3 10.1016/j.biortech.2013.12.053 10.1039/C8EW00854J 10.1021/ie9703898 10.1016/j.envres.2021.111218 10.1016/j.jece.2016.05.009 |
ContentType | Journal Article |
DBID | AFRWT AAYXX CITATION |
DOI | 10.1155/2022/5553212 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4038 |
Editor | Bonilla-Petriciolet, Adrián |
Editor_xml | – sequence: 1 givenname: Adrián surname: Bonilla-Petriciolet fullname: Bonilla-Petriciolet, Adrián |
ExternalDocumentID | 10_1155_2022_5553212 10.1155_2022_5553212 |
GroupedDBID | 0R~ 23M 4.4 5GY AABPG AAFWJ AAJEY AAJPV AATZT ABAWP ABDBF ACDXX ACGFS ACUHS ADBBV ADMLS AENEX AEWDL AFKRA AFKRG AFPKN AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BCNDV BENPR CCPQU CS3 EBS ESX GROUPED_DOAJ I-F K.F MET MV1 O9- OK1 P2P PHGZM PHGZT PIMPY Q1R ROL SAUOL SFC TUS AAOTM AASGM AAYXX ACHEB ADEBD AFCOW AI. BDDNI CITATION CKLRP EJD H13 IL9 J8X SCNPE VH1 |
ID | FETCH-LOGICAL-c184t-6122534968325154b8f8270dcaa5f48426f57461c74514bec3ae9a64fd80a0a63 |
IEDL.DBID | AFRWT |
ISSN | 0263-6174 |
IngestDate | Thu Apr 24 22:58:21 EDT 2025 Sun Jul 06 05:05:09 EDT 2025 Tue Jun 17 22:27:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c184t-6122534968325154b8f8270dcaa5f48426f57461c74514bec3ae9a64fd80a0a63 |
ORCID | 0000-0001-8361-2616 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1155/2022/5553212?utm_source=summon&utm_medium=discovery-provider |
ParticipantIDs | crossref_primary_10_1155_2022_5553212 crossref_citationtrail_10_1155_2022_5553212 sage_journals_10_1155_2022_5553212 |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Adsorption science & technology |
PublicationYear | 2022 |
Publisher | Hindawi |
Publisher_xml | – name: Hindawi |
References | Lima, Hosseini-Bandegharaei, Moreno-Piraján, Anastopoulos 2019; 273 Ghosh, Chopra 1975; 14 Zuyi, Taiwei 2000; 231 Sohn, Kim 2005; 58 Shen, Pan, Zhang, Sun, Hou, Zhang, Zou 2020; n/a, no. n/a Qu, Wang, Tian, Jiang, Deng, Tao, Jiang, Wang, Zhang 2021; 401, article 123292 Shahwan 2021; 41, article 100369 Tran, You, Hosseini-Bandegharaei, Chao 2017; 120 Moreno-Marenco, Giraldo, Moreno-Piraján 2020; 8 Maimaitiniyazi, Zhou 2022; 210, article 112958 Chen, Da, Ma 2021; 322, article 114980 Tran 2020; 746 Sips 1948; 16 Rahmani-Sani, Hosseini-Bandegharaei, Hosseini, Kharghani, Zarei, Rastegar 2015; 286 Yang, Cheng, Han, Luo, Li, Tang, Yue, Li 2021; 401, article 123318 Kopinke, Georgi, Goss 2018; 129 Xiaofu, Fang, Mingli, Zhihui, Qun 2009; 27 Moreno-Castilla 2004; 42 Saeed, Naeem, Din, Farooq, Khan, Hamayun, Malik 2022; 435, article 129015 Bollinger 2019; 261, article 113824 Senthil Kumar, Fernando, Ahmed, Srinath, Priyadharshini, Vignesh, Thanjiappan 2014; 201 Lima, Sher, Saeb, Abatal, Seliem 2021; 334, article 116542 Salvestrini, Ambrosone, Kopinke 2022; 352, article 118762 Reddy, Seshaiah, Reddy, Lee 2012; 88 Jin, Yang, Xiong, Zhou, Xu, Zhang, Cao, Li, Zhou 2019; 650 Liu, Lee 2014; 160 Hubbe 2022; 51 Canzano, Iovino, Salvestrini, Capasso 2012; 46 Najaflou, Rad, Baghdadi, Bidhendi 2021; 286, article 112167 Zhou, Zhou 2020; 213, article 106106 Sawafta, Shahwan 2019; 273 Seifikar, Azizian 2019; 275 Tomul, Arslan, Kabak, Trak, Kendüzler, Lima, Tran 2020; 726, article 137828 Salvestrini, Leone, Iovino, Canzano, Capasso 2014; 68 Húmpola, Odetti, Fertitta, Vicente 2013; 58 Ghosal, Gupta 2015; 5 Khosravi, Moussavi, Ghaneian, Ehrampoush, Barikbin, Ebrahimi, Sharifzadeh 2018; 256 Lin, Pan, Chen, Cheng, Xu 2009; 161 Ewing, Lilley, Olofsson, Rätzsch, Somsen 1994; 66 Liu 2009; 54 Tran 2022; 10 Fenti, Iovino, Salvestrini 2019; 273 Publisher 2019; 671 Rochaa, da Silvaa, Borosb, Krahenbuhlb, Guirardellob 2014; 37 Salunkhe, Schuman 2021; 1 Zhou 2020; 187, article 109610 Ioannidis, Anderko, Sanders 2000; 55 Bollinger, Tran, Lima 2022; 12 Zhou, Zhou 2020; 90 Thue, Umpierres, Lima, Lima, Machado, dos Reis, da Silva, Pavan, Tran 2020; 398, article 122903 Allen, Addison 1990; 44 Ghosal, Gupta 2017; 225 Freundlich 1907; 57 Chao, Lee, Juang, Hsieh 2013; 44 Graham 1953; 57 Romero-Gonzalez, Peralta-Videa, Rodrıguez, Ramirez, Gardea-Torresdey 2005; 37 Tong, Mayer, McNamara 2019; 5 Liu 2006; 274 Rahmani-Sani, Shan, Yan, Hosseini-Bandegharaei 2017; 325 Ewing, Lilley, Olofsson, Rätzsch, Somsen 1995; 27 Tran, You, Chao 2016; 4 Petrus, Warchoł 2005; 39 Liu, Xu, Yang, Tay 2003; 102 Zhou, Yu, Hao, Liu 2022; 429, article 128407 Shuibo, Chun, Xinghuo, Jing, Xiaojian, Jingsong 2009; 100 Khan, Singh 1987; 24 Salvestrini, Fenti, Chianese, Iovino, Musmarra 2020; 8 Tran, Bollinger, Lima Taraba, Bulavová 2018; 116 Milonjić 2007; 72 Lima, Gomes, Tran 2020; 311, article 113315 Bollinger 2020; 55 Lima, Hosseini-Bandegharaei, Anastopoulos 2019; 273 Tran, Lima, Juang, Bollinger, Chao 2021; 9 Lin, Juang 2005; 112 Valverde, Lucas, Gonzalez, Rodríguez 2001; 46 Salvestrini, Iovino, Capasso 2019; 517 Bhattacharyya, Sharma 2005; 65 Ma, Liu, Zhang, Liu, Di 2011; 3 Tran 2020; 54 Zhou 2017; 323 Patel, Kumar, Pittman, Mohan 2021; 201, article 111218 Lipkowski, Koll, Karpfen, Wolschann 2002; 360 Hai 2017; 204 Tan, Sen 2020; 55 Barakan, Aghazadeh, Samiee Beyragh, Mohammadi 2020; 22 Gupta 1998; 37 Zhou, Liu, Hao 2012; 30 Li, Deng, Wu, Ye, Jiang 2021; 6 Biggar, Cheung 1973; 37 Kopinke, Georgi, Goss 2019; 517 Saravanan, Jeevanantham, Senthil Kumar, Varjani, Yaashikaa, Karishma 2020; 153, article 112613 Hu, Wang, Feng, Zhang, Lei, Shimizu 2018; 254 Azizian, Eris, Wilson 2018; 513 Cherkasov 2020; 301, article 112378 Milonjić 2009; 100 Zhou, Zhou 2014; 201 Liu, Liu 2008; 61 Khan, Ataullah, Al-Haddad 1997; 194 Luo, Gao, Yang, Yang 2015; 482 Zhou, Maimaitiniyazi, Wang 2022; 249, article 104044 Zhou, Wu, Chen, Liao, Xie 2020; 8 Tran 2020; 257, article 126444 Aniceto, Cardoso, Faria, Lito, Silva 2012; 290 bibr38-2022_5553212 bibr88-2022_5553212 bibr19-2022_5553212 Atkins P. (bibr34-2022_5553212) 2006 bibr53-2022_5553212 bibr115-2022_5553212 bibr80-2022_5553212 Rochaa S. A. (bibr49-2022_5553212) 2014; 37 Chan R. (bibr55-2022_5553212) 2014 bibr15-2022_5553212 bibr69-2022_5553212 bibr65-2022_5553212 bibr111-2022_5553212 bibr11-2022_5553212 bibr84-2022_5553212 bibr96-2022_5553212 bibr95-2022_5553212 bibr41-2022_5553212 bibr92-2022_5553212 bibr107-2022_5553212 bibr91-2022_5553212 bibr46-2022_5553212 bibr99-2022_5553212 bibr104-2022_5553212 bibr45-2022_5553212 Bollinger J.-C. (bibr57-2022_5553212) 2019; 261 bibr8-2022_5553212 bibr103-2022_5553212 bibr4-2022_5553212 bibr5-2022_5553212 bibr58-2022_5553212 Chang R. (bibr117-2022_5553212) 2014 bibr100-2022_5553212 Iupac (bibr42-2022_5553212) 2014; 528 bibr89-2022_5553212 bibr87-2022_5553212 Chang R. (bibr29-2022_5553212) 2008 bibr81-2022_5553212 bibr9-2022_5553212 bibr18-2022_5553212 bibr14-2022_5553212 bibr71-2022_5553212 bibr12-2022_5553212 bibr10-2022_5553212 bibr16-2022_5553212 bibr83-2022_5553212 bibr108-2022_5553212 Tran H. N. (bibr54-2022_5553212) 2020; 746 bibr79-2022_5553212 bibr61-2022_5553212 bibr26-2022_5553212 bibr63-2022_5553212 bibr28-2022_5553212 bibr73-2022_5553212 bibr75-2022_5553212 bibr20-2022_5553212 bibr24-2022_5553212 bibr22-2022_5553212 bibr77-2022_5553212 bibr51-2022_5553212 bibr2-2022_5553212 bibr113-2022_5553212 bibr82-2022_5553212 bibr17-2022_5553212 bibr36-2022_5553212 bibr13-2022_5553212 Iupac (bibr39-2022_5553212) 2007 bibr67-2022_5553212 bibr70-2022_5553212 bibr48-2022_5553212 bibr32-2022_5553212 bibr109-2022_5553212 bibr43-2022_5553212 bibr98-2022_5553212 bibr93-2022_5553212 bibr47-2022_5553212 bibr97-2022_5553212 bibr90-2022_5553212 bibr106-2022_5553212 bibr105-2022_5553212 bibr101-2022_5553212 bibr56-2022_5553212 bibr102-2022_5553212 bibr3-2022_5553212 bibr6-2022_5553212 Tran H. N. (bibr85-2022_5553212) bibr94-2022_5553212 bibr40-2022_5553212 bibr59-2022_5553212 bibr37-2022_5553212 bibr118-2022_5553212 bibr50-2022_5553212 bibr35-2022_5553212 bibr1-2022_5553212 bibr116-2022_5553212 bibr33-2022_5553212 bibr52-2022_5553212 bibr112-2022_5553212 Zhou X. (bibr86-2022_5553212) 2022; 249 bibr114-2022_5553212 Sawyer C. N. (bibr30-2022_5553212) 2003 bibr66-2022_5553212 bibr64-2022_5553212 bibr31-2022_5553212 bibr110-2022_5553212 bibr68-2022_5553212 Monk P. M. (bibr44-2022_5553212) 2008 bibr25-2022_5553212 bibr62-2022_5553212 Zhou X. (bibr7-2022_5553212) 2020; 187 bibr27-2022_5553212 bibr72-2022_5553212 bibr21-2022_5553212 bibr74-2022_5553212 bibr60-2022_5553212 bibr78-2022_5553212 bibr23-2022_5553212 bibr76-2022_5553212 |
References_xml | – volume: 201 start-page: 1526 issue: 11 year: 2014 end-page: 1547 article-title: Effect of temperature on the adsorption of methylene blue dye onto sulfuric acid–treated orange peel – volume: 4 start-page: 2671 issue: 3 year: 2016 end-page: 2682 article-title: Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study – volume: 55 start-page: 823 issue: 5 year: 2020 end-page: 824 article-title: Comments on “aqueous-phase methylene blue (MB) dye removal by mixture of eucalyptus bark (EB) biomass and kaolin clay (KC) adsorbents: kinetics, thermodynamics, and isotherm modeling” – volume: 257, article 126444 year: 2020 article-title: Comments on "High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar" – volume: 16 start-page: 490 issue: 5 year: 1948 end-page: 495 article-title: On the structure of a catalyst surface – volume: 46 start-page: 1404 issue: 6 year: 2001 end-page: 1409 article-title: Ion-exchange equilibria of Cu2+, Cd2+, Zn2+, and Na+ ions on the cationic exchanger Amberlite IR-120 – volume: 8 issue: 5, article 104105 year: 2020 article-title: Diclofenac sorption from synthetic water: kinetic and thermodynamic analysis – volume: 213, article 106106 year: 2020 article-title: Comments on ''Removal of uranium (VI) from aqueous solution by adsorption of hematite'', by X. Shuibo, Z. Chun, Z. Xinghuo, Y. Jing, Z. Xiaojian, W. Jingsong – volume: 325 start-page: 367 year: 2017 end-page: 368 article-title: Response to “Letter to Editor: Minor correction to the thermodynamic calculation using the distribution constant by Shan et al. and Rahmani-Sani et al.” – volume: n/a, no. n/a start-page: 1905988 year: 2020 article-title: Low-spin-state hematite with superior adsorption of anionic contaminations for water purification – volume: 517 start-page: 265 year: 2019 end-page: 267 article-title: Comment on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution", published by Azizian et al. [Chemical physics 513 (2018) 99-104] – volume: 273 start-page: 425 year: 2019 end-page: 434 article-title: Some remarks on “a critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't hoof equation for calculation of thermodynamic parameters of adsorption” – volume: 30 start-page: 647 issue: 7 year: 2012 end-page: 649 article-title: Letters to the Editor – volume: 161 start-page: 231 issue: 1 year: 2009 end-page: 240 article-title: Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders – volume: 37 start-page: 535 year: 2014 end-page: 540 article-title: Solid-liquid equilibrium calculation and parameters determination in thermodynamic models for binary and ternary fatty mixtures – volume: 51 start-page: 212 issue: 2 year: 2022 end-page: 225 article-title: Insisting upon meaningful results from adsorption experiments – volume: 249, article 104044 year: 2022 article-title: Discussion on the thermodynamic calculation by distribution constant in Journal of Contaminant Hydrology 243 (2021) 103906 – volume: 275 start-page: 394 year: 2019 end-page: 401 article-title: A facile method for precipitating of dispersed carbon particles prepared by microwave heating and its application for dye removal – volume: 517 start-page: 270 year: 2019 end-page: 271 article-title: Comments on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution" – volume: 100 start-page: 162 issue: 2 year: 2009 end-page: 166 article-title: Removal of uranium (VI) from aqueous solution by adsorption of hematite – volume: 55 start-page: 2687 issue: 14 year: 2000 end-page: 2698 article-title: Internally consistent representation of binary ion exchange equilibria – volume: 22 start-page: 5273 issue: 6 year: 2020 end-page: 5295 article-title: Thermodynamic, kinetic and equilibrium isotherm studies of as(V) adsorption by Fe(III)-impregnated bentonite – volume: 201, article 111218 year: 2021 article-title: Ciprofloxacin and acetaminophen sorption onto banana peel biochars: environmental and process parameter influences – volume: 6 start-page: 7402 issue: 11 year: 2021 end-page: 7412 article-title: Strong adsorption of phosphorus by ZnAl-LDO-activated Banana biochar: an analysis of adsorption efficiency, thermodynamics, and internal mechanisms – volume: 129 start-page: 520 year: 2018 end-page: 521 article-title: Comment on "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran et al. [Water Research 120, 2017, 88-116]" – volume: 39 start-page: 819 issue: 5 year: 2005 end-page: 830 article-title: Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems – volume: 482 start-page: 222 year: 2015 end-page: 230 article-title: Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: mechanism, kinetics and thermodynamics studies – volume: 435, article 129015 year: 2022 article-title: Response to comments on "Correction to the thermodynamic calculation using the Langmuir isotherm model" – volume: 286 start-page: 152 year: 2015 end-page: 163 article-title: Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid – volume: 58 start-page: 115 issue: 1 year: 2005 end-page: 123 article-title: Modification of Langmuir isotherm in solution systems--definition and utilization of concentration dependent factor – volume: 37 start-page: 863 issue: 6 year: 1973 end-page: 868 article-title: Adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) on panoche, Ephrata, and Palouse soils: a thermodynamic approach to the adsorption mechanism – volume: 112 start-page: 211 issue: 1-3 year: 2005 end-page: 218 article-title: Ion-exchange equilibria of Cu(II) and Zn(II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins – volume: 37 start-page: 343 issue: 4 year: 2005 end-page: 347 article-title: Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto biomass – volume: 256 start-page: 163 year: 2018 end-page: 174 article-title: Chromium adsorption from aqueous solution using novel green nanocomposite: adsorbent characterization, isotherm, kinetic and thermodynamic investigation – volume: 72 start-page: 1363 issue: 12 year: 2007 end-page: 1367 article-title: A consideration of the correct calculation of thermodynamic parameters of adsorption – volume: 274 start-page: 34 issue: 1-3 year: 2006 end-page: 36 article-title: Some consideration on the Langmuir isotherm equation – volume: 301, article 112378 year: 2020 article-title: Liquid-phase adsorption: common problems and how we could do better – volume: 210, article 112958 year: 2022 article-title: Comment on the calculation of equilibrium constant and thermodynamic parameters by the distribution coefficient in environmental research 203 (2022) 111814 – volume: 1 start-page: 256 issue: 4 year: 2021 end-page: 275 article-title: Super-adsorbent hydrogels for removal of methylene blue from aqueous solution: dye adsorption isotherms, kinetics, and thermodynamic properties – volume: 323 start-page: 735 year: 2017 end-page: 736 article-title: Minor correction to the thermodynamic calculation using the distribution constant by Shan et al. and Rahmani-Sani et al. – volume: 57 start-page: 665 issue: 7 year: 1953 end-page: 669 article-title: The characterization of physical adsorption systems. I. the equilibrium function and standard free energy of adsorption – volume: 513 start-page: 99 year: 2018 end-page: 104 article-title: Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution – volume: 44 start-page: 113 issue: 3 year: 1990 end-page: 118 article-title: Ion exchange equilibria for ternary systems from binary exchange data – volume: 58 start-page: 1541 issue: 1 year: 2013 end-page: 1544 article-title: Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons – volume: 334, article 116542 year: 2021 article-title: Comments on “Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant, Journal of Molecular Liquids 322 (2021) 114980” – volume: 3 start-page: 116 issue: 4 year: 2011 end-page: 120 article-title: Kinetics and thermodynamic studies on the adsorption of Co2+ onto chitosan-aluminium oxide composite material – issue: article e13913 article-title: Comments on “Biosorption of nickel from aqueous solution onto Liagora viscida: Kinetics, isotherm, and thermodynamics” – volume: 352, article 118762 year: 2022 article-title: Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data – volume: 153, article 112613 year: 2020 article-title: Enhanced Zn(II) ion adsorption on surface modified mixed biomass - _Borassus flabellifer_ and _Aspergillus tamarii_ : Equilibrium, kinetics and thermodynamics study – volume: 204 start-page: 134 issue: 1 year: 2017 end-page: 139 article-title: Comments on “effect of temperature on the adsorption of methylene blue dye onto sulfuric acid–treated orange peel” – volume: 273 start-page: 425 year: 2019 end-page: 434 article-title: A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't hoof equation for calculation of thermodynamic parameters of adsorption – volume: 14 start-page: 304 issue: 3 year: 1975 end-page: 308 article-title: Activity coefficients from the Wilson equation – volume: 225 start-page: 137 year: 2017 end-page: 146 article-title: Determination of thermodynamic parameters from Langmuir isotherm constant- revisited – volume: 8 issue: 5, article 104161 year: 2020 article-title: Fabrication of hydrophobic/hydrophilic bifunctional adsorbent for the removal of sulfamethoxazole and bisphenol a in Water – volume: 261, article 113824 year: 2019 article-title: Letter to the editor: comments on “adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water” – volume: 650 start-page: 408 year: 2019 end-page: 418 article-title: Cu and co nanoparticles Co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions – volume: 27 start-page: 1 issue: 1 year: 1995 end-page: 16 article-title: IUPAC: a report of IUPAC commission 1.2 on thermodynamics: standard quantities in chemical thermodynamics. Fugacities, activities, and equilibrium constants for pure and mixed phases – volume: 5 start-page: 1132 issue: 6 year: 2019 end-page: 1144 article-title: Adsorption of organic micropollutants to biosolids-derived biochar: estimation of thermodynamic parameters – volume: 37 start-page: 192 issue: 1 year: 1998 end-page: 202 article-title: Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent – volume: 116 start-page: 97 year: 2018 end-page: 106 article-title: Adsorption enthalpy of lead(II) and phenol on coals and activated carbon in the view of thermodynamic analysis and calorimetric measurements – volume: 12 start-page: 5769 issue: 10 year: 2022 end-page: 5771 article-title: Comments on “removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay – a comparative study” by M. M. Tarekegn, R. M. Balakrishnan, A. M. Hiruy and A. H. Dekebo, RSC Adv., 2021, 11, 30109 – volume: 160 start-page: 24 year: 2014 end-page: 31 article-title: Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters – volume: 27 start-page: 1 issue: 1 year: 2009 end-page: 17 article-title: A simple way of calculating the change in the Gibbs' free energy of ion adsorption reactions – volume: 24 start-page: 33 issue: 1 year: 1987 end-page: 42 article-title: Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H , Na and Ca forms – volume: 286, article 112167 year: 2021 article-title: Removal of Pb(II) from contaminated waters using cellulose sulfate/chitosan aerogel: Equilibrium, kinetics, and thermodynamic studies – volume: 102 start-page: 233 issue: 3 year: 2003 end-page: 239 article-title: A general model for biosorption of Cd , Cu and Zn by aerobic granules – volume: 5 start-page: 105889 issue: 128 year: 2015 end-page: 105900 article-title: An insight into thermodynamics of adsorptive removal of fluoride by calcined ca–Al–(NO3) layered double hydroxide – volume: 311, article 113315 year: 2020 article-title: Comparison of the nonlinear and linear forms of the van't Hoff equation for calculation of adsorption thermodynamic parameters (∆ ° and ∆ °) – volume: 100 start-page: 921 issue: 10 year: 2009 end-page: 922 article-title: Comments on "removal of uranium (VI) from aqueous solution by adsorption of hematite", by X. Shuibo, Z. Chun, Z. Xinghuo, Y. Jing, Z. Xiaojian, W. Jingsong – volume: 273 start-page: 425 year: 2019 end-page: 434 article-title: Response to “Some remarks on a critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the van't Hoff equation for calculation of thermodynamic parameters of adsorption” – volume: 88 start-page: 1077 issue: 3 year: 2012 end-page: 1086 article-title: Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder – volume: 68 start-page: 310 year: 2014 end-page: 316 article-title: Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms – volume: 322, article 114980 year: 2021 article-title: Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant – volume: 254 start-page: 20 year: 2018 end-page: 25 article-title: Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters – volume: 120 start-page: 88 year: 2017 end-page: 116 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review – volume: 54 start-page: 7725 issue: 12 year: 2020 end-page: 7726 article-title: Comment on “Puffed Rice carbon with coupled sulfur and metal iron for high-efficiency mercury removal in aqueous solution” – volume: 55 start-page: 1036 issue: 6 year: 2020 end-page: 1050 article-title: Aqueous-phase methylene blue (MB) dye removal by mixture of eucalyptus bark (EB) biomass and kaolin clay (KC) adsorbents: kinetics, thermodynamics, and isotherm modeling – volume: 273 start-page: 274 year: 2019 end-page: 281 article-title: A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions – volume: 65 start-page: 51 issue: 1 year: 2005 end-page: 59 article-title: Kinetics and thermodynamics of Methylene Blue adsorption on Neem ( ) leaf powder – volume: 401, article 123318 year: 2021 article-title: Heavy metal ions' poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice – volume: 66 start-page: 533 year: 1994 end-page: 552 article-title: Standard quantities in chemical thermodynamics. Fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC Recommendations 1994) – volume: 10 start-page: 6809 issue: 12 year: 2022 end-page: 6814 article-title: Comment on “Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution” by X.-S. Hu, R. Liang and G. Sun, J. Mater. Chem. A, 2018, 6, 17612–17624 – volume: 55 start-page: 825 issue: 5 year: 2020 end-page: 827 article-title: Author’s responses to the comment by Jean-Claude Bollinger and also corrigendum to our recent article published in separation science and technology online march 4, 2019 – volume: 726, article 137828 year: 2020 article-title: Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water – volume: 671 start-page: ii year: 2019 article-title: Editorial Board – volume: 42 start-page: 83 issue: 1 year: 2004 end-page: 94 article-title: Adsorption of organic molecules from aqueous solutions on carbon materials – volume: 90 start-page: 409 year: 2020 end-page: 410 article-title: Comments on "Efficient adsorption of Mn(II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. J. Environ. Sci. 85, 56-65" – volume: 398, article 122903 year: 2020 article-title: Single-step pyrolysis for producing magnetic activated carbon from tucuma ( ) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol – volume: 61 start-page: 229 issue: 3 year: 2008 end-page: 242 article-title: Biosorption isotherms, kinetics and thermodynamics – volume: 429, article 128407 year: 2022 article-title: Comments on the calculation of the standard equilibrium constant using the Langmuir model in journal of hazardous materials 422 (2022) 126863 – volume: 44 start-page: 111 issue: 1 year: 2013 end-page: 116 article-title: Sorption of organic compounds with different water solubility on octadecyltrichlorosilane-modified titanate nanotubes – volume: 401, article 123292 year: 2021 article-title: KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration – volume: 290 start-page: 43 year: 2012 end-page: 53 article-title: Modeling ion exchange equilibrium: analysis of exchanger phase non-ideality – volume: 54 start-page: 1981 issue: 7 year: 2009 end-page: 1985 article-title: Is the free energy change of adsorption correctly calculated? – volume: 9 issue: 6, article 106674 year: 2021 article-title: Thermodynamic parameters of liquid-phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study – volume: 194 start-page: 154 issue: 1 year: 1997 end-page: 165 article-title: Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures – volume: 46 start-page: 4314 issue: 13 year: 2012 end-page: 4315 article-title: Comment on "Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design" – volume: 231 start-page: 8 issue: 1 year: 2000 end-page: 12 article-title: On the applicability of the Langmuir equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution – volume: 201 start-page: 1459 issue: 11 year: 2014 end-page: 1467 article-title: The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation – volume: 360 start-page: 256 issue: 3-4 year: 2002 end-page: 263 article-title: An approach to estimate the energy of the intramolecular hydrogen bond – volume: 8 issue: 4, article 103969 year: 2020 article-title: Adsorption of n-butylparaben from aqueous solution on surface of modified granular activated carbons prepared from African palm shell. Thermodynamic study of interactions – volume: 746 issue: article 139854 year: 2020 article-title: Comments on “Fast and efficient removal of Cr(VI) to ppb level together with Cr(III) sequestration in water using layered double hydroxide interclated with diethyldithiocarbamate” – volume: 57 start-page: 385 issue: 1 year: 1907 end-page: 470 article-title: Über die adsorption in Lösungen – volume: 187, article 109610 year: 2020 article-title: Comment on the thermodynamic calculation using the non-standard equilibrium constant re Jemutai-Kimosop et al. (2020) and Conde-Cid et al. (2019) – volume: 41, article 100369 year: 2021 article-title: Critical insights into the limitations and interpretations of the determination of ∆G°, ∆H°, and ∆S° of sorption of aqueous pollutants on different sorbents – ident: bibr80-2022_5553212 doi: 10.1016/j.jhazmat.2016.05.073 – ident: bibr109-2022_5553212 doi: 10.1016/j.jenvrad.2008.09.008 – ident: bibr37-2022_5553212 doi: 10.1016/j.jct.2004.09.013 – ident: bibr33-2022_5553212 doi: 10.1016/j.molliq.2016.11.058 – ident: bibr81-2022_5553212 doi: 10.1080/01496395.2019.1706579 – ident: bibr48-2022_5553212 doi: 10.1021/i260055a019 – ident: bibr100-2022_5553212 doi: 10.1016/j.watres.2017.09.055 – ident: bibr24-2022_5553212 doi: 10.1016/j.jece.2021.106674 – ident: bibr95-2022_5553212 doi: 10.1039/C9TA11420C – volume-title: Chapter 4. Reaction Spontaneity and the Direction of Thermodynamic Change. Physical Chemistry: Understanding our Chemical World year: 2008 ident: bibr44-2022_5553212 – ident: bibr4-2022_5553212 doi: 10.1016/j.chemphys.2018.06.022 – ident: bibr96-2022_5553212 doi: 10.1016/j.jtice.2012.08.005 – ident: bibr40-2022_5553212 doi: 10.1006/jcht.1995.0001 – ident: bibr64-2022_5553212 doi: 10.1016/j.desal.2012.01.001 – ident: bibr78-2022_5553212 doi: 10.2136/sssaj1973.03615995003700060022x – volume: 528 volume-title: Compendium of Chemical Terminology year: 2014 ident: bibr42-2022_5553212 – ident: bibr14-2022_5553212 doi: 10.1016/j.jhazmat.2020.123292 – ident: bibr90-2022_5553212 doi: 10.1016/j.jhazmat.2016.11.061 – ident: bibr38-2022_5553212 doi: 10.1016/B978-0-444-64114-4.00004-2 – ident: bibr19-2022_5553212 doi: 10.1021/acs.est.0c00919 – ident: bibr5-2022_5553212 doi: 10.1016/j.jct.2013.09.013 – ident: bibr46-2022_5553212 doi: 10.1016/S0009-2509(99)00540-0 – ident: bibr67-2022_5553212 doi: 10.1260/026361709788921605 – volume-title: Quantities, Units, And Symbols in Physical Chemistry year: 2007 ident: bibr39-2022_5553212 – ident: bibr84-2022_5553212 doi: 10.1016/j.envres.2022.112958 – ident: bibr106-2022_5553212 doi: 10.1016/j.seppur.2007.10.002 – ident: bibr15-2022_5553212 doi: 10.1007/s10668-019-00424-2 – volume: 37 start-page: 535 year: 2014 ident: bibr49-2022_5553212 publication-title: Chemical Engineering – ident: bibr112-2022_5553212 doi: 10.1021/acsomega.0c05674 – ident: bibr59-2022_5553212 doi: 10.1016/j.scitotenv.2020.137828 – ident: bibr73-2022_5553212 doi: 10.1016/j.jhazmat.2022.129015 – ident: bibr94-2022_5553212 doi: 10.1016/j.chemosphere.2020.126444 – ident: bibr107-2022_5553212 doi: 10.1063/1.1746922 – ident: bibr65-2022_5553212 doi: 10.1016/j.molliq.2022.118762 – ident: bibr104-2022_5553212 doi: 10.1016/j.jhazmat.2020.122903 – ident: bibr61-2022_5553212 doi: 10.1016/j.jhazmat.2022.128407 – ident: bibr25-2022_5553212 doi: 10.1006/jcis.1997.5041 – ident: bibr118-2022_5553212 doi: 10.1016/S0009-2614(02)00830-8 – ident: bibr102-2022_5553212 doi: 10.1016/B978-0-323-85768-0.00004-X – ident: bibr20-2022_5553212 doi: 10.1080/01496395.2019.1706578 – ident: bibr12-2022_5553212 doi: 10.1016/j.jhazmat.2014.12.047 – ident: bibr76-2022_5553212 doi: 10.1016/j.jenvman.2021.112167 – ident: bibr114-2022_5553212 doi: 10.1016/j.chemphys.2018.10.007 – ident: bibr36-2022_5553212 doi: 10.1002/9781118131473.ch5 – ident: bibr41-2022_5553212 doi: 10.1016/j.chemosphere.2004.08.091 – ident: bibr77-2022_5553212 doi: 10.1016/j.carbpol.2012.01.073 – volume: 249 year: 2022 ident: bibr86-2022_5553212 publication-title: Journal of Contaminant Hydrology doi: 10.1016/j.jconhyd.2022.104044 – ident: bibr10-2022_5553212 doi: 10.1002/adma.201905988 – ident: bibr28-2022_5553212 doi: 10.1006/jcis.2000.7057 – ident: bibr51-2022_5553212 doi: 10.1016/j.watres.2004.12.003 – ident: bibr66-2022_5553212 doi: 10.1016/j.molliq.2019.01.160 – ident: bibr74-2022_5553212 doi: 10.1080/00986445.2013.818541 – ident: bibr101-2022_5553212 doi: 10.1016/j.jhazmat.2008.03.076 – ident: bibr116-2022_5553212 doi: 10.1016/j.molliq.2018.01.073 – ident: bibr75-2022_5553212 doi: 10.1016/j.watres.2012.05.040 – ident: bibr9-2022_5553212 doi: 10.1080/01496395.2019.1580734 – ident: bibr45-2022_5553212 doi: 10.1351/pac199466030533 – ident: bibr83-2022_5553212 doi: 10.1016/j.carbon.2003.09.022 – ident: bibr68-2022_5553212 doi: 10.1016/j.colsurfa.2015.05.014 – issue: 13913 ident: bibr85-2022_5553212 publication-title: Environmental Progress & Sustainable Energy – ident: bibr35-2022_5553212 doi: 10.1016/j.cej.2005.07.009 – ident: bibr91-2022_5553212 doi: 10.1016/j.molliq.2018.10.010 – ident: bibr27-2022_5553212 doi: 10.1016/j.molliq.2019.112378 – ident: bibr43-2022_5553212 – ident: bibr93-2022_5553212 doi: 10.1515/zpch-1907-5723 – ident: bibr17-2022_5553212 doi: 10.5539/ijc.v3n4p116 – ident: bibr56-2022_5553212 doi: 10.1016/j.molliq.2018.11.086 – ident: bibr88-2022_5553212 doi: 10.1016/j.indcrop.2020.112613 – start-page: 10 volume-title: Chemistry for environmental engineering and science year: 2003 ident: bibr30-2022_5553212 – ident: bibr87-2022_5553212 doi: 10.2298/JSC0712363M – ident: bibr97-2022_5553212 doi: 10.3390/macromol1040018 – ident: bibr47-2022_5553212 doi: 10.1021/je010102k – ident: bibr11-2022_5553212 doi: 10.1080/00986445.2013.819352 – volume: 746 issue: 139854 year: 2020 ident: bibr54-2022_5553212 publication-title: Science of The Total Environment – volume: 261 year: 2019 ident: bibr57-2022_5553212 publication-title: Environmental Pollution – ident: bibr79-2022_5553212 doi: 10.1016/0166-6622(87)80259-7 – ident: bibr110-2022_5553212 doi: 10.1016/j.jece.2020.104161 – start-page: 305 volume-title: Physical Chemistry for the Chemical Sciences year: 2014 ident: bibr55-2022_5553212 – ident: bibr16-2022_5553212 doi: 10.1039/C5RA20538G – ident: bibr69-2022_5553212 doi: 10.4067/S0717-97072013000100009 – ident: bibr13-2022_5553212 doi: 10.1016/j.dyepig.2004.06.016 – ident: bibr32-2022_5553212 doi: 10.1021/j150508a014 – ident: bibr22-2022_5553212 doi: 10.1260/0263-6174.30.7.647 – ident: bibr2-2022_5553212 doi: 10.1016/j.molliq.2018.10.048 – ident: bibr60-2022_5553212 doi: 10.1016/j.jes.2020.01.015 – ident: bibr70-2022_5553212 doi: 10.1016/j.molliq.2018.02.033 – ident: bibr72-2022_5553212 doi: 10.1016/j.jece.2020.104105 – volume-title: General Chemistry: The Essential Concepts year: 2008 ident: bibr29-2022_5553212 – ident: bibr50-2022_5553212 doi: 10.1016/0300-9467(90)80067-M – ident: bibr21-2022_5553212 doi: 10.1016/j.molliq.2021.116542 – start-page: 779 volume-title: Physical Chemistry for Chemical Sciences year: 2014 ident: bibr117-2022_5553212 – ident: bibr18-2022_5553212 doi: 10.1039/D1RA08212D – ident: bibr52-2022_5553212 doi: 10.1016/j.watres.2017.04.014 – ident: bibr53-2022_5553212 doi: 10.1016/j.molliq.2020.113315 – ident: bibr58-2022_5553212 doi: 10.1016/j.jenvrad.2019.106106 – ident: bibr6-2022_5553212 doi: 10.1016/S0048-9697(19)31643-2 – ident: bibr23-2022_5553212 doi: 10.1016/j.colsurfa.2005.08.029 – ident: bibr8-2022_5553212 doi: 10.1016/j.jct.2017.08.026 – ident: bibr89-2022_5553212 doi: 10.1080/00986445.2016.1245185 – ident: bibr111-2022_5553212 doi: 10.1016/j.scitotenv.2018.08.434 – volume-title: Physical Chemistry year: 2006 ident: bibr34-2022_5553212 – ident: bibr113-2022_5553212 doi: 10.1016/j.chemphys.2018.10.005 – ident: bibr92-2022_5553212 doi: 10.1016/j.molliq.2020.114980 – ident: bibr108-2022_5553212 doi: 10.1080/15422119.2021.1888299 – ident: bibr63-2022_5553212 doi: 10.1016/j.jece.2020.103969 – ident: bibr3-2022_5553212 doi: 10.1016/j.molliq.2018.10.048 – ident: bibr31-2022_5553212 doi: 10.1016/j.colcom.2021.100369 – ident: bibr82-2022_5553212 doi: 10.1016/j.jenvrad.2009.06.014 – ident: bibr1-2022_5553212 doi: 10.1021/je800661q – ident: bibr103-2022_5553212 doi: 10.1016/S0168-1656(03)00030-0 – ident: bibr105-2022_5553212 doi: 10.1016/j.jhazmat.2020.123318 – ident: bibr62-2022_5553212 doi: 10.1016/B978-0-12-398256-8.00001-3 – ident: bibr26-2022_5553212 doi: 10.1016/j.biortech.2013.12.053 – ident: bibr99-2022_5553212 doi: 10.1039/C8EW00854J – ident: bibr115-2022_5553212 doi: 10.1021/ie9703898 – volume: 187 year: 2020 ident: bibr7-2022_5553212 publication-title: Environmental Research – ident: bibr71-2022_5553212 doi: 10.1016/j.envres.2021.111218 – ident: bibr98-2022_5553212 doi: 10.1016/j.jece.2016.05.009 |
SSID | ssj0012757 |
Score | 2.5065215 |
Snippet | Adsorption processes often include three important components: kinetics, isotherm, and thermodynamics. In the study of solid–liquid adsorption, “standard”... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
Title | Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient K D (q e/C e) or Freundlich Constant (K F): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions |
URI | https://journals.sagepub.com/doi/full/10.1155/2022/5553212 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB5q-6IPUm9YrctBFFokdjeZS-KLLJsNxVoR22LfwmQuurKbtGki-Md9dk4mWWtR8DFhmBxyLnPmOzdCXqCLQXFGWCw0D2hiWCA504GWitnIJMwwrB0-_sAPz-i7c3a-Qb4NtTD9H7x6jWlVjqLOWKN2IxrtVZwxvLGHB4yxyBnet22zyj3SPQzUwDcYmm5XGNVWmAv5Ixgq226RrVBw6jRga5p9-ny6jjmEwvcFDXmEhXN0SJO_8b0_DrBr2V_dgZRtk7u9JwlTz_p7ZMOU98mda_0FH5CfHWRwYWqYO032RYpQWXCyUa8q7YfRw0eJCVrYZRMWJUz1VVV3dgT6HENArBZS7LDbD8eCWWW61hPuxIIjSGHvEszBDMw-VDVktWlLvVyorzDz3mcDe0eQ7b-BYTyohwkBa1vAeaCQOoK_r8lLceIAonhLZ4ZvEDu_bBddmUK7-r27LDWctF8wVIb7PiRn2fx0dhj0gx4C5S6Yjfvbzqpg53pnXpx_RYvYxqEYayUlszR2ToRlgvKJEtT5d07qImkSyanV8ViOJY8ekc2yKs1jAnYiJoWQlvNiQqXmSWyV4FZKKyxTSbFDXg3cy1XfBR2HcSzz7jbEWI68znte75CX69UXvvvHP9Y9R0HIB-n966In_7PoKbmNjx7k2SWbTd2aZ87taYqRk9f0-P3JqJfbUQcf_AJwzAUN |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF4hOLQ9VG0pKn2OKpBAlUti78PuLUpipQQQokFws9beXRop2GDi_vSeO-NHSlEr9ezxarQzO4_dmfkY26EQgxNGWKiM9HhkhaelMJ7RmXCBjYQV1Dt8fCIn5_zwUlyuMdH1wrQ7ePeZyqqQo9pYr063EJSs-wdCiMAnbOENjg4Lc66NQXx2MVs9H_iqGfHpy4B64HhX8f7g_z980b1Crtq3xM_Y0zYohEEjxedszeYv2JN7owI32c86-7-xJYzxUDb9hlA4QDGX14VpcOXhVFOtFQ3MhHkOA3NXlLVJgLZcEOjaFUY0LLfFuYJhYespEuh8YAoj2LsFezAEuw9FCXFpq9ws5tl3GDaB5BL2phDvf4EO6bO58QNqUwEMJmGEDP9YsTci8AC6kFugRX3A7Pi2mtcdB9X179V1buBbdUWvXrTuS3Yej2fDiddiNngZ5opL3G00EDSEHi0Fhko8DV3oq57JtBaOhxgPOKG47GcKJcdRgQJtIy25M2FP97QMtth6XuT2FQPXV_1UaSdl2ufayCh0mZJOa6ecyKJ0m33qpJdk7UBzwtVYJHViI0RCsk5aWW-z3RX1TTPI4x90H0kRkk4R_0r0-n-IPrBHk9nxUXL09WT6hj2mT83dzVu2viwr-w6jmWX6vtXdX-Iy79U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQJiF4mPgUY3ycEEibUFib-CPhrWoaDQrTBJvYW-TE9qjUJV3W8KfzzF2cljKBxHMuluU7n38-392PsdcEMThxhMXKyIAnVgRaChMYXQoX2URYQbXDn4_l0Rn_eC7ON6i--hW8fkdpVTijzlnT7l4Y53e4EHRhDw-FEFFI_MLbnKsIDXp7lH35drp-QgiVb_MZyojq4Pgq6_3G_3-cRxvJXN35kt1jOz0whJHX5H12y1YP2N2NdoEP2c8uArCwDUxwY_qaQ6gdoKqby9p4bnk40ZRvRU0zYVbByFzXTecWoE8ZBAq9QkoNc3uuKxjXtuskgQcQTCGF_Suwh2OwB1A3kDW2rcx8Vn6HsQeTS9ifQnbwHlZsnz7qB1SqAggoIcUJ_1hPLyUCAQrKzdGr3pjs5KqddVUH7eXv0XVl4Gt7QS9fNO4jdpZNTsdHQc_bEJR4X1ziaqOToEb06C0QLvEidnGoBqbUWjgeIyZwQnE5LBVHuIZGFGmbaMmdiQd6oGX0mG1VdWWfMHBDNSyUdlIWQ66NTGJXKum0dsqJMil22duV9vKyb2pO3BrzvLvcCJGTrvNe17vszVp64Zt5_EPuFRlCvjLGvwo9_R-hl-z2SZrlnz4cT_fYHfriwzfP2Nayae1zBDTL4kVvur8AgxTw7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improper+Estimation+of+Thermodynamic+Parameters+in+Adsorption+Studies+with+Distribution+Coefficient+K+D+%28+q+e+%2F+C+e+%29+or+Freundlich+Constant+%28+K+F+%29%3A+Considerations+from+the+Derivation+of+Dimensionless+Thermodynamic+Equilibrium+Constant+and+Suggestions&rft.jtitle=Adsorption+science+%26+technology&rft.au=Tran%2C+Hai+Nguyen&rft.date=2022&rft.issn=0263-6174&rft.eissn=2048-4038&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F5553212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_5553212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6174&client=summon |