Modeling the dynamics of Wolbachia -infected and uninfected A edes aegypti populations by delay differential equations
Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia -infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachia...
Saved in:
Published in | Mathematical modelling of natural phenomena Vol. 15; pp. 76 - 26 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0973-5348 1760-6101 |
DOI | 10.1051/mmnp/2020041 |
Cover
Abstract | Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the
Wolbachia
-infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the
Wolbachia
-transinfected
Aedes aegypti
mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of
Wolbachia
-infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction. |
---|---|
AbstractList | Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachiatransinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of Wolbachia-infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction. Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia -infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachia -transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of Wolbachia -infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction. |
Author | Ferreira, C.P. Benedito, A.S. Adimy, M. |
Author_xml | – sequence: 1 givenname: A.S. surname: Benedito fullname: Benedito, A.S. – sequence: 2 givenname: C.P. surname: Ferreira fullname: Ferreira, C.P. – sequence: 3 givenname: M. orcidid: 0000-0003-2732-3830 surname: Adimy fullname: Adimy, M. |
BackLink | https://hal.science/hal-03167481$$DView record in HAL |
BookMark | eNptkFFLwzAQx4NMcM69-QHyKliXNG3SPY6hTpj4MvCxpMlli7RJbbJBv72dG3sQ7-GOu_v_D-53i0bOO0DonpInSnI6axrXzlKSEpLRKzSmgpOEU0JHaEzmgiU5y4obNA3hiwzBaMYIGaPDu9dQW7fFcQdY9042VgXsDf70dSXVzkqcWGdARdBYOo337tIuMGgIWMK2b6PFrW_3tYzWu4CrHg935ZCtMdCBi1bWGL73p_0dujayDjA91wnavDxvlqtk_fH6tlysE0WLLCap5pobbhQhlaYs1SznZq5FCloqkVVUVSrPiVbKzJkwGoSQmjNWGUZ5wdgEPZzO7mRdtp1tZNeXXtpytViXx9nAgYusoAc6aB9PWtX5EDowFwMl5ZFweSRcngkP8vSPXNn4-1zspK3_N_0AGUWDpQ |
CitedBy_id | crossref_primary_10_1016_j_actatropica_2024_107159 crossref_primary_10_1016_j_apm_2024_115663 crossref_primary_10_1142_S179352452250108X crossref_primary_10_1016_j_matcom_2022_06_026 crossref_primary_10_1016_j_jmaa_2023_127828 crossref_primary_10_1016_j_mbs_2024_109190 crossref_primary_10_1016_j_nonrwa_2023_103867 |
Cites_doi | 10.1007/s11538-010-9528-1 10.1111/jeb.12270 10.2307/4355 10.1038/sj.hdy.6800343 10.1137/S0036141000376086 10.1155/2015/918194 10.1007/s00285-017-1096-7 10.3934/mbe.2019238 10.1016/S0188-4409(02)00378-8 10.1101/073106 10.1128/AEM.70.9.5366-5372.2004 10.1016/j.nonrwa.2010.06.028 10.1126/science.1117607 10.1007/s00285-017-1174-x 10.1016/j.mbs.2019.06.002 10.1016/j.jtbi.2017.12.012 10.1007/s12080-019-00435-9 10.1137/17M1130800 10.1016/j.apm.2008.06.005 10.1080/17513758.2016.1229051 10.4269/ajtmh.15-0608 10.1371/journal.pone.0029106 10.1111/mve.12241 10.1126/science.1165326 10.1007/s11538-013-9835-4 10.1142/S0218339008002691 10.12988/ijcms.2016.511713 10.1016/j.amc.2007.08.046 10.1007/s11425-014-4934-8 10.1038/nature10356 10.1038/nature10355 10.3390/insects9040158 10.1534/genetics.110.122390 10.1371/journal.ppat.1006815 10.1038/s41467-018-03981-8 10.1112/jlms/s1-25.3.226 10.1017/S0950268809002040 10.1016/j.apm.2009.08.027 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1051/mmnp/2020041 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1760-6101 |
EndPage | 26 |
ExternalDocumentID | oai_HAL_hal_03167481v1 10_1051_mmnp_2020041 |
GroupedDBID | -E. .FH 0E1 169 4.4 5GY 5VS 7~V 8FE 8FG 8FH AADXX AAFWJ AAOGA AAOTM AAYXX ABDBF ABGDZ ABJNI ABKKG ABNSH ABUBZ ABZDU ACACO ACGFS ACIMK ACIWK ACPRK ACQPF ACRPL ACUHS ADBBV ADNMO AEMTW AENEX AFAYI AFHSK AFRAH AFUTZ AGQPQ AJPFC ALMA_UNASSIGNED_HOLDINGS AMVHM ARABE AZPVJ BPHCQ C0O CITATION CS3 DC4 EBS EJD ESX F5P FRP GFF GI~ HG- HST HZ~ I-F I.6 IL9 I~P J36 J38 J9A K6V L6V LK8 LO0 M-V O9- OK1 P2P P62 PQQKQ PROAC RCA RED RR0 S6- TUS WQ3 WXU ~8M 1XC VOOES |
ID | FETCH-LOGICAL-c184t-2d6d6f6fc00bd132d356f9d72edac74b1cbc550dccf937fde77ad633bf316833 |
ISSN | 0973-5348 |
IngestDate | Sat Jul 26 06:30:49 EDT 2025 Tue Jul 01 01:22:54 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | local and global asymptotic stability 92D25 34K18 Mathematics Subject Classification. 34K13 92D40. .. Age and stage structured partial differential system Hopf bifurcation 34K21 34K20 delay differential system |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c184t-2d6d6f6fc00bd132d356f9d72edac74b1cbc550dccf937fde77ad633bf316833 |
ORCID | 0000-0003-2732-3830 |
OpenAccessLink | https://hal.science/hal-03167481 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_hal_03167481v1 crossref_primary_10_1051_mmnp_2020041 crossref_citationtrail_10_1051_mmnp_2020041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Mathematical modelling of natural phenomena |
PublicationYear | 2020 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Awrahman (R2) 2014; 27 Beretta (R4) 2002; 33 Xi (R40) 2005; 310 Berezansky (R6) 2011; 12 Ndii (R31) 2012; 53 Braverman (R10) 2006; 14 Huang (R21) 2015; 58 Berezansky (R5) 2010; 34 Gubler (R17) 2002; 33 Ant (R1) 2018; 14 Qu (R32) 2018; 78 Reinhold (R34) 2018; 9 Walker (R39) 2011; 475 Ferreira (R16) 2008; 16 R22 R24 R26 Bliman (R7) 2018; 76 R28 Yang (R41) 2008; 198 Viana-Medeiros (R38) 2017; 31 Ling (R29) 2017; 11 Rafikov (R33) 2015; 2015 Farkas (R13) 2010; 72 Hernandez (R19) 2016; 11 Hoffmann (R20) 2011; 476 Keeling (R27) 2003; 91 Axford (R3) 2016; 94 Bordenstein (R9) 2011; 6 Yeap (R43) 2011; 187 McMeniman (R30) 2009; 323 Yang (R42) 2009; 137 R11 R14 R36 R35 Idels (R25) 2009; 33 R15 R18 Bliman (R8) 2019; 314 Dye (R12) 1984; 53 Huang (R23) 2019; 16 Veneti (R37) 2004; 70 |
References_xml | – volume: 72 start-page: 2067 year: 2010 ident: R13 publication-title: Bull. Math. Biol doi: 10.1007/s11538-010-9528-1 – volume: 27 start-page: 1 year: 2014 ident: R2 publication-title: J. Evolut. Biol doi: 10.1111/jeb.12270 – volume: 53 start-page: 247 year: 1984 ident: R12 publication-title: J. Animal Ecol. doi: 10.2307/4355 – volume: 91 start-page: 382 year: 2003 ident: R27 publication-title: Heredity doi: 10.1038/sj.hdy.6800343 – volume: 33 start-page: 1144 year: 2002 ident: R4 publication-title: SIAM J. Math. Anal doi: 10.1137/S0036141000376086 – volume: 2015 start-page: 918194 year: 2015 ident: R33 publication-title: J. Appl. Math. doi: 10.1155/2015/918194 – ident: R14 doi: 10.1007/s00285-017-1096-7 – volume: 16 start-page: 4741 year: 2019 ident: R23 publication-title: Math. Biosci. Eng doi: 10.3934/mbe.2019238 – volume: 33 start-page: 330 year: 2002 ident: R17 publication-title: Arch. Med. Res doi: 10.1016/S0188-4409(02)00378-8 – ident: R35 doi: 10.1101/073106 – volume: 70 start-page: 5366 year: 2004 ident: R37 publication-title: Appl. Environ. Microbiol doi: 10.1128/AEM.70.9.5366-5372.2004 – volume: 12 start-page: 436 year: 2011 ident: R6 publication-title: Nonlinear Anal.: Real World Appl doi: 10.1016/j.nonrwa.2010.06.028 – volume: 310 start-page: 326 year: 2005 ident: R40 publication-title: Science doi: 10.1126/science.1117607 – volume: 76 start-page: 1269 year: 2018 ident: R7 publication-title: J. Math. Biol doi: 10.1007/s00285-017-1174-x – ident: R26 – volume: 314 start-page: 43 year: 2019 ident: R8 publication-title: Math. Biosci doi: 10.1016/j.mbs.2019.06.002 – ident: R22 doi: 10.1016/j.jtbi.2017.12.012 – ident: R15 doi: 10.1007/s12080-019-00435-9 – volume: 78 start-page: 826 year: 2018 ident: R32 publication-title: SIAM J. Appl. Math doi: 10.1137/17M1130800 – volume: 33 start-page: 2293 year: 2009 ident: R25 publication-title: Appl. Math. Model doi: 10.1016/j.apm.2008.06.005 – volume: 11 start-page: 216 year: 2017 ident: R29 publication-title: J. Biol. Dyn doi: 10.1080/17513758.2016.1229051 – volume: 94 start-page: 507 year: 2016 ident: R3 publication-title: Am. J. Trop. Med. Hygiene doi: 10.4269/ajtmh.15-0608 – volume: 6 start-page: e29106 year: 2011 ident: R9 publication-title: PLoS ONE doi: 10.1371/journal.pone.0029106 – volume: 31 start-page: 340 year: 2017 ident: R38 publication-title: Med. Veterin. Entomol doi: 10.1111/mve.12241 – volume: 323 start-page: 141 year: 2009 ident: R30 publication-title: Science doi: 10.1126/science.1165326 – ident: R24 doi: 10.1007/s11538-013-9835-4 – volume: 16 start-page: 565 year: 2008 ident: R16 publication-title: J. Biol. Syst. doi: 10.1142/S0218339008002691 – volume: 11 start-page: 385 year: 2016 ident: R19 publication-title: Int. J. Contemp. Math. Sci. doi: 10.12988/ijcms.2016.511713 – volume: 198 start-page: 401 year: 2008 ident: R41 publication-title: Appl. Math. Comput doi: 10.1016/j.amc.2007.08.046 – volume: 58 start-page: 77 year: 2015 ident: R21 publication-title: Sci. China Math doi: 10.1007/s11425-014-4934-8 – volume: 476 start-page: 454 year: 2011 ident: R20 publication-title: Nature doi: 10.1038/nature10356 – volume: 53 start-page: 213 year: 2012 ident: R31 publication-title: ANZIAM J. – volume: 475 start-page: 450 year: 2011 ident: R39 publication-title: Nature doi: 10.1038/nature10355 – volume: 9 start-page: 158 year: 2018 ident: R34 publication-title: Insects doi: 10.3390/insects9040158 – volume: 14 start-page: 107 year: 2006 ident: R10 publication-title: Can. Appl. Math. Quart – volume: 187 start-page: 583 year: 2011 ident: R43 publication-title: Genetics doi: 10.1534/genetics.110.122390 – volume: 14 start-page: e1006815 year: 2018 ident: R1 publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1006815 – ident: R28 doi: 10.1038/s41467-018-03981-8 – ident: R18 doi: 10.1112/jlms/s1-25.3.226 – volume: 137 start-page: 1188 year: 2009 ident: R42 publication-title: Epidemiol. Infection doi: 10.1017/S0950268809002040 – ident: R11 – volume: 34 start-page: 1405 year: 2010 ident: R5 publication-title: Appl. Math. Model doi: 10.1016/j.apm.2009.08.027 – ident: R36 |
SSID | ssj0000314300 |
Score | 2.2216 |
Snippet | Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the
Wolbachia... Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 76 |
SubjectTerms | Dynamical Systems Mathematics |
Title | Modeling the dynamics of Wolbachia -infected and uninfected A edes aegypti populations by delay differential equations |
URI | https://hal.science/hal-03167481 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeIEHxAaI8UsWAgkUJUvi_OpjtDE6GFOlDbG3KLEdtVKbljadNB74f_gvuXNiJxVDGrxEbWpFru_T-Xy5-z5C3rCh4AH3hM2kH9uBkNxO_FzYhTtMeM5yiFBUgexZNPoafLoMLweDX72qpU1dOPzHjX0l_2NVuAd2xS7Zf7CseSjcgM9gX7iCheF6KxujkNlM9zuJRltelWZ8W8wKrJLMLbuptpKKkdXaVOZrakkh11audMim1tIIea0xIkXuyGujnlJjWl1-3_Sye1oEyrC-YhcKTmfWllErxlBs85rIClkeuoM_eFcxrZv2GufcsXrh6Golp0r4yDp0xk7Xe5aK6Vyh4csCotky7-cqfLdLnR2NtbPaykHGzA5ZQ7XpyMYDxxGeZ9sMh3bRYc_Her3Nuum2_2MbAE8DtpvPqyU2vLiIGa_b8PRL_lF6no2PjrPTk7PP278a4u1ReppNABcuEgYEiXcFB-27fhx7WD368eSnSeehCgBrGp70n2rbLGAuBziTg3YeWwHQnYnO36t45uIhedAeRGjaoGqXDGS1R-539lzvkV29lvRdy07-_hG50qCjMJJq0NFFSQ3oqAEdBdDRDnQ0pQg62oKO9kBHi2uqQEf7oKMGdI_JxfGHi8OR3Yp32NxLgtr2RSSiMiq56xbCY75gYVQORexLkfM4KDxecDgdC85LiJBLIeM4FxFjRYlSaow9ITvVopJPCQ1yGfNEeGUihgEKpHPuRfCMYegHhQzEPrH0gma8JbZHfZVZpgosQi_D5c_a5d8nb83oZUPo8pdxr9HwesjNYHh2m0HPyT18ZpO3e0F26tVGvoRIti5eKQz9BrJNpSA |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+dynamics+of+Wolbachia+-infected+and+uninfected+A+edes+aegypti+populations+by+delay+differential+equations&rft.jtitle=Mathematical+modelling+of+natural+phenomena&rft.au=Benedito%2C+A.S.+S&rft.au=Ferreira%2C+C.P.+P&rft.au=Adimy%2C+Mostafa&rft.date=2020&rft.pub=EDP+Sciences&rft.issn=0973-5348&rft.eissn=1760-6101&rft.volume=15&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1051%2Fmmnp%2F2020041&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03167481v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-5348&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-5348&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-5348&client=summon |