Elastically induced phase-shift and birefringence in optical fibers
Background Light propagation in optical fibers is known to be sensitive to ambient conditions such as changes in temperature and pressure. Building on a model for elastic deformations of optical fiber spools derived in previous work, the induced effects on phase and birefringence are investigated. M...
Saved in:
Published in | Open research Europe Vol. 5; p. 99 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Belgium
F1000 Research Ltd
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Light propagation in optical fibers is known to be sensitive to ambient conditions such as changes in temperature and pressure. Building on a model for elastic deformations of optical fiber spools derived in previous work, the induced effects on phase and birefringence are investigated. Methods We use a perturbative scheme to solve, to first order, the Maxwell equations in deformed fibers using a multiple-scales approximation scheme. Specifically, we consider differences in wave-guiding properties of straight fibers subject to different external temperatures, pressures, and gravitational fields. Results We obtain propagation equations for the Jones vector along optical fibers. This results in phase shifts and birefringence effects, for which we derive explicit expressions. Conclusions The phase shift can be expressed in terms of the average radial pressure, longitudinal tension, and change in temperature, while birefringence depends on the quadrupole of the external pressure distribution and the stresses on the axis of the fiber. Our result provides stringent constraints on the environmental control needed for sensitive fiber interferometry. |
---|---|
AbstractList | Background Light propagation in optical fibers is known to be sensitive to ambient conditions such as changes in temperature and pressure. Building on a model for elastic deformations of optical fiber spools derived in previous work, the induced effects on phase and birefringence are investigated. Methods We use a perturbative scheme to solve, to first order, the Maxwell equations in deformed fibers using a multiple-scales approximation scheme. Specifically, we consider differences in wave-guiding properties of straight fibers subject to different external temperatures, pressures, and gravitational fields. Results We obtain propagation equations for the Jones vector along optical fibers. This results in phase shifts and birefringence effects, for which we derive explicit expressions. Conclusions The phase shift can be expressed in terms of the average radial pressure, longitudinal tension, and change in temperature, while birefringence depends on the quadrupole of the external pressure distribution and the stresses on the axis of the fiber. Our result provides stringent constraints on the environmental control needed for sensitive fiber interferometry. Light propagation in optical fibers is known to be sensitive to ambient conditions such as changes in temperature and pressure. Building on a model for elastic deformations of optical fiber spools derived in previous work, the induced effects on phase and birefringence are investigated. We use a perturbative scheme to solve, to first order, the Maxwell equations in deformed fibers using a multiple-scales approximation scheme. Specifically, we consider differences in wave-guiding properties of straight fibers subject to different external temperatures, pressures, and gravitational fields. We obtain propagation equations for the Jones vector along optical fibers. This results in phase shifts and birefringence effects, for which we derive explicit expressions. The phase shift can be expressed in terms of the average radial pressure, longitudinal tension, and change in temperature, while birefringence depends on the quadrupole of the external pressure distribution and the stresses on the axis of the fiber. Our result provides stringent constraints on the environmental control needed for sensitive fiber interferometry. |
Author | Chruściel, Piotr T. Mieling, Thomas Steininger, Elisabeth |
Author_xml | – sequence: 1 givenname: Elisabeth orcidid: 0000-0003-0092-3043 surname: Steininger fullname: Steininger, Elisabeth – sequence: 2 givenname: Thomas surname: Mieling fullname: Mieling, Thomas – sequence: 3 givenname: Piotr T. orcidid: 0000-0001-8362-7340 surname: Chruściel fullname: Chruściel, Piotr T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40584914$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUctuwjAQtCqqQim_gPIDoV7HdpJjhWiLhNRLe7bWLwgKSWTDgb-vBS1qTzvamR3t7jySUdd3jpA50AUwWVXP_eC64KI7hYQWUHPgC3ZHJqwsWC6AwegPHpNZjHtKKRNQSKgfyJhTUfEa-IQsVy3GY2Owbc9Z09mTcTYbdhhdHneNP2bY2Uw3wfnQdFvXGZdUWT9cRjLfaBfiE7n32EY3-6lT8vW6-ly-55uPt_XyZZMbqDjLPZSFRl0Iw7WhtrDgy5IK4YRGrDgkygvPtXXS1N4iN7KskUtNURqT2ClZX31tj3s1hOaA4ax6bNSl0YetwpAWa53CWvCq9LXRKLnXAo0omfOSSg1oAJPX_Oo1nPTB2Zvb72eSQF4FJvQxpvtvEqDqkoL6l4K6pKBY8Q1QU4AV |
Cites_doi | 10.1117/12.2193091 10.1364/QUANTUM.2024.QTh4C.3 10.1002/andp.19233772202 10.1103/PhysRevA.106.063511 10.1007/978-1-4757-0025-1 10.1103/PhysRevResearch.5.023140 10.1016/0148-9062(90)90007-O 10.1126/sciadv.ado0215 10.12688/openreseurope.17329.1 10.1016/B978-0-12-374446-3.X0001-6 10.1117/1.AP.2.2.024001 10.25365/thesis.75758 10.1103/PhysRevResearch.7.013162 10.1063/1.1735231 10.5860/choice.44-5701 10.1016/j.optlastec.2022.108898 10.1364/OPTICA.470430 10.1088/1367-2630/aa638f 10.1112/plms/s1-31.1.100 10.1103/PhysRevLett.32.1196 10.1088/1367-2630/ab1bb2 10.6028/jres.077A.046 10.1103/PhysRevResearch.5.L022005 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Steininger E et al. |
Copyright_xml | – notice: Copyright: © 2025 Steininger E et al. |
DBID | AAYXX CITATION NPM DOA |
DOI | 10.12688/openreseurope.19414.2 |
DatabaseName | CrossRef PubMed DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2732-5121 |
ExternalDocumentID | oai_doaj_org_article_a95487f9cba64fb5ac572ef606b1ac1a 40584914 10_12688_openreseurope_19414_2 |
Genre | Journal Article |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 PGMZT RPM NPM |
ID | FETCH-LOGICAL-c1842-f173bab35c4bc0d3d1f77055e5baa841ab3f5f4bde6c9fda4c679a46b0a6ccab3 |
IEDL.DBID | DOA |
ISSN | 2732-5121 |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Thu Aug 28 04:48:35 EDT 2025 Wed Aug 20 23:43:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GRAVITES waveguides multiple-scales analysis optical fibers linear elasticity Maxwell single mode fibers photoelasticity |
Language | English |
License | Copyright: © 2025 Steininger E et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1842-f173bab35c4bc0d3d1f77055e5baa841ab3f5f4bde6c9fda4c679a46b0a6ccab3 |
Notes | new_version |
ORCID | 0000-0001-8362-7340 0000-0003-0092-3043 |
OpenAccessLink | https://doaj.org/article/a95487f9cba64fb5ac572ef606b1ac1a |
PMID | 40584914 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a95487f9cba64fb5ac572ef606b1ac1a pubmed_primary_40584914 crossref_primary_10_12688_openreseurope_19414_2 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Belgium |
PublicationPlace_xml | – name: Belgium |
PublicationTitle | Open research Europe |
PublicationTitleAlternate | Open Res Eur |
PublicationYear | 2025 |
Publisher | F1000 Research Ltd |
Publisher_xml | – name: F1000 Research Ltd |
References | E Polini (ref-5) 2024 R Waxler (ref-9) 1973; 77A J Liu (ref-18) 2005 W Gordon (ref-17) 1923; 377 C Bender (ref-20) 1978 C Hilweg (ref-4) 2017; 19 C Chen (ref-27) 2006 W Primak (ref-29) 1959; 30 M Fink (ref-2) 2019; 21 Y Song (ref-16) 2020; 2 W Wang (ref-8) 2015; 9620 T Mieling (ref-12) 2023; 5 J Senior (ref-14) 2009 D Biegelsen (ref-26) 1974; 32 L Landau (ref-21) 1986 X Li (ref-15) 2023; 158 T Mieling (ref-10) 2023 H Barzegar (ref-7) 2024; 4 M Sadd (ref-22) 2009 J Michell (ref-24) 1899; s1-31 E Post (ref-13) 1962 C Hilweg (ref-6) 2022; 9 (ref-25) 2018 T Mieling (ref-19) 2022; 106 M Cromb (ref-1) 2023; 5 T Mieling (ref-11) 2025; 7 T Narasimhamurty (ref-28) 1981 R Silvestri (ref-3) 2024; 10 W Zhenye (ref-23) 1990; 27 |
References_xml | – year: 2018 ident: ref-25 article-title: Silica glass (sio2) – volume: 9620 year: 2015 ident: ref-8 article-title: Measurements of thermo-optic coefficient of standard single mode fiber in large temperature range. doi: 10.1117/12.2193091 – year: 2024 ident: ref-5 article-title: Large-scale fiber interferometry to measure the gravitationally induced phase shift on entangled photons. doi: 10.1364/QUANTUM.2024.QTh4C.3 – volume: 377 start-page: 421-456 year: 1923 ident: ref-17 article-title: Zur Lichtfortpflanzung nach der Relativitätstheorie. publication-title: Ann Phys. doi: 10.1002/andp.19233772202 – year: 2005 ident: ref-18 article-title: Photonic devices – volume: 106 year: 2022 ident: ref-19 article-title: Gupta-Bleuler quantization of optical fibers in weak gravitational fields. publication-title: Phys Rev A. doi: 10.1103/PhysRevA.106.063511 – year: 1981 ident: ref-28 article-title: Photoelastic and electro-optic properties of crystals doi: 10.1007/978-1-4757-0025-1 – year: 1986 ident: ref-21 article-title: Theory of elasticity, volume 7 of course of theoretical physics – volume: 5 year: 2023 ident: ref-12 article-title: Polarization transport in optical fibers beyond Rytov’s law. publication-title: Phys Rev Res. doi: 10.1103/PhysRevResearch.5.023140 – volume: 27 start-page: 43-49 year: 1990 ident: ref-23 article-title: The generalized plane strain problem and its application in three-dimensional stress measurement. publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. doi: 10.1016/0148-9062(90)90007-O – year: 1962 ident: ref-13 article-title: Formal structure of electromagnetics – volume: 10 year: 2024 ident: ref-3 article-title: Experimental observation of Earth’s rotation with quantum entanglement. publication-title: Sci Adv. doi: 10.1126/sciadv.ado0215 – volume: 4 start-page: 98 year: 2024 ident: ref-7 article-title: On elastic deformations of cylindrical bodies under the influence of the gravitational field [version 1; peer review: 1 approved, 2 approved with reservations]. publication-title: Open Res Eur. doi: 10.12688/openreseurope.17329.1 – year: 1978 ident: ref-20 article-title: Advanced mathematical methods for scientists and engineers – year: 2009 ident: ref-22 article-title: Elasticity: theory, applications and numerics doi: 10.1016/B978-0-12-374446-3.X0001-6 – year: 2009 ident: ref-14 article-title: Optical fiber communications – volume: 2 year: 2020 ident: ref-16 article-title: Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. publication-title: Adv Photonics. doi: 10.1117/1.AP.2.2.024001 – year: 2023 ident: ref-10 article-title: Gupta-Bleuler quantization of the electromagnetic field in curved space-times with applications to gravitational photon interferometry doi: 10.25365/thesis.75758 – volume: 7 year: 2025 ident: ref-11 article-title: Fiber optics in curved space-times. publication-title: Phys Rev Res. doi: 10.1103/PhysRevResearch.7.013162 – volume: 30 start-page: 779-788 year: 1959 ident: ref-29 article-title: Photoelastic constants of vitreous silica and its elastic coefficient of refractive index. publication-title: J Appl Phys. doi: 10.1063/1.1735231 – year: 2006 ident: ref-27 article-title: Foundations for guided-wave optics. doi: 10.5860/choice.44-5701 – volume: 158 year: 2023 ident: ref-15 article-title: Recent progress on mid-infrared pulsed fiber lasers and the applications. publication-title: Opt Laser Technol. doi: 10.1016/j.optlastec.2022.108898 – volume: 9 start-page: 1238-1252 year: 2022 ident: ref-6 article-title: Limits and prospects for long-baseline optical fiber interferometry. publication-title: Optica. doi: 10.1364/OPTICA.470430 – volume: 19 year: 2017 ident: ref-4 article-title: Gravitationally induced phase shift on a single photon. publication-title: New J Phys. doi: 10.1088/1367-2630/aa638f – volume: s1-31 start-page: 100-124 year: 1899 ident: ref-24 article-title: On the direct determination of stress in an elastic solid, with application to the theory of plates. publication-title: P Lond Math Soc. doi: 10.1112/plms/s1-31.1.100 – volume: 32 start-page: 1196-1199 year: 1974 ident: ref-26 article-title: Photoelastic tensor of silicon and the volume dependence of the average gap. publication-title: Phys Rev Lett. doi: 10.1103/PhysRevLett.32.1196 – volume: 21 year: 2019 ident: ref-2 article-title: Entanglement-enhanced optical gyroscope. publication-title: New J Phys. doi: 10.1088/1367-2630/ab1bb2 – volume: 77A start-page: 755-763 year: 1973 ident: ref-9 article-title: The effect of temperature and pressure on the refractive index of some oxide glasses. publication-title: J Res Natl Bur Stand A Phys Chem. doi: 10.6028/jres.077A.046 – volume: 5 year: 2023 ident: ref-1 article-title: Mechanical rotation modifies the manifestation of photon entanglement. publication-title: Phys Rev Res. doi: 10.1103/PhysRevResearch.5.L022005 |
SSID | ssj0002513619 |
Score | 2.278937 |
Snippet | Background Light propagation in optical fibers is known to be sensitive to ambient conditions such as changes in temperature and pressure. Building on a model... Light propagation in optical fibers is known to be sensitive to ambient conditions such as changes in temperature and pressure. Building on a model for elastic... |
SourceID | doaj pubmed crossref |
SourceType | Open Website Index Database |
StartPage | 99 |
SubjectTerms | eng GRAVITES linear elasticity Maxwell optical fibers photoelasticity waveguides |
Title | Elastically induced phase-shift and birefringence in optical fibers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40584914 https://doaj.org/article/a95487f9cba64fb5ac572ef606b1ac1a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB2kKzei-KqPchcuTdtMJi9dqbQUQVcWCiJhnlSQGNpa8Af8bu-dxNK6ceMuJJMhuXeYe85h5gxjF84oHBrKBlGWiUAgUQ4UwvqAGyOjfiZC7s2qHx6T0VjcT-LJ2lFftCastgeuA9eT5EiWulwrmQinYqnjlFuHuFuFUoceGmHNWyNTNAdj1Y6QGjRbgnmCNI9Oo6IdPV7k7iJ3D0WXb1Qjb9r_C176MjPcZTsNPoSb-rv22JYt99nXADGuF53fPgFJNKbDQDXFAhTMp69uAbI0oHDycl6lwzxiK3iv_CvgaFHIHJ6XtTQG_Boqa2dQ71q5ghC8sfjSmkvgq2sghRboVxrVdv5ywMbDwdPdKGgOUAg0EjceuDCNlFRRrIXSfROZ0KXknmNjJSXmAR-52AllbKJzZ6TQSZpLkai-TDCzKjpkrfK9tMcMCGjlHCOvnRNRapQQWqYxrU6NyXCnzXo_gSyq2iejIH5BoS82Ql_40Be8zW4p3qvW5HPtb2D2iyb7xV_Zb7OjOlurbhCAZiIPxcl_dH_Ktjmd9-sllzPWWsw-7DmCkIXq-PHW8erQN99Q4IU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastically+induced+phase-shift+and+birefringence+in+optical+fibers&rft.jtitle=Open+research+Europe&rft.au=Steininger%2C+Elisabeth&rft.au=Mieling%2C+Thomas&rft.au=Chru%C5%9Bciel%2C+Piotr+T&rft.date=2025&rft.eissn=2732-5121&rft.volume=5&rft.spage=99&rft_id=info:doi/10.12688%2Fopenreseurope.19414.2&rft_id=info%3Apmid%2F40584914&rft.externalDocID=40584914 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2732-5121&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2732-5121&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2732-5121&client=summon |