1 H detection and dynamic nuclear polarization–enhanced NMR of Aβ 1-42 fibrils
Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H de...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 1 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS)
1
H detection and fast-MAS dynamic nuclear polarization (DNP), which have ushered in a new era for NMR-based structural biology, but whose potential has not yet been fully exploited for the structural investigation of complex amyloid assemblies. This work demonstrates the expeditious structural analysis of amyloid fibrils, without requiring preparation of large sample amounts, and sets the stage for future studies of unlabeled AD peptides derived from tissue samples available in limited quantities.
Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments—namely,
1
H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on
13
C,
15
N-enriched, and fully protonated samples of M
0
Aβ
1-42
fibrils by high-field
1
H-detected NMR at 23.4 T and 18.8 T, and
13
C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M
0
Aβ
1-42
(K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than
1
H detection. These results suggest that
1
H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems. |
---|---|
AbstractList | Significance Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H detection and fast-MAS dynamic nuclear polarization (DNP), which have ushered in a new era for NMR-based structural biology, but whose potential has not yet been fully exploited for the structural investigation of complex amyloid assemblies. This work demonstrates the expeditious structural analysis of amyloid fibrils, without requiring preparation of large sample amounts, and sets the stage for future studies of unlabeled AD peptides derived from tissue samples available in limited quantities. Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on C, N-enriched, and fully protonated samples of M Aβ fibrils by high-field H-detected NMR at 23.4 T and 18.8 T, and C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M Aβ (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than H detection. These results suggest that H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems. Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million people worldwide. The results reported in this manuscript focus on the new possibilities provided by ultrafast magic-angle spinning (MAS) 1 H detection and fast-MAS dynamic nuclear polarization (DNP), which have ushered in a new era for NMR-based structural biology, but whose potential has not yet been fully exploited for the structural investigation of complex amyloid assemblies. This work demonstrates the expeditious structural analysis of amyloid fibrils, without requiring preparation of large sample amounts, and sets the stage for future studies of unlabeled AD peptides derived from tissue samples available in limited quantities. Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments—namely, 1 H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13 C, 15 N-enriched, and fully protonated samples of M 0 Aβ 1-42 fibrils by high-field 1 H-detected NMR at 23.4 T and 18.8 T, and 13 C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M 0 Aβ 1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1 H detection. These results suggest that 1 H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems. |
Author | Griffin, Robert G. Jaudzems, Kristaps Lesage, Anne Lalli, Daniela Pintacuda, Guido Linse, Sara Michael, Brian Bahri, Salima Silvers, Robert Casano, Gilles Ouari, Olivier |
Author_xml | – sequence: 1 givenname: Salima surname: Bahri fullname: Bahri, Salima organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 – sequence: 2 givenname: Robert surname: Silvers fullname: Silvers, Robert organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;, Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 – sequence: 3 givenname: Brian surname: Michael fullname: Michael, Brian organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 – sequence: 4 givenname: Kristaps orcidid: 0000-0003-3922-2447 surname: Jaudzems fullname: Jaudzems, Kristaps organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France – sequence: 5 givenname: Daniela surname: Lalli fullname: Lalli, Daniela organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France – sequence: 6 givenname: Gilles surname: Casano fullname: Casano, Gilles organization: Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France – sequence: 7 givenname: Olivier surname: Ouari fullname: Ouari, Olivier organization: Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France – sequence: 8 givenname: Anne surname: Lesage fullname: Lesage, Anne organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France – sequence: 9 givenname: Guido surname: Pintacuda fullname: Pintacuda, Guido organization: Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France – sequence: 10 givenname: Sara orcidid: 0000-0001-9629-7109 surname: Linse fullname: Linse, Sara organization: Department of Chemistry, Lund University, Lund SE 22362, Sweden – sequence: 11 givenname: Robert G. orcidid: 0000-0003-1589-832X surname: Griffin fullname: Griffin, Robert G. organization: Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34969859$$D View this record in MEDLINE/PubMed https://hal.science/hal-03853026$$DView record in HAL |
BookMark | eNp10M1KAzEUhuEgFfuja3eSrYtpz8nPzGRZilqhKoquh0ySoZFppsy0Ql15D96JF-JFeCW2VisIrgLh-c7i7ZJWqIIj5Bihj5DwwTzops8QhUCOqPZIB0FhFAsFLdIBYEmUCibapNs0jwCgZAoHpM2FilUqVYfcIh1T6xbOLHwVqA6W2lXQM29oWJrS6ZrOq1LX_llvwMfLqwtTHYyz9PrqjlYFHb6_UYwEo4XPa182h2S_0GXjjr7fHnk4P7sfjaPJzcXlaDiJDKZCRRaMlWhEkqbCGg4yBkiLhAsTG2N1kiQ2cVwxmTM0OcaYS8akcgpz5wqmeY-cbu9OdZnNaz_T9SqrtM_Gw0m2-QOeSg4sfsK1Pdna-TKfObvjPx3WYLAFpq6apnbFjiBkm9LZpnT2W3q9kH8Wxi--Gi1q7ct_d59IBYGL |
CitedBy_id | crossref_primary_10_1039_D4CP00553H crossref_primary_10_1021_acs_biochem_3c00262 crossref_primary_10_1021_acs_jpclett_2c03087 crossref_primary_10_1007_s10858_023_00416_5 crossref_primary_10_1021_acs_analchem_3c04040 crossref_primary_10_1039_D4FD00151F crossref_primary_10_1021_acs_jpclett_4c03147 crossref_primary_10_1038_s41467_024_45192_4 crossref_primary_10_1016_j_cbpa_2023_102280 crossref_primary_10_1002_ange_202317337 crossref_primary_10_1039_D2SC05880D crossref_primary_10_1016_j_jmr_2023_107475 crossref_primary_10_1016_j_jmr_2023_107511 crossref_primary_10_1021_acs_chemrev_1c00918 crossref_primary_10_1002_pro_4628 crossref_primary_10_1016_j_str_2023_01_005 crossref_primary_10_1021_acs_chemrev_1c01043 crossref_primary_10_1039_D2CP01041K crossref_primary_10_1016_j_jmr_2022_107338 crossref_primary_10_1016_j_jmro_2024_100161 crossref_primary_10_1021_acs_jpclett_3c01869 crossref_primary_10_1002_anie_202317337 crossref_primary_10_1063_5_0091663 crossref_primary_10_1016_j_jmr_2024_107742 crossref_primary_10_1021_acs_chemrev_4c00373 crossref_primary_10_1021_acs_jpcb_2c03985 |
Cites_doi | 10.1007/s10858-014-9875-6 10.1007/s10858-013-9757-3 10.1063/1.462267 10.1056/NEJM196709072771006 10.1021/ja203756x 10.1016/j.jmr.2009.03.003 10.1063/1.476420 10.1038/s41598-019-52383-3 10.1038/nsb1195-990 10.1039/c003661g 10.1007/s10858-016-0044-y 10.1002/anie.201607084 10.1039/C9CS00199A 10.1007/s10858-016-0087-0 10.1073/pnas.1701484114 10.1021/jacs.1c03346 10.1021/ja507382j 10.1111/j.1742-4658.2008.06862.x 10.1126/science.1151839 10.1152/physrev.2001.81.2.741 10.1073/pnas.1103854108 10.1038/s41467-018-04078-y 10.1006/jmre.1999.1976 10.1002/anie.201408598 10.1002/slct.201601468 10.1021/acs.biochem.7b00729 10.1073/pnas.2014085118 10.1093/brain/awz066 10.1161/01.STR.14.6.924 10.1021/ja960877r 10.1063/1.2833582 10.1002/cphc.201300994 10.1016/j.cell.2012.02.022 10.1063/1.437915 10.1038/nature23002 10.1073/pnas.2023089118 10.1002/anie.201700032 10.1021/ja107987f 10.1016/S0006-291X(84)80190-4 10.1038/s41467-017-02228-2 10.1146/annurev-biochem-060614-034206 10.1016/0009-2614(80)80041-8 10.1002/anie.201008244 10.1146/annurev-biochem-061516-045104 10.1021/acs.jpclett.0c02493 10.1021/jacs.8b00022 10.1126/science.aao2825 10.1021/ar300348n 10.1002/anie.201801016 10.1021/bi00107a004 10.1021/acs.jpcb.7b02066 10.1021/jacs.5b03997 10.1016/j.jmr.2009.09.005 10.1073/pnas.1219476110 10.1038/s41467-018-06761-6 10.1021/ja00105a039 10.1021/jacs.6b05129 10.1016/j.jmr.2013.04.009 10.1073/pnas.0304849101 10.1073/pnas.1602248113 10.1016/j.jmr.2019.07.015 10.1016/j.pnmrs.2017.06.002 10.1007/s10858-013-9755-5 10.1016/j.jmr.2008.01.012 10.1073/pnas.1600749113 10.1007/s10858-009-9374-3 10.1056/NEJM198006053022305 10.1038/s41467-019-12683-8 10.1063/1.2834736 10.1039/C9SC05384K 10.1021/ja409050a 10.1006/jmre.1999.1805 10.1038/nsmb.3194 10.1073/pnas.2002598117 10.1002/alz.12328 10.1007/s00723-008-0129-1 10.1016/S0021-9258(19)39590-0 10.1021/bi051952q 10.1021/ja037315 10.1016/j.cell.2013.08.035 10.1146/annurev.biochem.75.101304.123901 10.1002/anie.201405730 10.1016/j.ymeth.2018.03.014 10.1006/jmre.2000.2029 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the Author(s). Published by PNAS. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2021 the Author(s). Published by PNAS. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 1XC VOOES |
DOI | 10.1073/pnas.2114413119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | oai_HAL_hal_03853026v1 34969859 10_1073_pnas_2114413119 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 1XC UMC VOOES |
ID | FETCH-LOGICAL-c1849-d0cd51c47884dc3056008f734c6ccda777d7e3925b21cb161b52259e91beef2a3 |
ISSN | 0027-8424 |
IngestDate | Fri May 09 12:19:25 EDT 2025 Thu Apr 03 07:01:03 EDT 2025 Tue Jul 01 01:03:08 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | magic-angle spinning dynamic nuclear polarization 1H detection amyloid β1-42 |
Language | English |
License | Copyright © 2021 the Author(s). Published by PNAS. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1849-d0cd51c47884dc3056008f734c6ccda777d7e3925b21cb161b52259e91beef2a3 |
ORCID | 0000-0001-9629-7109 0000-0003-1589-832X 0000-0003-3922-2447 |
OpenAccessLink | https://hal.science/hal-03853026 |
PMID | 34969859 |
ParticipantIDs | hal_primary_oai_HAL_hal_03853026v1 pubmed_primary_34969859 crossref_primary_10_1073_pnas_2114413119 crossref_citationtrail_10_1073_pnas_2114413119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-05 |
PublicationDateYYYYMMDD | 2022-01-05 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 Ernst R. R. (e_1_3_4_39_2) 1991 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_73_2 doi: 10.1007/s10858-014-9875-6 – ident: e_1_3_4_80_2 doi: 10.1007/s10858-013-9757-3 – ident: e_1_3_4_81_2 doi: 10.1063/1.462267 – ident: e_1_3_4_3_2 doi: 10.1056/NEJM196709072771006 – ident: e_1_3_4_66_2 doi: 10.1021/ja203756x – ident: e_1_3_4_45_2 doi: 10.1016/j.jmr.2009.03.003 – volume-title: Principles of Nuclear Magnetic Resonance in One and Two Dimensions year: 1991 ident: e_1_3_4_39_2 – ident: e_1_3_4_82_2 doi: 10.1063/1.476420 – ident: e_1_3_4_49_2 doi: 10.1038/s41598-019-52383-3 – ident: e_1_3_4_20_2 doi: 10.1038/nsb1195-990 – ident: e_1_3_4_53_2 doi: 10.1039/c003661g – ident: e_1_3_4_55_2 doi: 10.1007/s10858-016-0044-y – ident: e_1_3_4_51_2 doi: 10.1002/anie.201607084 – ident: e_1_3_4_17_2 doi: 10.1039/C9CS00199A – ident: e_1_3_4_47_2 doi: 10.1007/s10858-016-0087-0 – ident: e_1_3_4_74_2 doi: 10.1073/pnas.1701484114 – ident: e_1_3_4_58_2 doi: 10.1021/jacs.1c03346 – ident: e_1_3_4_60_2 doi: 10.1021/ja507382j – ident: e_1_3_4_23_2 doi: 10.1111/j.1742-4658.2008.06862.x – ident: e_1_3_4_31_2 doi: 10.1126/science.1151839 – ident: e_1_3_4_9_2 doi: 10.1152/physrev.2001.81.2.741 – ident: e_1_3_4_79_2 doi: 10.1073/pnas.1103854108 – ident: e_1_3_4_48_2 doi: 10.1038/s41467-018-04078-y – ident: e_1_3_4_40_2 doi: 10.1006/jmre.1999.1976 – ident: e_1_3_4_27_2 doi: 10.1002/anie.201408598 – ident: e_1_3_4_61_2 doi: 10.1002/slct.201601468 – ident: e_1_3_4_35_2 doi: 10.1021/acs.biochem.7b00729 – ident: e_1_3_4_52_2 doi: 10.1073/pnas.2014085118 – ident: e_1_3_4_10_2 doi: 10.1093/brain/awz066 – ident: e_1_3_4_6_2 doi: 10.1161/01.STR.14.6.924 – ident: e_1_3_4_68_2 doi: 10.1021/ja960877r – ident: e_1_3_4_41_2 doi: 10.1063/1.2833582 – ident: e_1_3_4_72_2 doi: 10.1002/cphc.201300994 – ident: e_1_3_4_2_2 doi: 10.1016/j.cell.2012.02.022 – ident: e_1_3_4_36_2 doi: 10.1063/1.437915 – ident: e_1_3_4_13_2 doi: 10.1038/nature23002 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.2023089118 – ident: e_1_3_4_33_2 doi: 10.1002/anie.201700032 – ident: e_1_3_4_65_2 doi: 10.1021/ja107987f – ident: e_1_3_4_5_2 doi: 10.1016/S0006-291X(84)80190-4 – ident: e_1_3_4_63_2 doi: 10.1038/s41467-017-02228-2 – ident: e_1_3_4_37_2 doi: 10.1146/annurev-biochem-060614-034206 – ident: e_1_3_4_38_2 doi: 10.1016/0009-2614(80)80041-8 – ident: e_1_3_4_46_2 doi: 10.1002/anie.201008244 – ident: e_1_3_4_11_2 doi: 10.1146/annurev-biochem-061516-045104 – ident: e_1_3_4_77_2 doi: 10.1021/acs.jpclett.0c02493 – ident: e_1_3_4_56_2 doi: 10.1021/jacs.8b00022 – ident: e_1_3_4_15_2 doi: 10.1126/science.aao2825 – ident: e_1_3_4_42_2 doi: 10.1021/ar300348n – ident: e_1_3_4_57_2 doi: 10.1002/anie.201801016 – ident: e_1_3_4_19_2 doi: 10.1021/bi00107a004 – ident: e_1_3_4_76_2 doi: 10.1021/acs.jpcb.7b02066 – ident: e_1_3_4_24_2 doi: 10.1021/jacs.5b03997 – ident: e_1_3_4_71_2 doi: 10.1016/j.jmr.2009.09.005 – ident: e_1_3_4_12_2 doi: 10.1073/pnas.1219476110 – ident: e_1_3_4_16_2 doi: 10.1038/s41467-018-06761-6 – ident: e_1_3_4_75_2 doi: 10.1021/ja00105a039 – ident: e_1_3_4_28_2 doi: 10.1021/jacs.6b05129 – ident: e_1_3_4_85_2 doi: 10.1016/j.jmr.2013.04.009 – ident: e_1_3_4_30_2 doi: 10.1073/pnas.0304849101 – ident: e_1_3_4_50_2 doi: 10.1073/pnas.1602248113 – ident: e_1_3_4_22_2 doi: 10.1016/j.jmr.2019.07.015 – ident: e_1_3_4_44_2 doi: 10.1016/j.pnmrs.2017.06.002 – ident: e_1_3_4_54_2 doi: 10.1007/s10858-013-9755-5 – ident: e_1_3_4_84_2 doi: 10.1016/j.jmr.2008.01.012 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.1600749113 – ident: e_1_3_4_78_2 doi: 10.1007/s10858-009-9374-3 – ident: e_1_3_4_4_2 doi: 10.1056/NEJM198006053022305 – ident: e_1_3_4_18_2 doi: 10.1038/s41467-019-12683-8 – ident: e_1_3_4_83_2 doi: 10.1063/1.2834736 – ident: e_1_3_4_67_2 doi: 10.1039/C9SC05384K – ident: e_1_3_4_32_2 doi: 10.1021/ja409050a – ident: e_1_3_4_70_2 doi: 10.1006/jmre.1999.1805 – ident: e_1_3_4_34_2 doi: 10.1038/nsmb.3194 – ident: e_1_3_4_64_2 doi: 10.1073/pnas.2002598117 – ident: e_1_3_4_7_2 doi: 10.1002/alz.12328 – ident: e_1_3_4_43_2 doi: 10.1007/s00723-008-0129-1 – ident: e_1_3_4_8_2 doi: 10.1016/S0021-9258(19)39590-0 – ident: e_1_3_4_25_2 doi: 10.1021/bi051952q – ident: e_1_3_4_59_2 doi: 10.1021/ja037315 – ident: e_1_3_4_26_2 doi: 10.1016/j.cell.2013.08.035 – ident: e_1_3_4_1_2 doi: 10.1146/annurev.biochem.75.101304.123901 – ident: e_1_3_4_62_2 doi: 10.1002/anie.201405730 – ident: e_1_3_4_21_2 doi: 10.1016/j.ymeth.2018.03.014 – ident: e_1_3_4_69_2 doi: 10.1006/jmre.2000.2029 |
SSID | ssj0009580 |
Score | 2.3797388 |
Snippet | Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about 50 million... Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR... Significance Amyloid-β (Aβ) is the subject of intense scrutiny because of its close association with Alzheimer’s disease (AD), which currently afflicts about... |
SourceID | hal pubmed crossref |
SourceType | Open Access Repository Index Database Enrichment Source |
SubjectTerms | Amyloid beta-Peptides - chemistry Analytical chemistry Biochemistry, Molecular Biology Biophysics Carbon-13 Magnetic Resonance Spectroscopy - methods Chemical Sciences Life Sciences or physical chemistry Peptide Fragments - chemistry Protein Conformation Proton Magnetic Resonance Spectroscopy - methods Structural Biology Temperature Theoretical and |
Title | 1 H detection and dynamic nuclear polarization–enhanced NMR of Aβ 1-42 fibrils |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34969859 https://hal.science/hal-03853026 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5sBemLWK_rjUEsVMJsc5_kcS2VUOxabAt9C5O5sEJNF7P1oT_LH-Jv8pzM5LLagvoSlmQmu8z3cfY7M-dCyFuuM18FkWbG-AmLZaCZMDplGM5meKZy2SaFHc3T4iw-PE_ORyemmF2yqqby-sa8kv9BFe4Brpgl-w_I9i-FG_AZ8IUrIAzXv8I48ApP6ZV27b5r5SnbYN6rsUwxVrFGz9WlWjJdL-x5__zoc6tAd_YPdt6HHrh3oWcw9v-iGYvV4_7PrelCCebd3uFsyERx5qHxmHc8H_U1FgubxX4CUn-w_idfMBa7GaK6e8htAL8l3Ii0h-JKXWu7I9SaJLFc26sIw3avwh5aa2tfQZ6wNLYdQnsD7IzmiGl_GHawRNiNuBbNFFxW0HCRmzWCefm1xRlL4OeZqzO-Xku7e7RB7obgVrSBoMW4SHPmd-WfeLT327dtkXvd_DURs7HAENo1p6QVJ6cPyH3nVdCZpcg2uaPrh2S7A4buuuLi7x6RTwEtaM8ZCpyhjjPUcYbeyBkKnKGXhs5-_qDIF-r48picfTg43S-Ya6rBJDjzOVO-VEkgsWtCrCQ6kKACDY9imUqpBOdccQ2iOanCQFbgD1Sg0JNc50GltQlF9IRs1pe1fkaoAO8CfkCq0yqLAyNyeFFoTAySmGOJsQmZdqtUSldxHhufXJRt5AOPSlzhcljhCdntJyxtsZXbh76BZe9HYZH0YvaxxHt41h35Yfo9mJCnFpV-XAfg81ufvCBbA3Nfks3Vtyv9CnTnqnrdkuUXbad-IQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1+H+detection+and+dynamic+nuclear+polarization-enhanced+NMR+of+A%CE%B2+1-42+fibrils&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bahri%2C+Salima&rft.au=Silvers%2C+Robert&rft.au=Michael%2C+Brian&rft.au=Jaudzems%2C+Kristaps&rft.date=2022-01-05&rft.eissn=1091-6490&rft.volume=119&rft.issue=1&rft_id=info:doi/10.1073%2Fpnas.2114413119&rft_id=info%3Apmid%2F34969859&rft.externalDocID=34969859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |