Modeling the dynamics of Wolbachia -infected and uninfected A edes aegypti populations by delay differential equations

Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia -infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachia...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling of natural phenomena Vol. 15; pp. 76 - 26
Main Authors Benedito, A.S., Ferreira, C.P., Adimy, M.
Format Journal Article
LanguageEnglish
Published EDP Sciences 2020
Subjects
Online AccessGet full text
ISSN0973-5348
1760-6101
DOI10.1051/mmnp/2020041

Cover

Abstract Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia -infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachia -transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of Wolbachia -infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction.
AbstractList Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachiatransinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of Wolbachia-infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction.
Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia -infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachia -transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of Wolbachia -infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction.
Author Ferreira, C.P.
Benedito, A.S.
Adimy, M.
Author_xml – sequence: 1
  givenname: A.S.
  surname: Benedito
  fullname: Benedito, A.S.
– sequence: 2
  givenname: C.P.
  surname: Ferreira
  fullname: Ferreira, C.P.
– sequence: 3
  givenname: M.
  orcidid: 0000-0003-2732-3830
  surname: Adimy
  fullname: Adimy, M.
BackLink https://hal.science/hal-03167481$$DView record in HAL
BookMark eNptkFFLwzAQx4NMcM69-QHyKliXNG3SPY6hTpj4MvCxpMlli7RJbbJBv72dG3sQ7-GOu_v_D-53i0bOO0DonpInSnI6axrXzlKSEpLRKzSmgpOEU0JHaEzmgiU5y4obNA3hiwzBaMYIGaPDu9dQW7fFcQdY9042VgXsDf70dSXVzkqcWGdARdBYOo337tIuMGgIWMK2b6PFrW_3tYzWu4CrHg935ZCtMdCBi1bWGL73p_0dujayDjA91wnavDxvlqtk_fH6tlysE0WLLCap5pobbhQhlaYs1SznZq5FCloqkVVUVSrPiVbKzJkwGoSQmjNWGUZ5wdgEPZzO7mRdtp1tZNeXXtpytViXx9nAgYusoAc6aB9PWtX5EDowFwMl5ZFweSRcngkP8vSPXNn4-1zspK3_N_0AGUWDpQ
CitedBy_id crossref_primary_10_1016_j_actatropica_2024_107159
crossref_primary_10_1016_j_apm_2024_115663
crossref_primary_10_1142_S179352452250108X
crossref_primary_10_1016_j_matcom_2022_06_026
crossref_primary_10_1016_j_jmaa_2023_127828
crossref_primary_10_1016_j_mbs_2024_109190
crossref_primary_10_1016_j_nonrwa_2023_103867
Cites_doi 10.1007/s11538-010-9528-1
10.1111/jeb.12270
10.2307/4355
10.1038/sj.hdy.6800343
10.1137/S0036141000376086
10.1155/2015/918194
10.1007/s00285-017-1096-7
10.3934/mbe.2019238
10.1016/S0188-4409(02)00378-8
10.1101/073106
10.1128/AEM.70.9.5366-5372.2004
10.1016/j.nonrwa.2010.06.028
10.1126/science.1117607
10.1007/s00285-017-1174-x
10.1016/j.mbs.2019.06.002
10.1016/j.jtbi.2017.12.012
10.1007/s12080-019-00435-9
10.1137/17M1130800
10.1016/j.apm.2008.06.005
10.1080/17513758.2016.1229051
10.4269/ajtmh.15-0608
10.1371/journal.pone.0029106
10.1111/mve.12241
10.1126/science.1165326
10.1007/s11538-013-9835-4
10.1142/S0218339008002691
10.12988/ijcms.2016.511713
10.1016/j.amc.2007.08.046
10.1007/s11425-014-4934-8
10.1038/nature10356
10.1038/nature10355
10.3390/insects9040158
10.1534/genetics.110.122390
10.1371/journal.ppat.1006815
10.1038/s41467-018-03981-8
10.1112/jlms/s1-25.3.226
10.1017/S0950268809002040
10.1016/j.apm.2009.08.027
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1051/mmnp/2020041
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1760-6101
EndPage 26
ExternalDocumentID oai_HAL_hal_03167481v1
10_1051_mmnp_2020041
GroupedDBID -E.
.FH
0E1
169
4.4
5GY
5VS
7~V
8FE
8FG
8FH
AADXX
AAFWJ
AAOGA
AAOTM
AAYXX
ABDBF
ABGDZ
ABJNI
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACPRK
ACQPF
ACRPL
ACUHS
ADBBV
ADNMO
AEMTW
AENEX
AFAYI
AFHSK
AFRAH
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARABE
AZPVJ
BPHCQ
C0O
CITATION
CS3
DC4
EBS
EJD
ESX
F5P
FRP
GFF
GI~
HG-
HST
HZ~
I-F
I.6
IL9
I~P
J36
J38
J9A
K6V
L6V
LK8
LO0
M-V
O9-
OK1
P2P
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
TUS
WQ3
WXU
~8M
1XC
VOOES
ID FETCH-LOGICAL-c184t-2d6d6f6fc00bd132d356f9d72edac74b1cbc550dccf937fde77ad633bf316833
ISSN 0973-5348
IngestDate Sat Jul 26 06:30:49 EDT 2025
Tue Jul 01 01:22:54 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords local and global asymptotic stability
92D25
34K18
Mathematics Subject Classification. 34K13
92D40. .. Age and stage structured partial differential system
Hopf bifurcation
34K21
34K20
delay differential system
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c184t-2d6d6f6fc00bd132d356f9d72edac74b1cbc550dccf937fde77ad633bf316833
ORCID 0000-0003-2732-3830
OpenAccessLink https://hal.science/hal-03167481
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_03167481v1
crossref_primary_10_1051_mmnp_2020041
crossref_citationtrail_10_1051_mmnp_2020041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationTitle Mathematical modelling of natural phenomena
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Awrahman (R2) 2014; 27
Beretta (R4) 2002; 33
Xi (R40) 2005; 310
Berezansky (R6) 2011; 12
Ndii (R31) 2012; 53
Braverman (R10) 2006; 14
Huang (R21) 2015; 58
Berezansky (R5) 2010; 34
Gubler (R17) 2002; 33
Ant (R1) 2018; 14
Qu (R32) 2018; 78
Reinhold (R34) 2018; 9
Walker (R39) 2011; 475
Ferreira (R16) 2008; 16
R22
R24
R26
Bliman (R7) 2018; 76
R28
Yang (R41) 2008; 198
Viana-Medeiros (R38) 2017; 31
Ling (R29) 2017; 11
Rafikov (R33) 2015; 2015
Farkas (R13) 2010; 72
Hernandez (R19) 2016; 11
Hoffmann (R20) 2011; 476
Keeling (R27) 2003; 91
Axford (R3) 2016; 94
Bordenstein (R9) 2011; 6
Yeap (R43) 2011; 187
McMeniman (R30) 2009; 323
Yang (R42) 2009; 137
R11
R14
R36
R35
Idels (R25) 2009; 33
R15
R18
Bliman (R8) 2019; 314
Dye (R12) 1984; 53
Huang (R23) 2019; 16
Veneti (R37) 2004; 70
References_xml – volume: 72
  start-page: 2067
  year: 2010
  ident: R13
  publication-title: Bull. Math. Biol
  doi: 10.1007/s11538-010-9528-1
– volume: 27
  start-page: 1
  year: 2014
  ident: R2
  publication-title: J. Evolut. Biol
  doi: 10.1111/jeb.12270
– volume: 53
  start-page: 247
  year: 1984
  ident: R12
  publication-title: J. Animal Ecol.
  doi: 10.2307/4355
– volume: 91
  start-page: 382
  year: 2003
  ident: R27
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800343
– volume: 33
  start-page: 1144
  year: 2002
  ident: R4
  publication-title: SIAM J. Math. Anal
  doi: 10.1137/S0036141000376086
– volume: 2015
  start-page: 918194
  year: 2015
  ident: R33
  publication-title: J. Appl. Math.
  doi: 10.1155/2015/918194
– ident: R14
  doi: 10.1007/s00285-017-1096-7
– volume: 16
  start-page: 4741
  year: 2019
  ident: R23
  publication-title: Math. Biosci. Eng
  doi: 10.3934/mbe.2019238
– volume: 33
  start-page: 330
  year: 2002
  ident: R17
  publication-title: Arch. Med. Res
  doi: 10.1016/S0188-4409(02)00378-8
– ident: R35
  doi: 10.1101/073106
– volume: 70
  start-page: 5366
  year: 2004
  ident: R37
  publication-title: Appl. Environ. Microbiol
  doi: 10.1128/AEM.70.9.5366-5372.2004
– volume: 12
  start-page: 436
  year: 2011
  ident: R6
  publication-title: Nonlinear Anal.: Real World Appl
  doi: 10.1016/j.nonrwa.2010.06.028
– volume: 310
  start-page: 326
  year: 2005
  ident: R40
  publication-title: Science
  doi: 10.1126/science.1117607
– volume: 76
  start-page: 1269
  year: 2018
  ident: R7
  publication-title: J. Math. Biol
  doi: 10.1007/s00285-017-1174-x
– ident: R26
– volume: 314
  start-page: 43
  year: 2019
  ident: R8
  publication-title: Math. Biosci
  doi: 10.1016/j.mbs.2019.06.002
– ident: R22
  doi: 10.1016/j.jtbi.2017.12.012
– ident: R15
  doi: 10.1007/s12080-019-00435-9
– volume: 78
  start-page: 826
  year: 2018
  ident: R32
  publication-title: SIAM J. Appl. Math
  doi: 10.1137/17M1130800
– volume: 33
  start-page: 2293
  year: 2009
  ident: R25
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2008.06.005
– volume: 11
  start-page: 216
  year: 2017
  ident: R29
  publication-title: J. Biol. Dyn
  doi: 10.1080/17513758.2016.1229051
– volume: 94
  start-page: 507
  year: 2016
  ident: R3
  publication-title: Am. J. Trop. Med. Hygiene
  doi: 10.4269/ajtmh.15-0608
– volume: 6
  start-page: e29106
  year: 2011
  ident: R9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029106
– volume: 31
  start-page: 340
  year: 2017
  ident: R38
  publication-title: Med. Veterin. Entomol
  doi: 10.1111/mve.12241
– volume: 323
  start-page: 141
  year: 2009
  ident: R30
  publication-title: Science
  doi: 10.1126/science.1165326
– ident: R24
  doi: 10.1007/s11538-013-9835-4
– volume: 16
  start-page: 565
  year: 2008
  ident: R16
  publication-title: J. Biol. Syst.
  doi: 10.1142/S0218339008002691
– volume: 11
  start-page: 385
  year: 2016
  ident: R19
  publication-title: Int. J. Contemp. Math. Sci.
  doi: 10.12988/ijcms.2016.511713
– volume: 198
  start-page: 401
  year: 2008
  ident: R41
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2007.08.046
– volume: 58
  start-page: 77
  year: 2015
  ident: R21
  publication-title: Sci. China Math
  doi: 10.1007/s11425-014-4934-8
– volume: 476
  start-page: 454
  year: 2011
  ident: R20
  publication-title: Nature
  doi: 10.1038/nature10356
– volume: 53
  start-page: 213
  year: 2012
  ident: R31
  publication-title: ANZIAM J.
– volume: 475
  start-page: 450
  year: 2011
  ident: R39
  publication-title: Nature
  doi: 10.1038/nature10355
– volume: 9
  start-page: 158
  year: 2018
  ident: R34
  publication-title: Insects
  doi: 10.3390/insects9040158
– volume: 14
  start-page: 107
  year: 2006
  ident: R10
  publication-title: Can. Appl. Math. Quart
– volume: 187
  start-page: 583
  year: 2011
  ident: R43
  publication-title: Genetics
  doi: 10.1534/genetics.110.122390
– volume: 14
  start-page: e1006815
  year: 2018
  ident: R1
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1006815
– ident: R28
  doi: 10.1038/s41467-018-03981-8
– ident: R18
  doi: 10.1112/jlms/s1-25.3.226
– volume: 137
  start-page: 1188
  year: 2009
  ident: R42
  publication-title: Epidemiol. Infection
  doi: 10.1017/S0950268809002040
– ident: R11
– volume: 34
  start-page: 1405
  year: 2010
  ident: R5
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2009.08.027
– ident: R36
SSID ssj0000314300
Score 2.2216
Snippet Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia...
Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 76
SubjectTerms Dynamical Systems
Mathematics
Title Modeling the dynamics of Wolbachia -infected and uninfected A edes aegypti populations by delay differential equations
URI https://hal.science/hal-03167481
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeIEHxAaI8UsWAgkUJUvi_OpjtDE6GFOlDbG3KLEdtVKbljadNB74f_gvuXNiJxVDGrxEbWpFru_T-Xy5-z5C3rCh4AH3hM2kH9uBkNxO_FzYhTtMeM5yiFBUgexZNPoafLoMLweDX72qpU1dOPzHjX0l_2NVuAd2xS7Zf7CseSjcgM9gX7iCheF6KxujkNlM9zuJRltelWZ8W8wKrJLMLbuptpKKkdXaVOZrakkh11audMim1tIIea0xIkXuyGujnlJjWl1-3_Sye1oEyrC-YhcKTmfWllErxlBs85rIClkeuoM_eFcxrZv2GufcsXrh6Golp0r4yDp0xk7Xe5aK6Vyh4csCotky7-cqfLdLnR2NtbPaykHGzA5ZQ7XpyMYDxxGeZ9sMh3bRYc_Her3Nuum2_2MbAE8DtpvPqyU2vLiIGa_b8PRL_lF6no2PjrPTk7PP278a4u1ReppNABcuEgYEiXcFB-27fhx7WD368eSnSeehCgBrGp70n2rbLGAuBziTg3YeWwHQnYnO36t45uIhedAeRGjaoGqXDGS1R-539lzvkV29lvRdy07-_hG50qCjMJJq0NFFSQ3oqAEdBdDRDnQ0pQg62oKO9kBHi2uqQEf7oKMGdI_JxfGHi8OR3Yp32NxLgtr2RSSiMiq56xbCY75gYVQORexLkfM4KDxecDgdC85LiJBLIeM4FxFjRYlSaow9ITvVopJPCQ1yGfNEeGUihgEKpHPuRfCMYegHhQzEPrH0gma8JbZHfZVZpgosQi_D5c_a5d8nb83oZUPo8pdxr9HwesjNYHh2m0HPyT18ZpO3e0F26tVGvoRIti5eKQz9BrJNpSA
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+dynamics+of+Wolbachia+-infected+and+uninfected+A+edes+aegypti+populations+by+delay+differential+equations&rft.jtitle=Mathematical+modelling+of+natural+phenomena&rft.au=Benedito%2C+A.S.+S&rft.au=Ferreira%2C+C.P.+P&rft.au=Adimy%2C+Mostafa&rft.date=2020&rft.pub=EDP+Sciences&rft.issn=0973-5348&rft.eissn=1760-6101&rft.volume=15&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1051%2Fmmnp%2F2020041&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03167481v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-5348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-5348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-5348&client=summon