Multiagent trajectory prediction with global‐local scene‐enhanced social interaction graph network

Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challen...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Lin, Xuanqi, Zhang, Yong, Wang, Shun, Piao, Xinglin, Yin, Baocai
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real‐world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global‐local scene‐enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global‐local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios. Comparison of scene information learning approaches.
AbstractList Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real‐world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global‐local scene‐enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global‐local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios. Comparison of scene information learning approaches.
Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real‐world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global‐local scene‐enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global‐local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios.
Author Yin, Baocai
Wang, Shun
Piao, Xinglin
Lin, Xuanqi
Zhang, Yong
Author_xml – sequence: 1
  givenname: Xuanqi
  orcidid: 0009-0006-0401-2828
  surname: Lin
  fullname: Lin, Xuanqi
  organization: Beijing University of Technology
– sequence: 2
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  email: zhangyong2010@bjut.edu.cn
  organization: Beijing University of Technology
– sequence: 3
  givenname: Shun
  surname: Wang
  fullname: Wang, Shun
  organization: Beijing University of Technology
– sequence: 4
  givenname: Xinglin
  surname: Piao
  fullname: Piao, Xinglin
  organization: Beijing University of Technology
– sequence: 5
  givenname: Baocai
  surname: Yin
  fullname: Yin, Baocai
  organization: Beijing University of Technology
BookMark eNp10M1KAzEQB_AgFWyr4CMsePGyNcluk91jKX5BxYuKt5DPNnVN1iS19OYj-Iw-iVtXvHnKZPjNDPxHYOC80wCcIjhBEOILyd8nGBf0AAzRtCR5ienz4K8m6AiMYlx3kmAEh8DcbZpk-VK7lKXA11omH3ZZG7SyMlnvsq1Nq2zZeMGbr4_PxkveZFFqp7ufdivupFZZ9NJ2feuSDryfWwberjKn09aHl2NwaHgT9cnvOwaPV5cP85t8cX99O58tcomqkua1QhITYYiqhVYCF5yoopK4FoojVZGypNRUkhBuCiNqWksKhaCG16XkpeHFGJz1e9vg3zY6Jrb2m-C6k6yAFBFYITLt1HmvZPAxBm1YG-wrDzuGINunyLoU2T7FjuY93dpG7_51bD57-vHfRrN6AQ
Cites_doi 10.1109/CVPR42600.2020.00635
10.1016/j.patrec.2023.03.006
10.1007/978-3-030-58523-5_40
10.1109/CVPR42600.2020.00074
10.1109/LRA.2023.3258685
10.1109/ICRA.2019.8793868
10.1109/CVPR42600.2020.01052
10.1109/CVPR.2018.00240
10.1109/ICCV48922.2021.01495
10.1109/CVPR52688.2022.00639
10.1109/ICCV.2009.5459260
10.1109/CVPR.2019.00144
10.1109/ICCV.2019.00637
10.1109/CVPR.2016.110
10.1109/IROS.2010.5654369
10.1109/CVPR.2019.00865
10.1109/LRA.2022.3144501
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2237
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2237
CAV2237
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62072015; U19B2039; 61632006; 61876012; 61902053
– fundername: China Scholarship Council
  funderid: 201806540008
– fundername: Natural Science Foundation of Beijing
  funderid: 4172003
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1847-9d1c26bf6d9bedb23a6d38c29bda1d864477f8c66af3fb979c70bb7fa94ca4fa3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:56 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1847-9d1c26bf6d9bedb23a6d38c29bda1d864477f8c66af3fb979c70bb7fa94ca4fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-0401-2828
PQID 3071608165
PQPubID 2034909
PageCount 13
ParticipantIDs proquest_journals_3071608165
crossref_primary_10_1002_cav_2237
wiley_primary_10_1002_cav_2237_CAV2237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 32:137–146
2023
2022
2010
2021
2020
2023; 8
2022; 7
2009
2019
2018
2017
2023; 169
2016
e_1_2_9_30_1
e_1_2_9_31_1
Jia X (e_1_2_9_9_1) 2022
Cheng J (e_1_2_9_4_1) 2023
Li S (e_1_2_9_11_1) 2021
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Kosaraju V (e_1_2_9_14_1) 2019; 32
Chen YF (e_1_2_9_20_1) 2017
Lv P (e_1_2_9_32_1) 2023
Mohamed A (e_1_2_9_27_1) 2020
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Lisotto M (e_1_2_9_23_1) 2019
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Xue H (e_1_2_9_8_1) 2018
e_1_2_9_3_1
e_1_2_9_2_1
Shi L (e_1_2_9_25_1) 2021
e_1_2_9_26_1
Yu C (e_1_2_9_18_1) 2020
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – start-page: 8679
  year: 2023
  end-page: 8689
– volume: 169
  start-page: 17
  year: 2023
  end-page: 27
  article-title: AMGB: Trajectory prediction using attention‐based mechanism GCN‐BiLSTM in IOV
  publication-title: Pattern Recognition Letters.
– volume: 8
  start-page: 2708
  issue: 5
  year: 2023
  end-page: 2715
  article-title: Improving multi‐agent trajectory prediction using traffic states on interactive driving scenarios
  publication-title: IEEE Robotics and Automation Letters.
– start-page: 660
  year: 2020
  end-page: 669
– start-page: 6498
  year: 2022
  end-page: 6507
– start-page: 6272
  year: 2019
  end-page: 6281
– start-page: 2090
  year: 2019
  end-page: 2096
– start-page: 1
  year: 2023
  end-page: 15
  article-title: SSAGCN: Social soft attention graph convolution network for pedestrian trajectory prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems.
– start-page: 1186
  year: 2018
  end-page: 1194
– start-page: 961
  year: 2016
  end-page: 971
– volume: 7
  start-page: 3499
  issue: 2
  year: 2022
  end-page: 3506
  article-title: GAMMA: A general agent motion model for autonomous driving
  publication-title: IEEE Robotics and Automation Letters.
– start-page: 261
  year: 2009
  end-page: 268
– start-page: 285
  year: 2017
  end-page: 292
– start-page: 15233
  year: 2021
  end-page: 15242
– start-page: 1940
  year: 2021
  end-page: 1949
– start-page: 8994
  year: 2021
  end-page: 9003
– start-page: 8446
  year: 2019
  end-page: 8454
– start-page: 2567
  year: 2019
  end-page: 2574
– start-page: 683
  year: 2020
  end-page: 700
– start-page: 1349
  year: 2019
  end-page: 1358
– year: 2020
– start-page: 910
  year: 2022
  end-page: 920
– volume: 32:137–146
  year: 2019
  article-title: Social‐bigat: Multimodal trajectory forecasting using bicycle‐gan and graph attention networks
  publication-title: Advances in Neural Information Processing Systems.
– year: 2023
– start-page: 2255
  year: 2018
  end-page: 2264
– start-page: 797
  year: 2010
  end-page: 803
– start-page: 507
  year: 2020
  end-page: 523
– start-page: 10505
  year: 2020
  end-page: 10515
– year: 2019
– ident: e_1_2_9_28_1
  doi: 10.1109/CVPR42600.2020.00635
– volume-title: CVPR
  year: 2020
  ident: e_1_2_9_27_1
– ident: e_1_2_9_22_1
  doi: 10.1016/j.patrec.2023.03.006
– ident: e_1_2_9_17_1
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-030-58523-5_40
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR42600.2020.00074
– ident: e_1_2_9_7_1
– ident: e_1_2_9_15_1
  doi: 10.1109/LRA.2023.3258685
– start-page: 507
  volume-title: ECCV
  year: 2020
  ident: e_1_2_9_18_1
– ident: e_1_2_9_3_1
  doi: 10.1109/ICRA.2019.8793868
– start-page: 8994
  volume-title: CVPR
  year: 2021
  ident: e_1_2_9_25_1
– start-page: 910
  volume-title: Conference on Robot Learning
  year: 2022
  ident: e_1_2_9_9_1
– ident: e_1_2_9_24_1
  doi: 10.1109/CVPR42600.2020.01052
– start-page: 1186
  volume-title: WACV
  year: 2018
  ident: e_1_2_9_8_1
– ident: e_1_2_9_10_1
  doi: 10.1109/CVPR.2018.00240
– ident: e_1_2_9_2_1
– volume: 32
  year: 2019
  ident: e_1_2_9_14_1
  article-title: Social‐bigat: Multimodal trajectory forecasting using bicycle‐gan and graph attention networks
  publication-title: Advances in Neural Information Processing Systems.
– ident: e_1_2_9_30_1
  doi: 10.1109/ICCV48922.2021.01495
– ident: e_1_2_9_5_1
– start-page: 1
  year: 2023
  ident: e_1_2_9_32_1
  article-title: SSAGCN: Social soft attention graph convolution network for pedestrian trajectory prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems.
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR52688.2022.00639
– ident: e_1_2_9_33_1
  doi: 10.1109/ICCV.2009.5459260
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2019.00144
– ident: e_1_2_9_26_1
  doi: 10.1109/ICCV.2019.00637
– ident: e_1_2_9_16_1
  doi: 10.1109/CVPR.2016.110
– start-page: 2567
  volume-title: ICCV Workshop
  year: 2019
  ident: e_1_2_9_23_1
– start-page: 1940
  volume-title: ICCV
  year: 2021
  ident: e_1_2_9_11_1
– start-page: 285
  volume-title: ICRA
  year: 2017
  ident: e_1_2_9_20_1
– ident: e_1_2_9_6_1
  doi: 10.1109/IROS.2010.5654369
– start-page: 8679
  volume-title: ICCV
  year: 2023
  ident: e_1_2_9_4_1
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPR.2019.00865
– ident: e_1_2_9_19_1
  doi: 10.1109/LRA.2022.3144501
SSID ssj0026210
Score 2.3516085
Snippet Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Complexity
Deep learning
Intelligent agents
Modelling
Multiagent systems
Prediction models
Predictions
Reagents
Robotics
scene‐aware information integration
Social interaction
trajectory prediction
Uncertainty
Title Multiagent trajectory prediction with global‐local scene‐enhanced social interaction graph network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2237
https://www.proquest.com/docview/3071608165
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-0wFA6iG9_C8YnXiQjirtfbNE3a5cUBEXXhe4rgouRkwAGq3EHQlT_B3-gvMSe5dQJBXJWWprQ5OTlfTr_zhZCNQhQuFaVJUmAy4dxBAgWkieMdbiW3XIeE_tGx2D_lB-f5-YhVibUwUR_iLeGGnhHma3RwBf2td9FQre7bPrZhITlStRAPnbwpRzHBohBBzkWCq4RGd7bDtpqGnyPRO7z8CFJDlNmbJhfN-0VyyU17OIC2fvwi3fi7D5ghUyPwSbtxtMySMVvPkT9nV_1hvNqfJy5U5CosuKKDnroOSf0HetfDHzpoRIqZWxp1RF6enkMspCgJZf2ZrS8Do4DGVDxFMYpeLJ2gQRqb1pF2_pec7u3-395PRnsxJNqvAWVSmlQzAU6YEqwBlilhskKzEoxKTeFRlZSu0EIolzkoZallB0A6VXKtuFPZAhmvb2u7SGhhc9YpLAAXGVfOgZH-GTrHKlulTdYi641dqrsouVFFcWVW-T6rsM9aZKUxWDVyun7lp6tU4EYieYtshp7_tn213T3D49JPb1wmk8zDmUh1XCHjg97Qrno4MoA1MtHdOTr8txYG4Cu0xeLk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cDurBXRzXFsRbxkmn053gSUQZdfQgKh6E0CsuEGUWQU9-gt_ol9jLZFxAEE8hIR2Sqq6uqpeq1wCbGc1MTHMVxQKziBAjIpGJODKkQTQjmkgP6J-c0uYFObpKr4Zgp-qFCfwQA8DNWYZfr52BO0B6-5M1VPKnunVubBhG3YbePp86G3BHYYoDFUFKaOTyhIp5toG3q5HffdFngPk1TPV-5mAKrqs3DOUl9_VeV9Tlyw_yxn9-wjRM9uNPtBsmzAwM6XIWJi5vO71wtTMHxjflctdzhbptfudx_Wf02Hb_dJwekQNvUaASeX998-4QOVYobc90eeOLClBA45Hjo2iH7gnk2bFRGSrP5-HiYP98rxn1t2OIpE0DWZSrWGIqDFW50ErghFOVZBLnQvFYZTawYsxkklJuEiNylkvWEIIZnhPJieHJAoyUD6VeBJTpFDcyLQShCeHGCMXsM2TqGm25VEkNNirFFI-BdaMI_Mq4sDIrnMxqsFJprOjbXaewK1ZM3V4iaQ22vOh_HV_s7V6649Jfb1yHseb5SatoHZ4eL8M4ttFNqHxcgZFuu6dXbXTSFWt-Fn4ApaPlaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-RAFH6MDohzGMeN6XErQbylTSqVqspRum0cN0RUBA-hVmaB2PQizJzmJ8xv9JdYS8cNBPEUElIheUu9r17e-wpgi1NuM1rqJJOYJYRYmUgus8SSlBhGDFEhoX98QvcvyMFVcTWpqvS9MJEf4iHh5j0jzNfewfva7jyShipx23axjU3BR0JT7i26e_ZAHYUpjkwEBaGJXyY0xLMp3mlGPg9Fj_jyKUoNYaY3B9fNC8bqkt_t8Ui21d8X3I3v-4Iv8HmCPtFuNJd5-GDqBfh0-XM4jleHi2BDS67wHVdoNBC_Qlb_D-oP_B8dr0XkU7coEonc_fsfgiHynFDGnZn6RygpQDEXjzwbxSD2TqDAjY3qWHe-BBe9vfPOfjLZjCFRbhHIklJnClNpqS6l0RLnguqcK1xKLTLNHaxizHJFqbC5lSUrFUulZFaURAliRb4M0_VNbb4C4qbAKTdSEpoTYa3UzD1DFb7NViidt2Cz0UvVj5wbVWRXxpWTWeVl1oLVRmHVxOuGlZuvMup3EilasB0k_-r4qrN76Y_f3nrjBsycdnvV0feTwxWYxQ7axLLHVZgeDcZmzUGTkVwPNngPOQ3kIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiagent+trajectory+prediction+with+global%E2%80%90local+scene%E2%80%90enhanced+social+interaction+graph+network&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Lin%2C+Xuanqi&rft.au=Zhang%2C+Yong&rft.au=Wang%2C+Shun&rft.au=Piao%2C+Xinglin&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon