1 H detection and dynamic nuclear polarization–enhanced NMR of Aβ 1-42 fibrils

Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H de...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 1
Main Authors Bahri, Salima, Silvers, Robert, Michael, Brian, Jaudzems, Kristaps, Lalli, Daniela, Casano, Gilles, Ouari, Olivier, Lesage, Anne, Pintacuda, Guido, Linse, Sara, Griffin, Robert G.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H detection and fast-MAS dynamic nuclear polarization (DNP), which have ushered in a new era for NMR-based structural biology, but whose potential has not yet been fully exploited for the structural investigation of complex amyloid assemblies. This work demonstrates the expeditious structural analysis of amyloid fibrils, without requiring preparation of large sample amounts, and sets the stage for future studies of unlabeled AD peptides derived from tissue samples available in limited quantities. Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments—namely, 1 H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13 C, 15 N-enriched, and fully protonated samples of M 0 Aβ 1-42 fibrils by high-field 1 H-detected NMR at 23.4 T and 18.8 T, and 13 C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M 0 Aβ 1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1 H detection. These results suggest that 1 H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems.
AbstractList Significance Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H detection and fast-MAS dynamic nuclear polarization (DNP), which have ushered in a new era for NMR-based structural biology, but whose potential has not yet been fully exploited for the structural investigation of complex amyloid assemblies. This work demonstrates the expeditious structural analysis of amyloid fibrils, without requiring preparation of large sample amounts, and sets the stage for future studies of unlabeled AD peptides derived from tissue samples available in limited quantities.
Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on C, N-enriched, and fully protonated samples of M Aβ fibrils by high-field H-detected NMR at 23.4 T and 18.8 T, and C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M Aβ (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than H detection. These results suggest that H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems.
Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H detection and fast-MAS dynamic nuclear polarization (DNP), which have ushered in a new era for NMR-based structural biology, but whose potential has not yet been fully exploited for the structural investigation of complex amyloid assemblies. This work demonstrates the expeditious structural analysis of amyloid fibrils, without requiring preparation of large sample amounts, and sets the stage for future studies of unlabeled AD peptides derived from tissue samples available in limited quantities. Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments—namely, 1 H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13 C, 15 N-enriched, and fully protonated samples of M 0 Aβ 1-42 fibrils by high-field 1 H-detected NMR at 23.4 T and 18.8 T, and 13 C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M 0 Aβ 1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1 H detection. These results suggest that 1 H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems.
Author Griffin, Robert G.
Jaudzems, Kristaps
Lesage, Anne
Lalli, Daniela
Pintacuda, Guido
Linse, Sara
Michael, Brian
Bahri, Salima
Silvers, Robert
Casano, Gilles
Ouari, Olivier
Author_xml – sequence: 1
  givenname: Salima
  surname: Bahri
  fullname: Bahri, Salima
  organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
– sequence: 2
  givenname: Robert
  surname: Silvers
  fullname: Silvers, Robert
  organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;, Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
– sequence: 3
  givenname: Brian
  surname: Michael
  fullname: Michael, Brian
  organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
– sequence: 4
  givenname: Kristaps
  orcidid: 0000-0003-3922-2447
  surname: Jaudzems
  fullname: Jaudzems, Kristaps
  organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
– sequence: 5
  givenname: Daniela
  surname: Lalli
  fullname: Lalli, Daniela
  organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
– sequence: 6
  givenname: Gilles
  surname: Casano
  fullname: Casano, Gilles
  organization: Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France
– sequence: 7
  givenname: Olivier
  surname: Ouari
  fullname: Ouari, Olivier
  organization: Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France
– sequence: 8
  givenname: Anne
  surname: Lesage
  fullname: Lesage, Anne
  organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
– sequence: 9
  givenname: Guido
  surname: Pintacuda
  fullname: Pintacuda, Guido
  organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
– sequence: 10
  givenname: Sara
  orcidid: 0000-0001-9629-7109
  surname: Linse
  fullname: Linse, Sara
  organization: Department of Chemistry, Lund University, Lund SE 22362, Sweden
– sequence: 11
  givenname: Robert G.
  orcidid: 0000-0003-1589-832X
  surname: Griffin
  fullname: Griffin, Robert G.
  organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34969859$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03853026$$DView record in HAL
BookMark eNp10M1KAzEUhuEgFfuja3eSrYtpz8nPzGRZilqhKoquh0ySoZFppsy0Ql15D96JF-JFeCW2VisIrgLh-c7i7ZJWqIIj5Bihj5DwwTzops8QhUCOqPZIB0FhFAsFLdIBYEmUCibapNs0jwCgZAoHpM2FilUqVYfcIh1T6xbOLHwVqA6W2lXQM29oWJrS6ZrOq1LX_llvwMfLqwtTHYyz9PrqjlYFHb6_UYwEo4XPa182h2S_0GXjjr7fHnk4P7sfjaPJzcXlaDiJDKZCRRaMlWhEkqbCGg4yBkiLhAsTG2N1kiQ2cVwxmTM0OcaYS8akcgpz5wqmeY-cbu9OdZnNaz_T9SqrtM_Gw0m2-QOeSg4sfsK1Pdna-TKfObvjPx3WYLAFpq6apnbFjiBkm9LZpnT2W3q9kH8Wxi--Gi1q7ct_d59IBYGL
CitedBy_id crossref_primary_10_1039_D4CP00553H
crossref_primary_10_1021_acs_biochem_3c00262
crossref_primary_10_1021_acs_jpclett_2c03087
crossref_primary_10_1007_s10858_023_00416_5
crossref_primary_10_1021_acs_analchem_3c04040
crossref_primary_10_1039_D4FD00151F
crossref_primary_10_1021_acs_jpclett_4c03147
crossref_primary_10_1038_s41467_024_45192_4
crossref_primary_10_1016_j_cbpa_2023_102280
crossref_primary_10_1002_ange_202317337
crossref_primary_10_1039_D2SC05880D
crossref_primary_10_1016_j_jmr_2023_107475
crossref_primary_10_1016_j_jmr_2023_107511
crossref_primary_10_1021_acs_chemrev_1c00918
crossref_primary_10_1002_pro_4628
crossref_primary_10_1016_j_str_2023_01_005
crossref_primary_10_1021_acs_chemrev_1c01043
crossref_primary_10_1039_D2CP01041K
crossref_primary_10_1016_j_jmr_2022_107338
crossref_primary_10_1016_j_jmro_2024_100161
crossref_primary_10_1021_acs_jpclett_3c01869
crossref_primary_10_1002_anie_202317337
crossref_primary_10_1063_5_0091663
crossref_primary_10_1016_j_jmr_2024_107742
crossref_primary_10_1021_acs_chemrev_4c00373
crossref_primary_10_1021_acs_jpcb_2c03985
Cites_doi 10.1007/s10858-014-9875-6
10.1007/s10858-013-9757-3
10.1063/1.462267
10.1056/NEJM196709072771006
10.1021/ja203756x
10.1016/j.jmr.2009.03.003
10.1063/1.476420
10.1038/s41598-019-52383-3
10.1038/nsb1195-990
10.1039/c003661g
10.1007/s10858-016-0044-y
10.1002/anie.201607084
10.1039/C9CS00199A
10.1007/s10858-016-0087-0
10.1073/pnas.1701484114
10.1021/jacs.1c03346
10.1021/ja507382j
10.1111/j.1742-4658.2008.06862.x
10.1126/science.1151839
10.1152/physrev.2001.81.2.741
10.1073/pnas.1103854108
10.1038/s41467-018-04078-y
10.1006/jmre.1999.1976
10.1002/anie.201408598
10.1002/slct.201601468
10.1021/acs.biochem.7b00729
10.1073/pnas.2014085118
10.1093/brain/awz066
10.1161/01.STR.14.6.924
10.1021/ja960877r
10.1063/1.2833582
10.1002/cphc.201300994
10.1016/j.cell.2012.02.022
10.1063/1.437915
10.1038/nature23002
10.1073/pnas.2023089118
10.1002/anie.201700032
10.1021/ja107987f
10.1016/S0006-291X(84)80190-4
10.1038/s41467-017-02228-2
10.1146/annurev-biochem-060614-034206
10.1016/0009-2614(80)80041-8
10.1002/anie.201008244
10.1146/annurev-biochem-061516-045104
10.1021/acs.jpclett.0c02493
10.1021/jacs.8b00022
10.1126/science.aao2825
10.1021/ar300348n
10.1002/anie.201801016
10.1021/bi00107a004
10.1021/acs.jpcb.7b02066
10.1021/jacs.5b03997
10.1016/j.jmr.2009.09.005
10.1073/pnas.1219476110
10.1038/s41467-018-06761-6
10.1021/ja00105a039
10.1021/jacs.6b05129
10.1016/j.jmr.2013.04.009
10.1073/pnas.0304849101
10.1073/pnas.1602248113
10.1016/j.jmr.2019.07.015
10.1016/j.pnmrs.2017.06.002
10.1007/s10858-013-9755-5
10.1016/j.jmr.2008.01.012
10.1073/pnas.1600749113
10.1007/s10858-009-9374-3
10.1056/NEJM198006053022305
10.1038/s41467-019-12683-8
10.1063/1.2834736
10.1039/C9SC05384K
10.1021/ja409050a
10.1006/jmre.1999.1805
10.1038/nsmb.3194
10.1073/pnas.2002598117
10.1002/alz.12328
10.1007/s00723-008-0129-1
10.1016/S0021-9258(19)39590-0
10.1021/bi051952q
10.1021/ja037315
10.1016/j.cell.2013.08.035
10.1146/annurev.biochem.75.101304.123901
10.1002/anie.201405730
10.1016/j.ymeth.2018.03.014
10.1006/jmre.2000.2029
ContentType Journal Article
Copyright Copyright © 2021 the Author(s). Published by PNAS.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2021 the Author(s). Published by PNAS.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1XC
VOOES
DOI 10.1073/pnas.2114413119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID oai_HAL_hal_03853026v1
34969859
10_1073_pnas_2114413119
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
1XC
UMC
VOOES
ID FETCH-LOGICAL-c1849-d0cd51c47884dc3056008f734c6ccda777d7e3925b21cb161b52259e91beef2a3
ISSN 0027-8424
IngestDate Fri May 09 12:19:25 EDT 2025
Thu Apr 03 07:01:03 EDT 2025
Tue Jul 01 01:03:08 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords magic-angle spinning
dynamic nuclear polarization
1H detection
amyloid β1-42
Language English
License Copyright © 2021 the Author(s). Published by PNAS.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1849-d0cd51c47884dc3056008f734c6ccda777d7e3925b21cb161b52259e91beef2a3
ORCID 0000-0001-9629-7109
0000-0003-1589-832X
0000-0003-3922-2447
OpenAccessLink https://hal.science/hal-03853026
PMID 34969859
ParticipantIDs hal_primary_oai_HAL_hal_03853026v1
pubmed_primary_34969859
crossref_primary_10_1073_pnas_2114413119
crossref_citationtrail_10_1073_pnas_2114413119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
Ernst R. R. (e_1_3_4_39_2) 1991
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_73_2
  doi: 10.1007/s10858-014-9875-6
– ident: e_1_3_4_80_2
  doi: 10.1007/s10858-013-9757-3
– ident: e_1_3_4_81_2
  doi: 10.1063/1.462267
– ident: e_1_3_4_3_2
  doi: 10.1056/NEJM196709072771006
– ident: e_1_3_4_66_2
  doi: 10.1021/ja203756x
– ident: e_1_3_4_45_2
  doi: 10.1016/j.jmr.2009.03.003
– volume-title: Principles of Nuclear Magnetic Resonance in One and Two Dimensions
  year: 1991
  ident: e_1_3_4_39_2
– ident: e_1_3_4_82_2
  doi: 10.1063/1.476420
– ident: e_1_3_4_49_2
  doi: 10.1038/s41598-019-52383-3
– ident: e_1_3_4_20_2
  doi: 10.1038/nsb1195-990
– ident: e_1_3_4_53_2
  doi: 10.1039/c003661g
– ident: e_1_3_4_55_2
  doi: 10.1007/s10858-016-0044-y
– ident: e_1_3_4_51_2
  doi: 10.1002/anie.201607084
– ident: e_1_3_4_17_2
  doi: 10.1039/C9CS00199A
– ident: e_1_3_4_47_2
  doi: 10.1007/s10858-016-0087-0
– ident: e_1_3_4_74_2
  doi: 10.1073/pnas.1701484114
– ident: e_1_3_4_58_2
  doi: 10.1021/jacs.1c03346
– ident: e_1_3_4_60_2
  doi: 10.1021/ja507382j
– ident: e_1_3_4_23_2
  doi: 10.1111/j.1742-4658.2008.06862.x
– ident: e_1_3_4_31_2
  doi: 10.1126/science.1151839
– ident: e_1_3_4_9_2
  doi: 10.1152/physrev.2001.81.2.741
– ident: e_1_3_4_79_2
  doi: 10.1073/pnas.1103854108
– ident: e_1_3_4_48_2
  doi: 10.1038/s41467-018-04078-y
– ident: e_1_3_4_40_2
  doi: 10.1006/jmre.1999.1976
– ident: e_1_3_4_27_2
  doi: 10.1002/anie.201408598
– ident: e_1_3_4_61_2
  doi: 10.1002/slct.201601468
– ident: e_1_3_4_35_2
  doi: 10.1021/acs.biochem.7b00729
– ident: e_1_3_4_52_2
  doi: 10.1073/pnas.2014085118
– ident: e_1_3_4_10_2
  doi: 10.1093/brain/awz066
– ident: e_1_3_4_6_2
  doi: 10.1161/01.STR.14.6.924
– ident: e_1_3_4_68_2
  doi: 10.1021/ja960877r
– ident: e_1_3_4_41_2
  doi: 10.1063/1.2833582
– ident: e_1_3_4_72_2
  doi: 10.1002/cphc.201300994
– ident: e_1_3_4_2_2
  doi: 10.1016/j.cell.2012.02.022
– ident: e_1_3_4_36_2
  doi: 10.1063/1.437915
– ident: e_1_3_4_13_2
  doi: 10.1038/nature23002
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.2023089118
– ident: e_1_3_4_33_2
  doi: 10.1002/anie.201700032
– ident: e_1_3_4_65_2
  doi: 10.1021/ja107987f
– ident: e_1_3_4_5_2
  doi: 10.1016/S0006-291X(84)80190-4
– ident: e_1_3_4_63_2
  doi: 10.1038/s41467-017-02228-2
– ident: e_1_3_4_37_2
  doi: 10.1146/annurev-biochem-060614-034206
– ident: e_1_3_4_38_2
  doi: 10.1016/0009-2614(80)80041-8
– ident: e_1_3_4_46_2
  doi: 10.1002/anie.201008244
– ident: e_1_3_4_11_2
  doi: 10.1146/annurev-biochem-061516-045104
– ident: e_1_3_4_77_2
  doi: 10.1021/acs.jpclett.0c02493
– ident: e_1_3_4_56_2
  doi: 10.1021/jacs.8b00022
– ident: e_1_3_4_15_2
  doi: 10.1126/science.aao2825
– ident: e_1_3_4_42_2
  doi: 10.1021/ar300348n
– ident: e_1_3_4_57_2
  doi: 10.1002/anie.201801016
– ident: e_1_3_4_19_2
  doi: 10.1021/bi00107a004
– ident: e_1_3_4_76_2
  doi: 10.1021/acs.jpcb.7b02066
– ident: e_1_3_4_24_2
  doi: 10.1021/jacs.5b03997
– ident: e_1_3_4_71_2
  doi: 10.1016/j.jmr.2009.09.005
– ident: e_1_3_4_12_2
  doi: 10.1073/pnas.1219476110
– ident: e_1_3_4_16_2
  doi: 10.1038/s41467-018-06761-6
– ident: e_1_3_4_75_2
  doi: 10.1021/ja00105a039
– ident: e_1_3_4_28_2
  doi: 10.1021/jacs.6b05129
– ident: e_1_3_4_85_2
  doi: 10.1016/j.jmr.2013.04.009
– ident: e_1_3_4_30_2
  doi: 10.1073/pnas.0304849101
– ident: e_1_3_4_50_2
  doi: 10.1073/pnas.1602248113
– ident: e_1_3_4_22_2
  doi: 10.1016/j.jmr.2019.07.015
– ident: e_1_3_4_44_2
  doi: 10.1016/j.pnmrs.2017.06.002
– ident: e_1_3_4_54_2
  doi: 10.1007/s10858-013-9755-5
– ident: e_1_3_4_84_2
  doi: 10.1016/j.jmr.2008.01.012
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.1600749113
– ident: e_1_3_4_78_2
  doi: 10.1007/s10858-009-9374-3
– ident: e_1_3_4_4_2
  doi: 10.1056/NEJM198006053022305
– ident: e_1_3_4_18_2
  doi: 10.1038/s41467-019-12683-8
– ident: e_1_3_4_83_2
  doi: 10.1063/1.2834736
– ident: e_1_3_4_67_2
  doi: 10.1039/C9SC05384K
– ident: e_1_3_4_32_2
  doi: 10.1021/ja409050a
– ident: e_1_3_4_70_2
  doi: 10.1006/jmre.1999.1805
– ident: e_1_3_4_34_2
  doi: 10.1038/nsmb.3194
– ident: e_1_3_4_64_2
  doi: 10.1073/pnas.2002598117
– ident: e_1_3_4_7_2
  doi: 10.1002/alz.12328
– ident: e_1_3_4_43_2
  doi: 10.1007/s00723-008-0129-1
– ident: e_1_3_4_8_2
  doi: 10.1016/S0021-9258(19)39590-0
– ident: e_1_3_4_25_2
  doi: 10.1021/bi051952q
– ident: e_1_3_4_59_2
  doi: 10.1021/ja037315
– ident: e_1_3_4_26_2
  doi: 10.1016/j.cell.2013.08.035
– ident: e_1_3_4_1_2
  doi: 10.1146/annurev.biochem.75.101304.123901
– ident: e_1_3_4_62_2
  doi: 10.1002/anie.201405730
– ident: e_1_3_4_21_2
  doi: 10.1016/j.ymeth.2018.03.014
– ident: e_1_3_4_69_2
  doi: 10.1006/jmre.2000.2029
SSID ssj0009580
Score 2.3797388
Snippet Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million...
Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR...
Significance Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about...
SourceID hal
pubmed
crossref
SourceType Open Access Repository
Index Database
Enrichment Source
SubjectTerms Amyloid beta-Peptides - chemistry
Analytical chemistry
Biochemistry, Molecular Biology
Biophysics
Carbon-13 Magnetic Resonance Spectroscopy - methods
Chemical Sciences
Life Sciences
or physical chemistry
Peptide Fragments - chemistry
Protein Conformation
Proton Magnetic Resonance Spectroscopy - methods
Structural Biology
Temperature
Theoretical and
Title 1 H detection and dynamic nuclear polarization–enhanced NMR of Aβ 1-42 fibrils
URI https://www.ncbi.nlm.nih.gov/pubmed/34969859
https://hal.science/hal-03853026
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5sBemLWK_rjUEsVMJsc5_kcS2VUOxabAt9C5O5sEJNF7P1oT_LH-Jv8pzM5LLagvoSlmQmu8z3cfY7M-dCyFuuM18FkWbG-AmLZaCZMDplGM5meKZy2SaFHc3T4iw-PE_ORyemmF2yqqby-sa8kv9BFe4Brpgl-w_I9i-FG_AZ8IUrIAzXv8I48ApP6ZV27b5r5SnbYN6rsUwxVrFGz9WlWjJdL-x5__zoc6tAd_YPdt6HHrh3oWcw9v-iGYvV4_7PrelCCebd3uFsyERx5qHxmHc8H_U1FgubxX4CUn-w_idfMBa7GaK6e8htAL8l3Ii0h-JKXWu7I9SaJLFc26sIw3avwh5aa2tfQZ6wNLYdQnsD7IzmiGl_GHawRNiNuBbNFFxW0HCRmzWCefm1xRlL4OeZqzO-Xku7e7RB7obgVrSBoMW4SHPmd-WfeLT327dtkXvd_DURs7HAENo1p6QVJ6cPyH3nVdCZpcg2uaPrh2S7A4buuuLi7x6RTwEtaM8ZCpyhjjPUcYbeyBkKnKGXhs5-_qDIF-r48picfTg43S-Ya6rBJDjzOVO-VEkgsWtCrCQ6kKACDY9imUqpBOdccQ2iOanCQFbgD1Sg0JNc50GltQlF9IRs1pe1fkaoAO8CfkCq0yqLAyNyeFFoTAySmGOJsQmZdqtUSldxHhufXJRt5AOPSlzhcljhCdntJyxtsZXbh76BZe9HYZH0YvaxxHt41h35Yfo9mJCnFpV-XAfg81ufvCBbA3Nfks3Vtyv9CnTnqnrdkuUXbad-IQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1+H+detection+and+dynamic+nuclear+polarization-enhanced+NMR+of+A%CE%B2+1-42+fibrils&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bahri%2C+Salima&rft.au=Silvers%2C+Robert&rft.au=Michael%2C+Brian&rft.au=Jaudzems%2C+Kristaps&rft.date=2022-01-05&rft.eissn=1091-6490&rft.volume=119&rft.issue=1&rft_id=info:doi/10.1073%2Fpnas.2114413119&rft_id=info%3Apmid%2F34969859&rft.externalDocID=34969859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon