Multiagent trajectory prediction with global‐local scene‐enhanced social interaction graph network
Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challen...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real‐world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global‐local scene‐enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global‐local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios.
Comparison of scene information learning approaches. |
---|---|
AbstractList | Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real‐world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global‐local scene‐enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global‐local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios.
Comparison of scene information learning approaches. Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning‐based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real‐world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global‐local scene‐enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global‐local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios. |
Author | Yin, Baocai Wang, Shun Piao, Xinglin Lin, Xuanqi Zhang, Yong |
Author_xml | – sequence: 1 givenname: Xuanqi orcidid: 0009-0006-0401-2828 surname: Lin fullname: Lin, Xuanqi organization: Beijing University of Technology – sequence: 2 givenname: Yong surname: Zhang fullname: Zhang, Yong email: zhangyong2010@bjut.edu.cn organization: Beijing University of Technology – sequence: 3 givenname: Shun surname: Wang fullname: Wang, Shun organization: Beijing University of Technology – sequence: 4 givenname: Xinglin surname: Piao fullname: Piao, Xinglin organization: Beijing University of Technology – sequence: 5 givenname: Baocai surname: Yin fullname: Yin, Baocai organization: Beijing University of Technology |
BookMark | eNp10M1KAzEQB_AgFWyr4CMsePGyNcluk91jKX5BxYuKt5DPNnVN1iS19OYj-Iw-iVtXvHnKZPjNDPxHYOC80wCcIjhBEOILyd8nGBf0AAzRtCR5ienz4K8m6AiMYlx3kmAEh8DcbZpk-VK7lKXA11omH3ZZG7SyMlnvsq1Nq2zZeMGbr4_PxkveZFFqp7ufdivupFZZ9NJ2feuSDryfWwberjKn09aHl2NwaHgT9cnvOwaPV5cP85t8cX99O58tcomqkua1QhITYYiqhVYCF5yoopK4FoojVZGypNRUkhBuCiNqWksKhaCG16XkpeHFGJz1e9vg3zY6Jrb2m-C6k6yAFBFYITLt1HmvZPAxBm1YG-wrDzuGINunyLoU2T7FjuY93dpG7_51bD57-vHfRrN6AQ |
Cites_doi | 10.1109/CVPR42600.2020.00635 10.1016/j.patrec.2023.03.006 10.1007/978-3-030-58523-5_40 10.1109/CVPR42600.2020.00074 10.1109/LRA.2023.3258685 10.1109/ICRA.2019.8793868 10.1109/CVPR42600.2020.01052 10.1109/CVPR.2018.00240 10.1109/ICCV48922.2021.01495 10.1109/CVPR52688.2022.00639 10.1109/ICCV.2009.5459260 10.1109/CVPR.2019.00144 10.1109/ICCV.2019.00637 10.1109/CVPR.2016.110 10.1109/IROS.2010.5654369 10.1109/CVPR.2019.00865 10.1109/LRA.2022.3144501 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2237 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2237 CAV2237 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62072015; U19B2039; 61632006; 61876012; 61902053 – fundername: China Scholarship Council funderid: 201806540008 – fundername: Natural Science Foundation of Beijing funderid: 4172003 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c1847-9d1c26bf6d9bedb23a6d38c29bda1d864477f8c66af3fb979c70bb7fa94ca4fa3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 03:40:56 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Aug 20 07:26:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1847-9d1c26bf6d9bedb23a6d38c29bda1d864477f8c66af3fb979c70bb7fa94ca4fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-0401-2828 |
PQID | 3071608165 |
PQPubID | 2034909 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3071608165 crossref_primary_10_1002_cav_2237 wiley_primary_10_1002_cav_2237_CAV2237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May/June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 32:137–146 2023 2022 2010 2021 2020 2023; 8 2022; 7 2009 2019 2018 2017 2023; 169 2016 e_1_2_9_30_1 e_1_2_9_31_1 Jia X (e_1_2_9_9_1) 2022 Cheng J (e_1_2_9_4_1) 2023 Li S (e_1_2_9_11_1) 2021 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 Kosaraju V (e_1_2_9_14_1) 2019; 32 Chen YF (e_1_2_9_20_1) 2017 Lv P (e_1_2_9_32_1) 2023 Mohamed A (e_1_2_9_27_1) 2020 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 Lisotto M (e_1_2_9_23_1) 2019 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 Xue H (e_1_2_9_8_1) 2018 e_1_2_9_3_1 e_1_2_9_2_1 Shi L (e_1_2_9_25_1) 2021 e_1_2_9_26_1 Yu C (e_1_2_9_18_1) 2020 e_1_2_9_28_1 e_1_2_9_29_1 |
References_xml | – start-page: 8679 year: 2023 end-page: 8689 – volume: 169 start-page: 17 year: 2023 end-page: 27 article-title: AMGB: Trajectory prediction using attention‐based mechanism GCN‐BiLSTM in IOV publication-title: Pattern Recognition Letters. – volume: 8 start-page: 2708 issue: 5 year: 2023 end-page: 2715 article-title: Improving multi‐agent trajectory prediction using traffic states on interactive driving scenarios publication-title: IEEE Robotics and Automation Letters. – start-page: 660 year: 2020 end-page: 669 – start-page: 6498 year: 2022 end-page: 6507 – start-page: 6272 year: 2019 end-page: 6281 – start-page: 2090 year: 2019 end-page: 2096 – start-page: 1 year: 2023 end-page: 15 article-title: SSAGCN: Social soft attention graph convolution network for pedestrian trajectory prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems. – start-page: 1186 year: 2018 end-page: 1194 – start-page: 961 year: 2016 end-page: 971 – volume: 7 start-page: 3499 issue: 2 year: 2022 end-page: 3506 article-title: GAMMA: A general agent motion model for autonomous driving publication-title: IEEE Robotics and Automation Letters. – start-page: 261 year: 2009 end-page: 268 – start-page: 285 year: 2017 end-page: 292 – start-page: 15233 year: 2021 end-page: 15242 – start-page: 1940 year: 2021 end-page: 1949 – start-page: 8994 year: 2021 end-page: 9003 – start-page: 8446 year: 2019 end-page: 8454 – start-page: 2567 year: 2019 end-page: 2574 – start-page: 683 year: 2020 end-page: 700 – start-page: 1349 year: 2019 end-page: 1358 – year: 2020 – start-page: 910 year: 2022 end-page: 920 – volume: 32:137–146 year: 2019 article-title: Social‐bigat: Multimodal trajectory forecasting using bicycle‐gan and graph attention networks publication-title: Advances in Neural Information Processing Systems. – year: 2023 – start-page: 2255 year: 2018 end-page: 2264 – start-page: 797 year: 2010 end-page: 803 – start-page: 507 year: 2020 end-page: 523 – start-page: 10505 year: 2020 end-page: 10515 – year: 2019 – ident: e_1_2_9_28_1 doi: 10.1109/CVPR42600.2020.00635 – volume-title: CVPR year: 2020 ident: e_1_2_9_27_1 – ident: e_1_2_9_22_1 doi: 10.1016/j.patrec.2023.03.006 – ident: e_1_2_9_17_1 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-030-58523-5_40 – ident: e_1_2_9_12_1 doi: 10.1109/CVPR42600.2020.00074 – ident: e_1_2_9_7_1 – ident: e_1_2_9_15_1 doi: 10.1109/LRA.2023.3258685 – start-page: 507 volume-title: ECCV year: 2020 ident: e_1_2_9_18_1 – ident: e_1_2_9_3_1 doi: 10.1109/ICRA.2019.8793868 – start-page: 8994 volume-title: CVPR year: 2021 ident: e_1_2_9_25_1 – start-page: 910 volume-title: Conference on Robot Learning year: 2022 ident: e_1_2_9_9_1 – ident: e_1_2_9_24_1 doi: 10.1109/CVPR42600.2020.01052 – start-page: 1186 volume-title: WACV year: 2018 ident: e_1_2_9_8_1 – ident: e_1_2_9_10_1 doi: 10.1109/CVPR.2018.00240 – ident: e_1_2_9_2_1 – volume: 32 year: 2019 ident: e_1_2_9_14_1 article-title: Social‐bigat: Multimodal trajectory forecasting using bicycle‐gan and graph attention networks publication-title: Advances in Neural Information Processing Systems. – ident: e_1_2_9_30_1 doi: 10.1109/ICCV48922.2021.01495 – ident: e_1_2_9_5_1 – start-page: 1 year: 2023 ident: e_1_2_9_32_1 article-title: SSAGCN: Social soft attention graph convolution network for pedestrian trajectory prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems. – ident: e_1_2_9_31_1 doi: 10.1109/CVPR52688.2022.00639 – ident: e_1_2_9_33_1 doi: 10.1109/ICCV.2009.5459260 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR.2019.00144 – ident: e_1_2_9_26_1 doi: 10.1109/ICCV.2019.00637 – ident: e_1_2_9_16_1 doi: 10.1109/CVPR.2016.110 – start-page: 2567 volume-title: ICCV Workshop year: 2019 ident: e_1_2_9_23_1 – start-page: 1940 volume-title: ICCV year: 2021 ident: e_1_2_9_11_1 – start-page: 285 volume-title: ICRA year: 2017 ident: e_1_2_9_20_1 – ident: e_1_2_9_6_1 doi: 10.1109/IROS.2010.5654369 – start-page: 8679 volume-title: ICCV year: 2023 ident: e_1_2_9_4_1 – ident: e_1_2_9_21_1 doi: 10.1109/CVPR.2019.00865 – ident: e_1_2_9_19_1 doi: 10.1109/LRA.2022.3144501 |
SSID | ssj0026210 |
Score | 2.3516085 |
Snippet | Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Complexity Deep learning Intelligent agents Modelling Multiagent systems Prediction models Predictions Reagents Robotics scene‐aware information integration Social interaction trajectory prediction Uncertainty |
Title | Multiagent trajectory prediction with global‐local scene‐enhanced social interaction graph network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2237 https://www.proquest.com/docview/3071608165 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-0wFA6iG9_C8YnXiQjirtfbNE3a5cUBEXXhe4rgouRkwAGq3EHQlT_B3-gvMSe5dQJBXJWWprQ5OTlfTr_zhZCNQhQuFaVJUmAy4dxBAgWkieMdbiW3XIeE_tGx2D_lB-f5-YhVibUwUR_iLeGGnhHma3RwBf2td9FQre7bPrZhITlStRAPnbwpRzHBohBBzkWCq4RGd7bDtpqGnyPRO7z8CFJDlNmbJhfN-0VyyU17OIC2fvwi3fi7D5ghUyPwSbtxtMySMVvPkT9nV_1hvNqfJy5U5CosuKKDnroOSf0HetfDHzpoRIqZWxp1RF6enkMspCgJZf2ZrS8Do4DGVDxFMYpeLJ2gQRqb1pF2_pec7u3-395PRnsxJNqvAWVSmlQzAU6YEqwBlilhskKzEoxKTeFRlZSu0EIolzkoZallB0A6VXKtuFPZAhmvb2u7SGhhc9YpLAAXGVfOgZH-GTrHKlulTdYi641dqrsouVFFcWVW-T6rsM9aZKUxWDVyun7lp6tU4EYieYtshp7_tn213T3D49JPb1wmk8zDmUh1XCHjg97Qrno4MoA1MtHdOTr8txYG4Cu0xeLk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cDurBXRzXFsRbxkmn053gSUQZdfQgKh6E0CsuEGUWQU9-gt_ol9jLZFxAEE8hIR2Sqq6uqpeq1wCbGc1MTHMVxQKziBAjIpGJODKkQTQjmkgP6J-c0uYFObpKr4Zgp-qFCfwQA8DNWYZfr52BO0B6-5M1VPKnunVubBhG3YbePp86G3BHYYoDFUFKaOTyhIp5toG3q5HffdFngPk1TPV-5mAKrqs3DOUl9_VeV9Tlyw_yxn9-wjRM9uNPtBsmzAwM6XIWJi5vO71wtTMHxjflctdzhbptfudx_Wf02Hb_dJwekQNvUaASeX998-4QOVYobc90eeOLClBA45Hjo2iH7gnk2bFRGSrP5-HiYP98rxn1t2OIpE0DWZSrWGIqDFW50ErghFOVZBLnQvFYZTawYsxkklJuEiNylkvWEIIZnhPJieHJAoyUD6VeBJTpFDcyLQShCeHGCMXsM2TqGm25VEkNNirFFI-BdaMI_Mq4sDIrnMxqsFJprOjbXaewK1ZM3V4iaQ22vOh_HV_s7V6649Jfb1yHseb5SatoHZ4eL8M4ttFNqHxcgZFuu6dXbXTSFWt-Fn4ApaPlaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-RAFH6MDohzGMeN6XErQbylTSqVqspRum0cN0RUBA-hVmaB2PQizJzmJ8xv9JdYS8cNBPEUElIheUu9r17e-wpgi1NuM1rqJJOYJYRYmUgus8SSlBhGDFEhoX98QvcvyMFVcTWpqvS9MJEf4iHh5j0jzNfewfva7jyShipx23axjU3BR0JT7i26e_ZAHYUpjkwEBaGJXyY0xLMp3mlGPg9Fj_jyKUoNYaY3B9fNC8bqkt_t8Ui21d8X3I3v-4Iv8HmCPtFuNJd5-GDqBfh0-XM4jleHi2BDS67wHVdoNBC_Qlb_D-oP_B8dr0XkU7coEonc_fsfgiHynFDGnZn6RygpQDEXjzwbxSD2TqDAjY3qWHe-BBe9vfPOfjLZjCFRbhHIklJnClNpqS6l0RLnguqcK1xKLTLNHaxizHJFqbC5lSUrFUulZFaURAliRb4M0_VNbb4C4qbAKTdSEpoTYa3UzD1DFb7NViidt2Cz0UvVj5wbVWRXxpWTWeVl1oLVRmHVxOuGlZuvMup3EilasB0k_-r4qrN76Y_f3nrjBsycdnvV0feTwxWYxQ7axLLHVZgeDcZmzUGTkVwPNngPOQ3kIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiagent+trajectory+prediction+with+global%E2%80%90local+scene%E2%80%90enhanced+social+interaction+graph+network&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Lin%2C+Xuanqi&rft.au=Zhang%2C+Yong&rft.au=Wang%2C+Shun&rft.au=Piao%2C+Xinglin&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |