Buckling analysis of hybrid fiber‐reinforced composite sandwich panels with varying numbers of polyurethane cores

Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and shipbuilding industries. This study aims to investigate the buckling performance of composite structures with varying numbers of polyurethane cores. To...

Full description

Saved in:
Bibliographic Details
Published inPolymer composites Vol. 45; no. 16; pp. 15062 - 15085
Main Authors Wang, Shaoqing, Qiao, Yanmei, Song, Yaqin, Zhai, Zhilin, Yang, Guangbao, Guo, Anfu, Qu, Peng, Wang, Guangxue, Wang, Weigang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.11.2024
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and shipbuilding industries. This study aims to investigate the buckling performance of composite structures with varying numbers of polyurethane cores. To achieve this, the buckling loads of these structures are determined using an energy method, microscopic mechanics method, and the first‐order zigzag kinematic model. The accuracy of the equation employed in the algorithm is validated using the finite element method. Additionally, we conduct a parametric analysis to examine the influence of various parameters on the buckling performance of the structures. The results indicate that an effective strategy for improving the critical buckling loads of the hybrid fiber‐reinforced composite sandwich plate involves strategically placing fibers and matrix materials with higher elastic modulus on the skin layer. Moreover, the critical buckling load is notably influenced by the number and positioning of polyurethane layers, as well as the fiber content. Highlights An analytical model is established to predict the buckling behavior. The correctness of the model was verified using the finite element method. Effects of structural parameters on buckling performance were investigated. Effects of structural parameters on buckling performance of hybrid fiber‐reinforced composite sandwich panels.
AbstractList Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and shipbuilding industries. This study aims to investigate the buckling performance of composite structures with varying numbers of polyurethane cores. To achieve this, the buckling loads of these structures are determined using an energy method, microscopic mechanics method, and the first‐order zigzag kinematic model. The accuracy of the equation employed in the algorithm is validated using the finite element method. Additionally, we conduct a parametric analysis to examine the influence of various parameters on the buckling performance of the structures. The results indicate that an effective strategy for improving the critical buckling loads of the hybrid fiber‐reinforced composite sandwich plate involves strategically placing fibers and matrix materials with higher elastic modulus on the skin layer. Moreover, the critical buckling load is notably influenced by the number and positioning of polyurethane layers, as well as the fiber content. Highlights An analytical model is established to predict the buckling behavior. The correctness of the model was verified using the finite element method. Effects of structural parameters on buckling performance were investigated. Effects of structural parameters on buckling performance of hybrid fiber‐reinforced composite sandwich panels.
Abstract Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and shipbuilding industries. This study aims to investigate the buckling performance of composite structures with varying numbers of polyurethane cores. To achieve this, the buckling loads of these structures are determined using an energy method, microscopic mechanics method, and the first‐order zigzag kinematic model. The accuracy of the equation employed in the algorithm is validated using the finite element method. Additionally, we conduct a parametric analysis to examine the influence of various parameters on the buckling performance of the structures. The results indicate that an effective strategy for improving the critical buckling loads of the hybrid fiber‐reinforced composite sandwich plate involves strategically placing fibers and matrix materials with higher elastic modulus on the skin layer. Moreover, the critical buckling load is notably influenced by the number and positioning of polyurethane layers, as well as the fiber content. Highlights An analytical model is established to predict the buckling behavior. The correctness of the model was verified using the finite element method. Effects of structural parameters on buckling performance were investigated.
Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and shipbuilding industries. This study aims to investigate the buckling performance of composite structures with varying numbers of polyurethane cores. To achieve this, the buckling loads of these structures are determined using an energy method, microscopic mechanics method, and the first‐order zigzag kinematic model. The accuracy of the equation employed in the algorithm is validated using the finite element method. Additionally, we conduct a parametric analysis to examine the influence of various parameters on the buckling performance of the structures. The results indicate that an effective strategy for improving the critical buckling loads of the hybrid fiber‐reinforced composite sandwich plate involves strategically placing fibers and matrix materials with higher elastic modulus on the skin layer. Moreover, the critical buckling load is notably influenced by the number and positioning of polyurethane layers, as well as the fiber content.HighlightsAn analytical model is established to predict the buckling behavior.The correctness of the model was verified using the finite element method.Effects of structural parameters on buckling performance were investigated.
Author Qu, Peng
Qiao, Yanmei
Wang, Shaoqing
Wang, Weigang
Song, Yaqin
Zhai, Zhilin
Yang, Guangbao
Guo, Anfu
Wang, Guangxue
Author_xml – sequence: 1
  givenname: Shaoqing
  orcidid: 0000-0002-8547-5579
  surname: Wang
  fullname: Wang, Shaoqing
  email: wangshaoqing@lcu.edu.cn
  organization: Wendeng Maxpower Tool Group Co., LTD
– sequence: 2
  givenname: Yanmei
  surname: Qiao
  fullname: Qiao, Yanmei
  organization: Technician College of Liaocheng City
– sequence: 3
  givenname: Yaqin
  surname: Song
  fullname: Song, Yaqin
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Zhilin
  surname: Zhai
  fullname: Zhai, Zhilin
  organization: Liaocheng University
– sequence: 5
  givenname: Guangbao
  surname: Yang
  fullname: Yang, Guangbao
  organization: Liaocheng University
– sequence: 6
  givenname: Anfu
  orcidid: 0000-0001-5629-2098
  surname: Guo
  fullname: Guo, Anfu
  organization: Liaocheng University
– sequence: 7
  givenname: Peng
  surname: Qu
  fullname: Qu, Peng
  organization: Liaocheng University
– sequence: 8
  givenname: Guangxue
  surname: Wang
  fullname: Wang, Guangxue
  organization: Shandong Liaocheng Zhongtai Watch Industry Co., LTD
– sequence: 9
  givenname: Weigang
  surname: Wang
  fullname: Wang, Weigang
  organization: Wendeng Maxpower Tool Group Co., LTD
BookMark eNp10LtOwzAYBWALFYm2IPEIllhYUnzJzSNU3KRKMMBsOY5NXFI72AlVNh6BZ-RJcFtWpn_5zpHOPwMT66wC4ByjBUaIXHVyQcqS4CMwxVlaJijL2QRMESlIUlJWnIBZCOsocZ7TKQg3g3xvjX2Dwop2DCZAp2EzVt7UUJtK-Z-vb6-M1c5LVUPpNp0LplcwCFtvjWxgJ6xqA9yavoGfwo-7MjtsYnTf1bl2HLzqm8hi3KtwCo61aIM6-7tz8Hp3-7J8SFZP94_L61UicZnipCCVzDASMhV1gTDWVOqqxoRUNclrQiliuWKlQgzRNE0VZgSjLKM6zyuVCUHn4OLQ23n3MajQ87UbfJwZOI01rCgxYlFdHpT0LgSvNO-82cQdHCO-eynvJN-_NNLkQLemVeO_jj8vD_4XwhR7Qg
Cites_doi 10.1016/j.compositesb.2016.05.025
10.1016/j.tws.2022.109084
10.1016/j.compositesb.2016.11.035
10.1016/j.compositesb.2018.02.021
10.1016/j.finel.2014.01.004
10.1088/2053-1591/ac97df
10.1016/j.conbuildmat.2023.133929
10.1016/j.euromechsol.2011.07.003
10.1002/pc.25543
10.1088/2053-1591/aca885
10.1016/j.compositesb.2018.01.027
10.1016/j.tws.2008.03.002
10.1016/j.compscitech.2018.01.026
10.1016/j.compstruct.2019.111573
10.1016/j.compstruct.2016.11.043
10.1016/j.compositesb.2016.06.007
10.1016/j.aej.2020.04.012
10.1016/j.compstruct.2020.112434
10.1002/pc.27138
10.1038/s41598-022-19930-x
10.1007/s40430-021-03139-6
10.1016/S0020-7683(03)00283-X
10.1177/00219983211037388
10.1016/j.aej.2020.11.042
10.1016/j.aej.2022.07.038
10.2514/1.J052399
10.1007/s12206-014-0512-9
10.1016/j.compstruct.2013.05.014
10.1007/s00466-017-1384-5
10.1016/j.compstruct.2022.116506
10.1080/15376494.2018.1444228
10.1016/j.ijmecsci.2015.07.023
10.1016/j.compositesb.2016.07.012
10.1016/j.tws.2017.04.012
10.1016/j.aej.2017.06.001
10.1007/s13726-018-0622-9
10.12989/sem.2000.10.4.337
10.1177/0954406218756451
10.1016/j.jobe.2019.101002
ContentType Journal Article
Copyright 2024 Society of Plastics Engineers.
2024 Society of Plastics Engineers
Copyright_xml – notice: 2024 Society of Plastics Engineers.
– notice: 2024 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.28821
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 15085
ExternalDocumentID 10_1002_pc_28821
PC28821
Genre researchArticle
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2023ME154
– fundername: Liaocheng University
  funderid: 318052212; K23LD61
GroupedDBID .3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABHFT
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LMP
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
Q2X
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c1841-72bc510ac4ad7011f3cfbd122bd26d233096e98e0903444e19210553f66be5aa3
IEDL.DBID DR2
ISSN 0272-8397
IngestDate Fri Nov 01 20:43:22 EDT 2024
Wed Nov 06 13:18:50 EST 2024
Fri Nov 01 09:33:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1841-72bc510ac4ad7011f3cfbd122bd26d233096e98e0903444e19210553f66be5aa3
ORCID 0000-0002-8547-5579
0000-0001-5629-2098
PQID 3122978109
PQPubID 37365
PageCount 24
ParticipantIDs proquest_journals_3122978109
crossref_primary_10_1002_pc_28821
wiley_primary_10_1002_pc_28821_PC28821
PublicationCentury 2000
PublicationDate 10 November 2024
PublicationDateYYYYMMDD 2024-11-10
PublicationDate_xml – month: 11
  year: 2024
  text: 10 November 2024
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2018; 142
2018; 144
2021; 43
2022; 174
2020; 41
2017; 25
2013; 105
2015; 101
2016; 98
2016; 102
2020; 247
2020; 59
2016; 100
2014; 28
2017; 110
2023; 305
2023; 409
2014; 83
2018; 27
2012; 31
2017; 117
2023; 62
2023; 44
2021; 55
2017; 59
2019; 41
2000; 10
2013; 51
2018; 159
2022; 9
2019; 26
2022; 12
2023; 237
2020; 27
2017; 161
2008; 46
2020; 233
2021; 60
2003; 40
2019; 233
2018; 57
e_1_2_9_30_1
e_1_2_9_31_1
Tounsi A (e_1_2_9_11_1) 2017; 25
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
Azadi R (e_1_2_9_4_1) 2023; 237
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
Tian A (e_1_2_9_43_1) 2019; 41
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 100
  start-page: 125
  year: 2016
  end-page: 135
  article-title: Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites
  publication-title: Compos Part B Eng
– volume: 44
  start-page: 873
  issue: 2
  year: 2023
  end-page: 885
  article-title: Free vibration of functionally graded carbon nanotube‐reinforced composite damping structure based on the higher‐order shear deformation theory
  publication-title: Polym Compos
– volume: 247
  year: 2020
  article-title: Free vibration of co‐cured composite structures with different numbers of viscoelastic damping membranes
  publication-title: Compos Struct
– volume: 142
  start-page: 221
  year: 2018
  end-page: 240
  article-title: Review of current trends in research and applications of sandwich structures
  publication-title: Compos Part B Eng
– volume: 62
  start-page: 369
  year: 2023
  end-page: 390
  article-title: Static bending, free vibration, and buckling analyses of two‐layer FGM plates with shear connectors resting on elastic foundations
  publication-title: Alex Eng J
– volume: 305
  year: 2023
  article-title: An experimental investigation of the impact response and post‐impact shear buckling behaviour of hybrid composite laminates
  publication-title: Compos Struct
– volume: 144
  start-page: 29
  year: 2018
  end-page: 36
  article-title: Experimental assessment of the shield‐to‐salt‐fog properties of basalt and glass fiber reinforced composites in cork core sandwich panels applications
  publication-title: Compos Part B Eng
– volume: 9
  issue: 12
  year: 2022
  article-title: An energy method for buckling behavior analysis of functionally graded carbon nanotube‐reinforced composite sandwich structures
  publication-title: Mater Res Express
– volume: 233
  year: 2020
  article-title: Bending properties of embedded co‐cured damping composite structure simply supported on four edges
  publication-title: Compos Struct
– volume: 233
  start-page: 287
  issue: 1
  year: 2019
  end-page: 301
  article-title: Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second‐order shear deformation theory
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
– volume: 60
  start-page: 1945
  issue: 1
  year: 2021
  end-page: 1954
  article-title: Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow
  publication-title: Alex Eng J
– volume: 41
  start-page: 2355
  issue: 6
  year: 2020
  end-page: 2400
  article-title: A review on recent advances in sandwich structures based on polyurethane foam cores
  publication-title: Polym Compos
– volume: 10
  start-page: 337
  issue: 4
  year: 2000
  end-page: 357
  article-title: Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates
  publication-title: Struct Eng Mech
– volume: 55
  start-page: 4375
  issue: 29
  year: 2021
  end-page: 4385
  article-title: Experimental and numerical investigation of low velocity impact on hybrid short‐fiber reinforced foam core sandwich panel
  publication-title: J Compos Mater
– volume: 28
  start-page: 2769
  year: 2014
  end-page: 2777
  article-title: Buckling analysis of sandwich plate using layerwise theory
  publication-title: J Mech Sci Technol
– volume: 101
  start-page: 145
  year: 2015
  end-page: 154
  article-title: Assessment of inverse trigonometric zigzag theory for stability analysis of laminated composite and sandwich plates
  publication-title: Int J Mech Sci
– volume: 12
  start-page: 15796
  issue: 1
  year: 2022
  article-title: Bending analysis of sandwich panel composite with a re‐entrant lattice core using zig‐zag theory
  publication-title: Sci Rep
– volume: 25
  start-page: 157
  issue: 2
  year: 2017
  end-page: 175
  article-title: A new and simple HSDT for thermal stability analysis of FG sandwich plates
  publication-title: Steel Compos Struct
– volume: 83
  start-page: 49
  year: 2014
  end-page: 57
  article-title: Finite element analysis for buckling of two‐layer composite beams using Reddy's higher order beam theory
  publication-title: Finite Elem Anal Des
– volume: 174
  year: 2022
  article-title: Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first‐order shear deformation theory with variable nonlocal parameters
  publication-title: Thin‐Walled Struct
– volume: 9
  issue: 11
  year: 2022
  article-title: Analysis on the buckling performance of embedded co‐cured composite sandwich plates under uniaxial compression condition
  publication-title: Mater Res Express
– volume: 98
  start-page: 9
  year: 2016
  end-page: 22
  article-title: Hybridization effects on quasi‐static penetration resistance in fiber reinforced hybrid composite laminates
  publication-title: Compos Part B Eng
– volume: 59
  start-page: 1661
  issue: 3
  year: 2020
  end-page: 1675
  article-title: Static stability of higher order functionally graded beam under variable axial load
  publication-title: Alex Eng J
– volume: 117
  start-page: 303
  year: 2017
  end-page: 313
  article-title: Buckling analysis of stiffened plate structures by an improved meshfree flat shell formulation
  publication-title: Thin‐Walled Struct
– volume: 26
  start-page: 1622
  issue: 19
  year: 2019
  end-page: 1635
  article-title: Stability of laminated composite and sandwich beams by a Reddy‐type higher‐order zig‐zag theory
  publication-title: Mech Adv Mater Struct
– volume: 237
  start-page: 543
  issue: 3
  year: 2023
  end-page: 553
  article-title: Experimental investigation of the compressive strength of hybrid composite sandwich beams with double‐corrugated sinusoidal core reinforced by graphene and polyurethane foam
  publication-title: Proc Inst Mech Eng, Part L
– volume: 57
  start-page: 1361
  issue: 3
  year: 2018
  end-page: 1368
  article-title: Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method
  publication-title: Alex Eng J
– volume: 161
  start-page: 85
  year: 2017
  end-page: 92
  article-title: The static and dynamic response of CFRP tube reinforced polyurethane
  publication-title: Compos Struct
– volume: 110
  start-page: 459
  year: 2017
  end-page: 465
  article-title: Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers
  publication-title: Compos Part B Eng
– volume: 59
  start-page: 919
  year: 2017
  end-page: 932
  article-title: An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts
  publication-title: Comput Mech
– volume: 27
  start-page: 445
  issue: 7
  year: 2018
  end-page: 459
  article-title: Impact performance of hybrid laminated composites with statistical analysis
  publication-title: Iran Polym J
– volume: 159
  start-page: 87
  year: 2018
  end-page: 102
  article-title: Investigation on manufacturing and mechanical behavior of all‐composite sandwich structure with Y‐shaped cores
  publication-title: Compos Sci Technol
– volume: 51
  start-page: 1861
  issue: 8
  year: 2013
  end-page: 1871
  article-title: New nonpolynomial shear‐deformation theories for structural behavior of laminated‐composite and sandwich plates
  publication-title: AIAA J
– volume: 27
  year: 2020
  article-title: Buckling and postbuckling response of hybrid composite plates under uniaxial compressive loading
  publication-title: J Build Eng
– volume: 31
  start-page: 54
  issue: 1
  year: 2012
  end-page: 66
  article-title: Biaxial buckling analysis of soft‐core composite sandwich plates using improved high‐order theory
  publication-title: Eur J Mech
– volume: 46
  start-page: 1183
  issue: 11
  year: 2008
  end-page: 1191
  article-title: Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory
  publication-title: Thin‐Walled Struct
– volume: 41
  start-page: 20
  issue: 21
  year: 2019
  end-page: 26
  article-title: Biaxial buckling analysis of SPS sandwich plate based on a simplified zig‐zag model
  publication-title: Ship Sci Technol
– volume: 102
  start-page: 100
  year: 2016
  end-page: 111
  article-title: Numerical investigation of the hybridisation mechanism in fibre reinforced hybrid composites subjected to flexural load
  publication-title: Compos Part B Eng
– volume: 40
  start-page: 4501
  issue: 17
  year: 2003
  end-page: 4517
  article-title: Stability of sandwich plates by mixed, higher‐order analytical formulation
  publication-title: Int J Solids Struct
– volume: 43
  start-page: 1
  year: 2021
  end-page: 16
  article-title: High‐velocity impact behavior of hybrid fiber‐reinforced epoxy composites
  publication-title: J Braz Soc Mech Sci Eng
– volume: 105
  start-page: 240
  year: 2013
  end-page: 255
  article-title: Statistical finite element analysis of the buckling behavior of honeycomb structures
  publication-title: Compos Struct
– volume: 409
  year: 2023
  article-title: Fabrication of a sandwich panel by integrating coconut husk with polyurethane foam and optimization using R2
  publication-title: Constr Build Mater
– ident: e_1_2_9_33_1
  doi: 10.1016/j.compositesb.2016.05.025
– ident: e_1_2_9_12_1
  doi: 10.1016/j.tws.2022.109084
– ident: e_1_2_9_38_1
  doi: 10.1016/j.compositesb.2016.11.035
– ident: e_1_2_9_7_1
  doi: 10.1016/j.compositesb.2018.02.021
– ident: e_1_2_9_19_1
  doi: 10.1016/j.finel.2014.01.004
– ident: e_1_2_9_23_1
  doi: 10.1088/2053-1591/ac97df
– ident: e_1_2_9_5_1
  doi: 10.1016/j.conbuildmat.2023.133929
– ident: e_1_2_9_10_1
  doi: 10.1016/j.euromechsol.2011.07.003
– volume: 41
  start-page: 20
  issue: 21
  year: 2019
  ident: e_1_2_9_43_1
  article-title: Biaxial buckling analysis of SPS sandwich plate based on a simplified zig‐zag model
  publication-title: Ship Sci Technol
  contributor:
    fullname: Tian A
– ident: e_1_2_9_8_1
  doi: 10.1002/pc.25543
– ident: e_1_2_9_22_1
  doi: 10.1088/2053-1591/aca885
– ident: e_1_2_9_3_1
  doi: 10.1016/j.compositesb.2018.01.027
– ident: e_1_2_9_9_1
  doi: 10.1016/j.tws.2008.03.002
– ident: e_1_2_9_6_1
  doi: 10.1016/j.compscitech.2018.01.026
– ident: e_1_2_9_40_1
  doi: 10.1016/j.compstruct.2019.111573
– ident: e_1_2_9_2_1
  doi: 10.1016/j.compstruct.2016.11.043
– volume: 25
  start-page: 157
  issue: 2
  year: 2017
  ident: e_1_2_9_11_1
  article-title: A new and simple HSDT for thermal stability analysis of FG sandwich plates
  publication-title: Steel Compos Struct
  contributor:
    fullname: Tounsi A
– ident: e_1_2_9_32_1
  doi: 10.1016/j.compositesb.2016.06.007
– ident: e_1_2_9_20_1
  doi: 10.1016/j.aej.2020.04.012
– ident: e_1_2_9_42_1
  doi: 10.1016/j.compstruct.2020.112434
– ident: e_1_2_9_41_1
  doi: 10.1002/pc.27138
– ident: e_1_2_9_31_1
  doi: 10.1038/s41598-022-19930-x
– ident: e_1_2_9_35_1
  doi: 10.1007/s40430-021-03139-6
– ident: e_1_2_9_25_1
  doi: 10.1016/S0020-7683(03)00283-X
– ident: e_1_2_9_30_1
  doi: 10.1177/00219983211037388
– ident: e_1_2_9_14_1
  doi: 10.1016/j.aej.2020.11.042
– ident: e_1_2_9_16_1
  doi: 10.1016/j.aej.2022.07.038
– ident: e_1_2_9_26_1
  doi: 10.2514/1.J052399
– ident: e_1_2_9_27_1
  doi: 10.1007/s12206-014-0512-9
– ident: e_1_2_9_15_1
  doi: 10.1016/j.compstruct.2013.05.014
– ident: e_1_2_9_17_1
  doi: 10.1007/s00466-017-1384-5
– ident: e_1_2_9_39_1
  doi: 10.1016/j.compstruct.2022.116506
– ident: e_1_2_9_29_1
  doi: 10.1080/15376494.2018.1444228
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ijmecsci.2015.07.023
– ident: e_1_2_9_37_1
  doi: 10.1016/j.compositesb.2016.07.012
– ident: e_1_2_9_18_1
  doi: 10.1016/j.tws.2017.04.012
– ident: e_1_2_9_13_1
  doi: 10.1016/j.aej.2017.06.001
– ident: e_1_2_9_34_1
  doi: 10.1007/s13726-018-0622-9
– ident: e_1_2_9_24_1
  doi: 10.12989/sem.2000.10.4.337
– ident: e_1_2_9_21_1
  doi: 10.1177/0954406218756451
– volume: 237
  start-page: 543
  issue: 3
  year: 2023
  ident: e_1_2_9_4_1
  article-title: Experimental investigation of the compressive strength of hybrid composite sandwich beams with double‐corrugated sinusoidal core reinforced by graphene and polyurethane foam
  publication-title: Proc Inst Mech Eng, Part L
  contributor:
    fullname: Azadi R
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jobe.2019.101002
SSID ssj0021663
Score 2.44065
Snippet Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and...
Abstract Hybrid fiber‐reinforced composite sandwich panels with multi‐layer polyurethane cores are widely applied in aerospace, automotive, construction, and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 15062
SubjectTerms Algorithms
Composite structures
critical buckling loads
Elastic analysis
Elastic buckling
Energy methods
Finite element analysis
finite element analysis (FEA)
Finite element method
hybrid fiber‐reinforced composites
Kinematics
Mathematical models
Matrix materials
Modulus of elasticity
multi‐layer polyurethane cores
Parameters
Parametric analysis
Polyurethane resins
Sandwich panels
structure–property relations
Title Buckling analysis of hybrid fiber‐reinforced composite sandwich panels with varying numbers of polyurethane cores
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.28821
https://www.proquest.com/docview/3122978109
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA3iShe-xfFFBHHXmTZJW7sUH4gLEVEYcFHyRFFmynRGGVd-gt_ol3hv2jqjIIirltKEpDf32ZMTQvadyMDqaRPo2GSBMFwEikvMeRIOC0pxeIxoi8vk_FZcdONujarEvTAVP8RXwQ01w9trVHCpys6ENLTQbQbhIWY-EU8RzXVy_cUcxaKkOkSNpaDw4HMb3tmQdZqG3z3RJLycDlK9lzlbJHfN-CpwyWN7NFRt_fqDuvF_E1giC3XwSY-q1bJMZmxvhcxPURKuktL_7IVbKmu6Etp39H6MG7uoQ3jJx9v7wHq-VW0NRUg64r4sLWXPvDzoewr2BRwuxQovfYbhYWfVwSO-r6L_NB4NLJbsLUUSzXKN3J6d3hyfB_XBDIGGhDAKUqY06LLUQpoUDITj2ikTMaYMSwzjHPIimx1arAEJISxyroVxzF2SKBtLydfJbK_fsxuEslC42IWZykIjXCak5VwxbkMdC8tT0SJ7jZDyouLfyCumZZYXOvcfsEW2G-nltQaWOYfhIJ9XmLXIgRfDr-3zq2N_3fzri1tkjkFsE3g04DaZHQ5Gdgdik6Ha9avwEykP4Vg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-rBt1ituoJ4S013N6nBk1SlPhFR8CCE7AtFaUsfip78Cf5Gf4kzm8YXCOIpIWSX3cx7MvsNwLqTCWo9bQIdmSSQRshAiYxinlggQymBj6na4jRuXMrDq-hqCLaLszA5PsRHwo0kw-trEnBKSG9-ooa2dYWjf4ihzwhKu6C-DbvnH9hRvBrnbdR4DUUerW6BPBvyzWLkd1v06WB-dVO9ndmfhOtihXl5yV2l31MV_fwDvPGfW5iCiYH_yXZyhpmGIducgfEvqISz0PX_e_GWZQPEEtZy7OaJznYxRxUmby-vHeshV7U1jKrSqfTLsm7WNI-3-oahikGbyyjJyx5wfTRZ3nvEz9Vu3T_1O5ay9pYRjmZ3Di739y7qjWDQmyHQGBNWgxpXGsU50zIzNdQRTminTJVzZXhsuBAYGtlky1IaSEppCXYtjCLh4ljZKMvEPAw3W027AIyH0kUuTFQSGukSmVkhFBc21JG0oiZLsFZQKW3nEBxpDrbM07ZO_QcsQbkgXzoQwm4qcDkE6RUmJdjwdPh1fHpW99fFv764CqONi5Pj9Pjg9GgJxji6OoEvDizDcK_Tt8voqvTUimfJdzNe5XA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsNAEF2kguiDd7FeVxDf0qa7m9Q8ilrqBRGxUPAhZG9UlDb0otQnP8Fv9Euc2SRaBUF8SgjZsMnuzJyZnD1LyL4VEXg9pT0V6MgTmgtP8gRznpDDhJIcLiPb4ipstsR5O2jnrEpcC5PpQ3wW3NAynL9GA0-1rX6JhqaqwgAeQuYzLUIAvgiIbj6lo1gtzHZRY3WweAi6hfCsz6pFy--h6AtfTqJUF2YaC-Su6GDGLnmojIayol5-aDf-7w0WyXyOPulRNl2WyJTpLpO5CU3CFTJwf3vhlCa5XgntWdoZ48ouapFf8v761jdOcFUZTZGTjsQvQwdJVz_fqw4FBwMRl2KJlz5B9_Bh2c4j7llp73E86hus2RuKKpqDVdJqnN4eN718ZwZPQUZY8-pMKjDmRIlE18FDWK6s1DXGpGahZpxDYmSiQ4NFICGEQdE1Pwi4DUNpgiTha6TU7XXNOqHMFzawfiQjXwsbicRwLhk3vgqE4XVRJnvFIMVpJsARZ1LLLE5V7D5gmWwVoxfnJjiIOXQHBb38qEwO3DD82j6-PnbHjb_euEtmrk8a8eXZ1cUmmWWAczzHDNwipWF_ZLYBpwzljpuQH6QK5B8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+analysis+of+hybrid+fiber%E2%80%90reinforced+composite+sandwich+panels+with+varying+numbers+of+polyurethane+cores&rft.jtitle=Polymer+composites&rft.au=Wang%2C+Shaoqing&rft.au=Qiao%2C+Yanmei&rft.au=Song%2C+Yaqin&rft.au=Zhai%2C+Zhilin&rft.date=2024-11-10&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=45&rft.issue=16&rft.spage=15062&rft.epage=15085&rft_id=info:doi/10.1002%2Fpc.28821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pc_28821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon