KP-KdV Hierarchy and Pseudo-Differential Operators
The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of t...
Saved in:
Published in | Communications in advanced mathematical sciences (Online) Vol. 2; no. 2; pp. 75 - 104 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Emrah Evren KARA
27.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2651-4001 2651-4001 |
DOI | 10.33434/cams.478999 |
Cover
Abstract | The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role in this study. We make a careful study of some connection between pseudo-differential operators, symplectic structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg and Virasoro algebras are given. |
---|---|
AbstractList | The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role in this study. We make a careful study of some connection between pseudo-differential operators, symplectic structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg and Virasoro algebras are given. |
Author | AHMED, Lesfari |
Author_xml | – sequence: 1 givenname: Lesfari orcidid: 0000-0001-6213-4301 surname: AHMED fullname: AHMED, Lesfari |
BookMark | eNptkMtOAjEUhhuDiYjsfIB5AAd7Oe1MlwYvEEhgQdw2pRctGaakHRe8vSNoYoyrc3Ly_19Ovms0aGPrELoleMIYMLg3ep8nUNVSygs0pIKTEjAmg1_7FRrnvMMYM4arGoshoot1ubCvxSy4pJN5Pxa6tcU6uw8by8fgvUuu7YJuitWhT3Qx5Rt06XWT3fh7jtDm-WkznZXL1ct8-rAsDalBlsYaUkHFQRjMOchaSCu0lYJLyxllkhHAFmtcOwmGbIUHIFvqHdfEmoqN0PyMtVHv1CGFvU5HFXVQp0NMb0qnLpjGKQueVhQcdhbAcLGVwlsvmWBgoKK0Z9Ezy6SYc3JemdDpLsS2Szo0imB1cqi-HKqzw75096f088S_8U_ym3L_ |
CitedBy_id | crossref_primary_10_1016_j_joes_2022_03_026 |
Cites_doi | 10.1063/1.1664701 10.1002/cpa.3160280105 10.1515/9781400881567 10.1063/1.1665772 10.1016/0001-8708(79)90057-4 10.1007/978-3-662-05650-9 10.1007/s00010-013-0201-2 10.1016/0370-2693(85)91326-7 10.1090/pspum/049.1/1013125 10.1002/cpa.3160210503 10.1016/S0304-0208(08)72096-6 10.1002/cpa.3160270108 10.1080/14786449508620739 10.1007/BF01410079 10.1023/A:1017903416906 10.1007/BF01075357 10.24033/asens.1556 10.1007/BF01388967 10.1143/JPSJ.32.1403 10.1007/BF01390312 10.1090/trans2/001/11 10.1142/1109 10.1063/1.1665232 10.1103/PhysRevLett.19.1095 10.1142/S0217732393002749 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.33434/cams.478999 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2651-4001 |
EndPage | 104 |
ExternalDocumentID | oai_doaj_org_article_d4f2724e0ed44c56b96fdf93634c4722 10_33434_cams_478999 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c1849-cdc1747546c05549869d6ad9659d532393140d0a08e94c1b6f441b2fe5a1dc73 |
IEDL.DBID | DOA |
ISSN | 2651-4001 |
IngestDate | Wed Aug 27 01:17:41 EDT 2025 Tue Jul 01 02:51:41 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1849-cdc1747546c05549869d6ad9659d532393140d0a08e94c1b6f441b2fe5a1dc73 |
ORCID | 0000-0001-6213-4301 |
OpenAccessLink | https://doaj.org/article/d4f2724e0ed44c56b96fdf93634c4722 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4f2724e0ed44c56b96fdf93634c4722 crossref_citationtrail_10_33434_cams_478999 crossref_primary_10_33434_cams_478999 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-27 |
PublicationDateYYYYMMDD | 2019-06-27 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-27 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | Communications in advanced mathematical sciences (Online) |
PublicationYear | 2019 |
Publisher | Emrah Evren KARA |
Publisher_xml | – name: Emrah Evren KARA |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 – ident: ref5 – ident: ref11 doi: 10.1063/1.1664701 – ident: ref12 doi: 10.1002/cpa.3160280105 – ident: ref29 – ident: ref13 doi: 10.1515/9781400881567 – ident: ref9 doi: 10.1063/1.1665772 – ident: ref23 doi: 10.1016/0001-8708(79)90057-4 – ident: ref20 doi: 10.1007/978-3-662-05650-9 – ident: ref25 – ident: ref14 doi: 10.1007/s00010-013-0201-2 – ident: ref27 – ident: ref19 doi: 10.1016/0370-2693(85)91326-7 – ident: ref35 doi: 10.1090/pspum/049.1/1013125 – ident: ref7 doi: 10.1002/cpa.3160210503 – ident: ref36 doi: 10.1016/S0304-0208(08)72096-6 – ident: ref10 doi: 10.1002/cpa.3160270108 – ident: ref17 – ident: ref34 – ident: ref2 – ident: ref1 doi: 10.1080/14786449508620739 – ident: ref22 doi: 10.1007/BF01410079 – ident: ref33 doi: 10.1023/A:1017903416906 – ident: ref30 doi: 10.1007/BF01075357 – ident: ref21 doi: 10.24033/asens.1556 – ident: ref28 – ident: ref37 doi: 10.1007/BF01388967 – ident: ref15 doi: 10.1143/JPSJ.32.1403 – ident: ref24 doi: 10.1007/BF01390312 – ident: ref26 – ident: ref4 doi: 10.1090/trans2/001/11 – ident: ref31 doi: 10.1142/1109 – ident: ref18 – ident: ref16 – ident: ref6 doi: 10.1063/1.1665232 – ident: ref8 doi: 10.1103/PhysRevLett.19.1095 – ident: ref32 doi: 10.1142/S0217732393002749 |
SSID | ssj0003307806 |
Score | 2.0718768 |
Snippet | The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 75 |
SubjectTerms | gelfand-levitan integral equation integrable systems kdv equation kp hierarchy schr\"{o}dinger equation symplectic structures |
Title | KP-KdV Hierarchy and Pseudo-Differential Operators |
URI | https://doaj.org/article/d4f2724e0ed44c56b96fdf93634c4722 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct1AkGxFOUlzLAhEwT27HjkacqqkKHgrpF9p0jkEpbkXbg22MnoSoDYmGNTlFyF9_dX7F_R8iZYdamRQI0SRSnAlBQnQlBgaOxwI3kKpwd7j_K7rN4GKWjlVFfYU9YjQeuHddBUTDFhIsdCgGptFoWWGguuYAAOgzZN9bxipgKOdirdJXFst7pzrngogPmvbwUyusL_aMGraD6q5pyv0U2m2YwuqofYpusuckO2egvSarlLmG9Ae3hS9R9CyeF4fUz8tI_GpRugVN620w38at0HD3NXPXLvNwjw_u74U2XNnMOKHh9pSkgeF2gUiEh9tVdZ1KjNBhQf5jywCjzKghjE2dOC0isLHwPY1nhUpMgKL5PWpPpxB2QSFiGYA0qxZ1fjJilLFYOfQpDw4xxbXLx_eI5NAzwMIpinHstULkpD27Kaze1yfnSelazL36xuw4-XNoEYnV1wccxb-KY_xXHw_-4yRFZ9w1NwCpQpo5Ja_6xcCe-aZjb0-r7-AKQeb8B |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KP-KdV+Hierarchy+and+Pseudo-Differential+Operators&rft.jtitle=Communications+in+advanced+mathematical+sciences+%28Online%29&rft.au=AHMED%2C+Lesfari&rft.date=2019-06-27&rft.issn=2651-4001&rft.eissn=2651-4001&rft.volume=2&rft.issue=2&rft.spage=75&rft.epage=104&rft_id=info:doi/10.33434%2Fcams.478999&rft.externalDBID=n%2Fa&rft.externalDocID=10_33434_cams_478999 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2651-4001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2651-4001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2651-4001&client=summon |