KP-KdV Hierarchy and Pseudo-Differential Operators

The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of t...

Full description

Saved in:
Bibliographic Details
Published inCommunications in advanced mathematical sciences (Online) Vol. 2; no. 2; pp. 75 - 104
Main Author AHMED, Lesfari
Format Journal Article
LanguageEnglish
Published Emrah Evren KARA 27.06.2019
Subjects
Online AccessGet full text
ISSN2651-4001
2651-4001
DOI10.33434/cams.478999

Cover

Abstract The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role in this study. We make a careful study of some connection between pseudo-differential operators, symplectic structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg and Virasoro algebras are given.
AbstractList The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role in this study. We make a careful study of some connection between pseudo-differential operators, symplectic structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg and Virasoro algebras are given.
Author AHMED, Lesfari
Author_xml – sequence: 1
  givenname: Lesfari
  orcidid: 0000-0001-6213-4301
  surname: AHMED
  fullname: AHMED, Lesfari
BookMark eNptkMtOAjEUhhuDiYjsfIB5AAd7Oe1MlwYvEEhgQdw2pRctGaakHRe8vSNoYoyrc3Ly_19Ovms0aGPrELoleMIYMLg3ep8nUNVSygs0pIKTEjAmg1_7FRrnvMMYM4arGoshoot1ubCvxSy4pJN5Pxa6tcU6uw8by8fgvUuu7YJuitWhT3Qx5Rt06XWT3fh7jtDm-WkznZXL1ct8-rAsDalBlsYaUkHFQRjMOchaSCu0lYJLyxllkhHAFmtcOwmGbIUHIFvqHdfEmoqN0PyMtVHv1CGFvU5HFXVQp0NMb0qnLpjGKQueVhQcdhbAcLGVwlsvmWBgoKK0Z9Ezy6SYc3JemdDpLsS2Szo0imB1cqi-HKqzw75096f088S_8U_ym3L_
CitedBy_id crossref_primary_10_1016_j_joes_2022_03_026
Cites_doi 10.1063/1.1664701
10.1002/cpa.3160280105
10.1515/9781400881567
10.1063/1.1665772
10.1016/0001-8708(79)90057-4
10.1007/978-3-662-05650-9
10.1007/s00010-013-0201-2
10.1016/0370-2693(85)91326-7
10.1090/pspum/049.1/1013125
10.1002/cpa.3160210503
10.1016/S0304-0208(08)72096-6
10.1002/cpa.3160270108
10.1080/14786449508620739
10.1007/BF01410079
10.1023/A:1017903416906
10.1007/BF01075357
10.24033/asens.1556
10.1007/BF01388967
10.1143/JPSJ.32.1403
10.1007/BF01390312
10.1090/trans2/001/11
10.1142/1109
10.1063/1.1665232
10.1103/PhysRevLett.19.1095
10.1142/S0217732393002749
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33434/cams.478999
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2651-4001
EndPage 104
ExternalDocumentID oai_doaj_org_article_d4f2724e0ed44c56b96fdf93634c4722
10_33434_cams_478999
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1849-cdc1747546c05549869d6ad9659d532393140d0a08e94c1b6f441b2fe5a1dc73
IEDL.DBID DOA
ISSN 2651-4001
IngestDate Wed Aug 27 01:17:41 EDT 2025
Tue Jul 01 02:51:41 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1849-cdc1747546c05549869d6ad9659d532393140d0a08e94c1b6f441b2fe5a1dc73
ORCID 0000-0001-6213-4301
OpenAccessLink https://doaj.org/article/d4f2724e0ed44c56b96fdf93634c4722
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_d4f2724e0ed44c56b96fdf93634c4722
crossref_citationtrail_10_33434_cams_478999
crossref_primary_10_33434_cams_478999
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-27
PublicationDateYYYYMMDD 2019-06-27
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-27
  day: 27
PublicationDecade 2010
PublicationTitle Communications in advanced mathematical sciences (Online)
PublicationYear 2019
Publisher Emrah Evren KARA
Publisher_xml – name: Emrah Evren KARA
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
– ident: ref5
– ident: ref11
  doi: 10.1063/1.1664701
– ident: ref12
  doi: 10.1002/cpa.3160280105
– ident: ref29
– ident: ref13
  doi: 10.1515/9781400881567
– ident: ref9
  doi: 10.1063/1.1665772
– ident: ref23
  doi: 10.1016/0001-8708(79)90057-4
– ident: ref20
  doi: 10.1007/978-3-662-05650-9
– ident: ref25
– ident: ref14
  doi: 10.1007/s00010-013-0201-2
– ident: ref27
– ident: ref19
  doi: 10.1016/0370-2693(85)91326-7
– ident: ref35
  doi: 10.1090/pspum/049.1/1013125
– ident: ref7
  doi: 10.1002/cpa.3160210503
– ident: ref36
  doi: 10.1016/S0304-0208(08)72096-6
– ident: ref10
  doi: 10.1002/cpa.3160270108
– ident: ref17
– ident: ref34
– ident: ref2
– ident: ref1
  doi: 10.1080/14786449508620739
– ident: ref22
  doi: 10.1007/BF01410079
– ident: ref33
  doi: 10.1023/A:1017903416906
– ident: ref30
  doi: 10.1007/BF01075357
– ident: ref21
  doi: 10.24033/asens.1556
– ident: ref28
– ident: ref37
  doi: 10.1007/BF01388967
– ident: ref15
  doi: 10.1143/JPSJ.32.1403
– ident: ref24
  doi: 10.1007/BF01390312
– ident: ref26
– ident: ref4
  doi: 10.1090/trans2/001/11
– ident: ref31
  doi: 10.1142/1109
– ident: ref18
– ident: ref16
– ident: ref6
  doi: 10.1063/1.1665232
– ident: ref8
  doi: 10.1103/PhysRevLett.19.1095
– ident: ref32
  doi: 10.1142/S0217732393002749
SSID ssj0003307806
Score 2.0718768
Snippet The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 75
SubjectTerms gelfand-levitan integral equation
integrable systems
kdv equation
kp hierarchy
schr\"{o}dinger equation
symplectic structures
Title KP-KdV Hierarchy and Pseudo-Differential Operators
URI https://doaj.org/article/d4f2724e0ed44c56b96fdf93634c4722
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct1AkGxFOUlzLAhEwT27HjkacqqkKHgrpF9p0jkEpbkXbg22MnoSoDYmGNTlFyF9_dX7F_R8iZYdamRQI0SRSnAlBQnQlBgaOxwI3kKpwd7j_K7rN4GKWjlVFfYU9YjQeuHddBUTDFhIsdCgGptFoWWGguuYAAOgzZN9bxipgKOdirdJXFst7pzrngogPmvbwUyusL_aMGraD6q5pyv0U2m2YwuqofYpusuckO2egvSarlLmG9Ae3hS9R9CyeF4fUz8tI_GpRugVN620w38at0HD3NXPXLvNwjw_u74U2XNnMOKHh9pSkgeF2gUiEh9tVdZ1KjNBhQf5jywCjzKghjE2dOC0isLHwPY1nhUpMgKL5PWpPpxB2QSFiGYA0qxZ1fjJilLFYOfQpDw4xxbXLx_eI5NAzwMIpinHstULkpD27Kaze1yfnSelazL36xuw4-XNoEYnV1wccxb-KY_xXHw_-4yRFZ9w1NwCpQpo5Ja_6xcCe-aZjb0-r7-AKQeb8B
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KP-KdV+Hierarchy+and+Pseudo-Differential+Operators&rft.jtitle=Communications+in+advanced+mathematical+sciences+%28Online%29&rft.au=AHMED%2C+Lesfari&rft.date=2019-06-27&rft.issn=2651-4001&rft.eissn=2651-4001&rft.volume=2&rft.issue=2&rft.spage=75&rft.epage=104&rft_id=info:doi/10.33434%2Fcams.478999&rft.externalDBID=n%2Fa&rft.externalDocID=10_33434_cams_478999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2651-4001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2651-4001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2651-4001&client=summon