Exact solutions of the Kuramoto model with asymmetric higher order interactions of arbitrary order

Higher order interactions can lead to new equilibrium states and bifurcations in systems of coupled oscillators described by the Kuramoto model. However, even in the simplest case of 3-body interactions there are more than one possible functional forms, depending on how exactly the bodies are couple...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 195; p. 116243
Main Authors Costa, Guilherme S., Novaes, Marcel, de Aguiar, Marcus A.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Higher order interactions can lead to new equilibrium states and bifurcations in systems of coupled oscillators described by the Kuramoto model. However, even in the simplest case of 3-body interactions there are more than one possible functional forms, depending on how exactly the bodies are coupled. Which of these forms is better suited to describe the dynamics of the oscillators depends on the specific system under consideration. Here we show that, for a particular class of interactions, reduced equations for the Kuramoto order parameter can be derived for arbitrarily many bodies. Moreover, the contribution of a given term to the reduced equation does not depend on its order, but on a certain effective order, that we define. We give explicit examples where bi and tri-stability is found and discuss a few exotic cases where synchronization happens via a third order phase transition. •Reduced equations are derived for a class of asymmetric higher-order interactions.•The contribution of higher-order terms does not depend directly on their order.•We derive bifurcation diagrams for some particular cases, finding multi-stability.
AbstractList Higher order interactions can lead to new equilibrium states and bifurcations in systems of coupled oscillators described by the Kuramoto model. However, even in the simplest case of 3-body interactions there are more than one possible functional forms, depending on how exactly the bodies are coupled. Which of these forms is better suited to describe the dynamics of the oscillators depends on the specific system under consideration. Here we show that, for a particular class of interactions, reduced equations for the Kuramoto order parameter can be derived for arbitrarily many bodies. Moreover, the contribution of a given term to the reduced equation does not depend on its order, but on a certain effective order, that we define. We give explicit examples where bi and tri-stability is found and discuss a few exotic cases where synchronization happens via a third order phase transition. •Reduced equations are derived for a class of asymmetric higher-order interactions.•The contribution of higher-order terms does not depend directly on their order.•We derive bifurcation diagrams for some particular cases, finding multi-stability.
ArticleNumber 116243
Author de Aguiar, Marcus A.M.
Costa, Guilherme S.
Novaes, Marcel
Author_xml – sequence: 1
  givenname: Guilherme S.
  orcidid: 0000-0002-5019-0098
  surname: Costa
  fullname: Costa, Guilherme S.
  email: guilherme.costa@ictp-saifr.org
  organization: ICTP South American Institute for Fundamental Research & Instituto de Física Teórica - UNESP, São Paulo, 01140-070, SP, Brazil
– sequence: 2
  givenname: Marcel
  orcidid: 0000-0002-5694-8875
  surname: Novaes
  fullname: Novaes, Marcel
  organization: Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, 38408-100, MG, Brazil
– sequence: 3
  givenname: Marcus A.M.
  orcidid: 0000-0003-1379-7568
  surname: de Aguiar
  fullname: de Aguiar, Marcus A.M.
  organization: ICTP South American Institute for Fundamental Research & Instituto de Física Teórica - UNESP, São Paulo, 01140-070, SP, Brazil
BookMark eNp9kL1OwzAUhT0UibbwBCx-gYRr59cDA6rKj6jEArPl2DfEURMj2wX69qQEVpZ7hqvv6OhbkcXoRiTkikHKgJXXfao75ULKgRcpYyXPswVZgighgaoS52QVQg8ADEq-JM32S-lIg9sfonVjoK6lsUP6dPBqcNHRwRnc008bO6rCcRgweqtpZ9869NR5M107RvRTyx-vfGOjV_44_y_IWav2AS9_c01e77Yvm4dk93z_uLndJZrVWUy0aXUGUOdNrrBSTEBrtCoYrzXysix4XtcoCjSC5Rqb2hhdCUABRaYaU1XZmmRzr_YuBI-tfPd2mGZIBvKkRvbyR408qZGzmom6mSmcpn1Y9DJoi6NGYz3qKI2z__Lfg8J0Rg
Cites_doi 10.1073/pnas.1019641108
10.1016/j.physrep.2020.05.004
10.1103/PhysRevLett.122.248301
10.1103/PhysRevE.108.034208
10.1063/5.0234070
10.1016/S0167-2789(00)00094-4
10.1103/PhysRevResearch.2.033410
10.1038/s42005-020-00485-0
10.1063/1.4958928
10.1088/1742-5468/ab5367
10.1038/s41467-019-10431-6
10.1103/PhysRevE.109.034211
10.1016/j.physd.2004.06.011
10.1016/j.chaos.2024.114721
10.3389/fncom.2017.00048
10.1016/j.physd.2016.02.009
10.1103/PhysRevLett.106.224101
10.2307/1968714
10.1103/PhysRevE.100.012211
10.1016/j.chaos.2016.02.028
10.1007/s10827-017-0672-6
10.1016/j.chaos.2021.110888
10.1063/5.0213288
10.1103/PhysRevE.109.L022201
10.1126/science.aad9029
10.1038/nature23273
10.1063/5.0108672
10.1016/j.plrev.2024.12.013
10.1371/journal.pbio.3000550
10.1038/s41562-020-01024-1
10.1016/j.chaos.2024.115467
10.1038/s41598-021-85133-5
10.1098/rsif.2014.0873
10.1073/pnas.1506407112
10.1103/PhysRevLett.92.108101
10.1103/PhysRevResearch.2.023032
10.1063/5.0176748
10.1016/j.chaos.2023.113981
10.1137/140965168
10.1016/j.physa.2004.05.033
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2025.116243
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2025_116243
S0960077925002565
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c183t-cdfc30084b4ae7a190fdca5128ce26652488e95ed914ceb8ddc790e9053abd773
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Tue Jul 01 05:02:01 EDT 2025
Sat Apr 26 15:41:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Synchronization
Higher-order interactions
Coupled oscillators
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c183t-cdfc30084b4ae7a190fdca5128ce26652488e95ed914ceb8ddc790e9053abd773
ORCID 0000-0002-5694-8875
0000-0002-5019-0098
0000-0003-1379-7568
ParticipantIDs crossref_primary_10_1016_j_chaos_2025_116243
elsevier_sciencedirect_doi_10_1016_j_chaos_2025_116243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Grilli, Barabás, Michalska-Smith, Allesina (b10) 2017; 548
Einstein, Infeld, Hoffmann (b3) 1938; 39
Nishikawa, Hoppensteadt, Lai (b41) 2004; 197
Sanchez-Gorostiaga, Bajić, Osborne, Poyatos, Sanchez (b12) 2019; 17
de Arruda, Petri, Moreno (b14) 2020; 2
Strogatz (b42) 2000; 143
Benson, Gleich, Leskovec (b13) 2016; 353
Ghosh, Verma, Jalan, Shrimali (b11) 2024; 34
Skardal, Arenas (b21) 2020; 3
Skardal, Arenas (b20) 2019; 122
Landau (b2) 2013
Tanaka, Aoyagi (b27) 2011; 106
Lucas, Cencetti, Battiston (b34) 2020; 2
Vega, Vázquez-Prada, Pacheco (b18) 2004; 343
Nishikawa, Lai, Hoppensteadt (b40) 2004; 92
Biswas, Gupta (b24) 2024; 181
Majhi, Ghosh, Pal, Pal, Pal, Ghosh (b9) 2025; 52
León, Muolo, Hata, Nakao (b31) 2024; 34
Fariello, de Aguiar (b35) 2024; 187
Suman, Jalan (b36) 2024; 34
Reimann, Nolte, Scolamiero, Turner, Perin, Chindemi (b7) 2017; 11
Ganmor, Segev, Schneidman (b4) 2011; 108
Moyal, Rajwani, Dutta, Jalan (b23) 2024; 109
Muolo, Njougouo, Gambuzza, Carletti, Frasca (b26) 2024; 109
Ott, Antonsen (b43) 2008; 18
Bick, Ashwin, Rodrigues (b28) 2016; 26
Alvarez-Rodriguez, Battiston, de Arruda, Moreno, Perc, Latora (b15) 2021; 5
Jhun, Jo, Kahng (b17) 2019; 2019
Holzel, Krischer (b39) 2015; 14
Buzanello, Barioni, de Aguiar (b38) 2022; 32
Battiston, Cencetti, Iacopini, Latora, Lucas, Patania (b29) 2020; 874
Iacopini, Petri, Barrat, Latora (b16) 2019; 10
León, Pazó (b33) 2019; 100
Dutta, Mondal, Kundu, Khanra, Pal, Hens (b30) 2023; 108
Berec (b19) 2016; 86
Ashwin, Rodrigues (b32) 2016; 325
Manoranjani, Senthilkumar, Chandrasekar (b37) 2023; 175
Vasilyeva, Kozlov, Alfaro-Bittner, Musatov, Raigorodskii, Perc (b1) 2021; 11
Petri, Expert, Turkheimer, Carhart-Harris, Nutt, Hellyer (b5) 2014; 11
Sizemore, Giusti, Kahn, Vettel, Betzel, Bassett (b8) 2018; 44
Dai, Kovalenko, Molodyk, Wang, Li, Musatov (b22) 2021; 146
Sayeed Anwar, Ghosh, Carletti (b25) 2024; 5
Giusti, Pastalkova, Curto, Itskov (b6) 2015; 112
León (10.1016/j.chaos.2025.116243_b31) 2024; 34
Buzanello (10.1016/j.chaos.2025.116243_b38) 2022; 32
Berec (10.1016/j.chaos.2025.116243_b19) 2016; 86
Battiston (10.1016/j.chaos.2025.116243_b29) 2020; 874
Manoranjani (10.1016/j.chaos.2025.116243_b37) 2023; 175
Nishikawa (10.1016/j.chaos.2025.116243_b41) 2004; 197
Sayeed Anwar (10.1016/j.chaos.2025.116243_b25) 2024; 5
Muolo (10.1016/j.chaos.2025.116243_b26) 2024; 109
Majhi (10.1016/j.chaos.2025.116243_b9) 2025; 52
Ghosh (10.1016/j.chaos.2025.116243_b11) 2024; 34
Dai (10.1016/j.chaos.2025.116243_b22) 2021; 146
Vega (10.1016/j.chaos.2025.116243_b18) 2004; 343
Iacopini (10.1016/j.chaos.2025.116243_b16) 2019; 10
Vasilyeva (10.1016/j.chaos.2025.116243_b1) 2021; 11
Einstein (10.1016/j.chaos.2025.116243_b3) 1938; 39
Sizemore (10.1016/j.chaos.2025.116243_b8) 2018; 44
de Arruda (10.1016/j.chaos.2025.116243_b14) 2020; 2
Suman (10.1016/j.chaos.2025.116243_b36) 2024; 34
Holzel (10.1016/j.chaos.2025.116243_b39) 2015; 14
Reimann (10.1016/j.chaos.2025.116243_b7) 2017; 11
Skardal (10.1016/j.chaos.2025.116243_b21) 2020; 3
Jhun (10.1016/j.chaos.2025.116243_b17) 2019; 2019
Skardal (10.1016/j.chaos.2025.116243_b20) 2019; 122
Benson (10.1016/j.chaos.2025.116243_b13) 2016; 353
Moyal (10.1016/j.chaos.2025.116243_b23) 2024; 109
Biswas (10.1016/j.chaos.2025.116243_b24) 2024; 181
Tanaka (10.1016/j.chaos.2025.116243_b27) 2011; 106
Ashwin (10.1016/j.chaos.2025.116243_b32) 2016; 325
Strogatz (10.1016/j.chaos.2025.116243_b42) 2000; 143
Grilli (10.1016/j.chaos.2025.116243_b10) 2017; 548
Lucas (10.1016/j.chaos.2025.116243_b34) 2020; 2
León (10.1016/j.chaos.2025.116243_b33) 2019; 100
Ott (10.1016/j.chaos.2025.116243_b43) 2008; 18
Alvarez-Rodriguez (10.1016/j.chaos.2025.116243_b15) 2021; 5
Fariello (10.1016/j.chaos.2025.116243_b35) 2024; 187
Bick (10.1016/j.chaos.2025.116243_b28) 2016; 26
Dutta (10.1016/j.chaos.2025.116243_b30) 2023; 108
Sanchez-Gorostiaga (10.1016/j.chaos.2025.116243_b12) 2019; 17
Ganmor (10.1016/j.chaos.2025.116243_b4) 2011; 108
Landau (10.1016/j.chaos.2025.116243_b2) 2013
Nishikawa (10.1016/j.chaos.2025.116243_b40) 2004; 92
Petri (10.1016/j.chaos.2025.116243_b5) 2014; 11
Giusti (10.1016/j.chaos.2025.116243_b6) 2015; 112
References_xml – volume: 548
  start-page: 210
  year: 2017
  end-page: 213
  ident: b10
  article-title: Higher-order interactions stabilize dynamics in competitive network models
  publication-title: Nature
– volume: 175
  year: 2023
  ident: b37
  article-title: Diverse phase transitions in kuramoto model with adaptive mean-field coupling breaking the rotational symmetry
  publication-title: Chaos Solitons Fractals
– volume: 17
  year: 2019
  ident: b12
  article-title: High-order interactions distort the functional landscape of microbial consortia
  publication-title: PLoS Biol
– volume: 181
  year: 2024
  ident: b24
  article-title: Symmetry-breaking higher-order interactions in coupled phase oscillators
  publication-title: Chaos Solitons Fractals
– volume: 34
  year: 2024
  ident: b36
  article-title: Finite-size effect in kuramoto oscillators with higher-order interactions
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– year: 2013
  ident: b2
  article-title: The classical theory of fields
– volume: 197
  start-page: 134
  year: 2004
  end-page: 148
  ident: b41
  article-title: Oscillatory associative memory network with perfect retrieval
  publication-title: Phys D: Nonlinear Phenom
– volume: 122
  year: 2019
  ident: b20
  article-title: Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes
  publication-title: Phys Rev Lett
– volume: 108
  year: 2023
  ident: b30
  article-title: Impact of phase lag on synchronization in frustrated kuramoto model with higher-order interactions
  publication-title: Phys Rev E
– volume: 100
  year: 2019
  ident: b33
  article-title: Phase reduction beyond the first order: The case of the mean-field complex ginzburg-landau equation
  publication-title: Phys Rev E
– volume: 44
  start-page: 115
  year: 2018
  end-page: 145
  ident: b8
  article-title: Cliques and cavities in the human connectome
  publication-title: J Comput Neurosci
– volume: 5
  start-page: 586
  year: 2021
  end-page: 595
  ident: b15
  article-title: Evolutionary dynamics of higher-order interactions in social networks
  publication-title: Nat Hum Behav
– volume: 5
  year: 2024
  ident: b25
  article-title: Global synchronization on time-varying higher-order structures
  publication-title: J Phys.: Complex
– volume: 11
  start-page: 5666
  year: 2021
  ident: b1
  article-title: Multilayer representation of collaboration networks with higher-order interactions
  publication-title: Sci Rep
– volume: 26
  year: 2016
  ident: b28
  article-title: Chaos in generically coupled phase oscillator networks with nonpairwise interactions
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 3
  start-page: 218
  year: 2020
  ident: b21
  article-title: Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching
  publication-title: Commun Phys
– volume: 10
  start-page: 2485
  year: 2019
  ident: b16
  article-title: Simplicial models of social contagion
  publication-title: Nat Commun
– volume: 14
  start-page: 188
  year: 2015
  end-page: 201
  ident: b39
  article-title: Stability and long term behavior of a hebbian network of kuramoto oscillators
  publication-title: SIAM J Appl Dyn Syst
– volume: 109
  year: 2024
  ident: b26
  article-title: Phase chimera states on nonlocal hyperrings
  publication-title: Phys Rev E
– volume: 11
  year: 2017
  ident: b7
  article-title: Cliques of neurons bound into cavities provide a missing link between structure and function
  publication-title: Front Comput Neurosci
– volume: 52
  start-page: 144
  year: 2025
  end-page: 170
  ident: b9
  article-title: Patterns of neuronal synchrony in higher-order networks
  publication-title: Phys Life Rev
– volume: 109
  year: 2024
  ident: b23
  article-title: Rotating clusters in phase-lagged kuramoto oscillators with higher-order interactions
  publication-title: Phys Rev E
– volume: 18
  start-page: 1
  year: 2008
  end-page: 6
  ident: b43
  article-title: Low dimensional behavior of large systems of globally coupled oscillators
  publication-title: Chaos
– volume: 143
  start-page: 1
  year: 2000
  end-page: 20
  ident: b42
  article-title: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators
  publication-title: Phys D: Nonlinear Phenom
– volume: 112
  start-page: 13455
  year: 2015
  end-page: 13460
  ident: b6
  article-title: Clique topology reveals intrinsic geometric structure in neural correlations
  publication-title: Proc Natl Acad Sci
– volume: 2019
  year: 2019
  ident: b17
  article-title: Simplicial sis model in scale-free uniform hypergraph
  publication-title: J Stat Mech Theory Exp
– volume: 2
  year: 2020
  ident: b14
  article-title: Social contagion models on hypergraphs
  publication-title: Phys Rev Res
– volume: 325
  start-page: 14
  year: 2016
  end-page: 24
  ident: b32
  article-title: Hopf normal form with sn symmetry and reduction to systems of nonlinearly coupled phase oscillators
  publication-title: Phys D: Nonlinear Phenom
– volume: 187
  year: 2024
  ident: b35
  article-title: Third order interactions shift the critical coupling in multidimensional kuramoto models
  publication-title: Chaos Solitons Fractals
– volume: 2
  year: 2020
  ident: b34
  article-title: Multiorder laplacian for synchronization in higher-order networks
  publication-title: Phys Rev Res
– volume: 343
  start-page: 279
  year: 2004
  end-page: 287
  ident: b18
  article-title: Fitness for synchronization of network motifs
  publication-title: Phys A
– volume: 108
  start-page: 9679
  year: 2011
  end-page: 9684
  ident: b4
  article-title: Sparse low-order interaction network underlies a highly correlated and learnable neural population code
  publication-title: Proc Natl Acad Sci
– volume: 32
  year: 2022
  ident: b38
  article-title: Matrix coupling and generalized frustration in kuramoto oscillators
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 92
  year: 2004
  ident: b40
  article-title: Capacity of oscillatory associative-memory networks with error-free retrieval
  publication-title: Phys Rev Lett
– volume: 86
  start-page: 75
  year: 2016
  end-page: 81
  ident: b19
  article-title: Chimera state and route to explosive synchronization
  publication-title: Chaos Solitons Fractals
– volume: 353
  start-page: 163
  year: 2016
  end-page: 166
  ident: b13
  article-title: Higher-order organization of complex networks
  publication-title: Science
– volume: 874
  start-page: 1
  year: 2020
  end-page: 92
  ident: b29
  article-title: Networks beyond pairwise interactions: Structure and dynamics
  publication-title: Phys Rep
– volume: 34
  year: 2024
  ident: b11
  article-title: Chimeric states induced by higher-order interactions in coupled prey–predator systems
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 106
  year: 2011
  ident: b27
  article-title: Multistable attractors in a network of phase oscillators with three-body interactions
  publication-title: Phys Rev Lett
– volume: 34
  year: 2024
  ident: b31
  article-title: Higher-order interactions induce anomalous transitions to synchrony
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 39
  start-page: 65
  year: 1938
  end-page: 100
  ident: b3
  article-title: The gravitational equations and the problem of motion
  publication-title: Ann Math
– volume: 11
  year: 2014
  ident: b5
  article-title: Homological scaffolds of brain functional networks
  publication-title: J R Soc Interface
– volume: 146
  year: 2021
  ident: b22
  article-title: D-dimensional oscillators in simplicial structures: odd and even dimensions display different synchronization scenarios
  publication-title: Chaos Solitons Fractals
– volume: 108
  start-page: 9679
  issue: 23
  year: 2011
  ident: 10.1016/j.chaos.2025.116243_b4
  article-title: Sparse low-order interaction network underlies a highly correlated and learnable neural population code
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1019641108
– volume: 874
  start-page: 1
  year: 2020
  ident: 10.1016/j.chaos.2025.116243_b29
  article-title: Networks beyond pairwise interactions: Structure and dynamics
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2020.05.004
– volume: 122
  issue: 24
  year: 2019
  ident: 10.1016/j.chaos.2025.116243_b20
  article-title: Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.248301
– volume: 108
  issue: 3
  year: 2023
  ident: 10.1016/j.chaos.2025.116243_b30
  article-title: Impact of phase lag on synchronization in frustrated kuramoto model with higher-order interactions
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.108.034208
– volume: 34
  issue: 10
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b36
  article-title: Finite-size effect in kuramoto oscillators with higher-order interactions
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/5.0234070
– volume: 143
  start-page: 1
  issue: 1–4
  year: 2000
  ident: 10.1016/j.chaos.2025.116243_b42
  article-title: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators
  publication-title: Phys D: Nonlinear Phenom
  doi: 10.1016/S0167-2789(00)00094-4
– volume: 2
  year: 2020
  ident: 10.1016/j.chaos.2025.116243_b34
  article-title: Multiorder laplacian for synchronization in higher-order networks
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.2.033410
– volume: 3
  start-page: 218
  issue: 1
  year: 2020
  ident: 10.1016/j.chaos.2025.116243_b21
  article-title: Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching
  publication-title: Commun Phys
  doi: 10.1038/s42005-020-00485-0
– volume: 26
  issue: 9
  year: 2016
  ident: 10.1016/j.chaos.2025.116243_b28
  article-title: Chaos in generically coupled phase oscillator networks with nonpairwise interactions
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/1.4958928
– volume: 2019
  issue: 12
  year: 2019
  ident: 10.1016/j.chaos.2025.116243_b17
  article-title: Simplicial sis model in scale-free uniform hypergraph
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/ab5367
– volume: 10
  start-page: 2485
  issue: 1
  year: 2019
  ident: 10.1016/j.chaos.2025.116243_b16
  article-title: Simplicial models of social contagion
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10431-6
– volume: 109
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b23
  article-title: Rotating clusters in phase-lagged kuramoto oscillators with higher-order interactions
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.109.034211
– volume: 197
  start-page: 134
  issue: 1–2
  year: 2004
  ident: 10.1016/j.chaos.2025.116243_b41
  article-title: Oscillatory associative memory network with perfect retrieval
  publication-title: Phys D: Nonlinear Phenom
  doi: 10.1016/j.physd.2004.06.011
– volume: 181
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b24
  article-title: Symmetry-breaking higher-order interactions in coupled phase oscillators
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.114721
– volume: 11
  year: 2017
  ident: 10.1016/j.chaos.2025.116243_b7
  article-title: Cliques of neurons bound into cavities provide a missing link between structure and function
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2017.00048
– volume: 325
  start-page: 14
  year: 2016
  ident: 10.1016/j.chaos.2025.116243_b32
  article-title: Hopf normal form with sn symmetry and reduction to systems of nonlinearly coupled phase oscillators
  publication-title: Phys D: Nonlinear Phenom
  doi: 10.1016/j.physd.2016.02.009
– volume: 106
  issue: 22
  year: 2011
  ident: 10.1016/j.chaos.2025.116243_b27
  article-title: Multistable attractors in a network of phase oscillators with three-body interactions
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.224101
– year: 2013
  ident: 10.1016/j.chaos.2025.116243_b2
– volume: 39
  start-page: 65
  issue: 1
  year: 1938
  ident: 10.1016/j.chaos.2025.116243_b3
  article-title: The gravitational equations and the problem of motion
  publication-title: Ann Math
  doi: 10.2307/1968714
– volume: 100
  issue: 1
  year: 2019
  ident: 10.1016/j.chaos.2025.116243_b33
  article-title: Phase reduction beyond the first order: The case of the mean-field complex ginzburg-landau equation
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.100.012211
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.chaos.2025.116243_b19
  article-title: Chimera state and route to explosive synchronization
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2016.02.028
– volume: 44
  start-page: 115
  year: 2018
  ident: 10.1016/j.chaos.2025.116243_b8
  article-title: Cliques and cavities in the human connectome
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-017-0672-6
– volume: 146
  year: 2021
  ident: 10.1016/j.chaos.2025.116243_b22
  article-title: D-dimensional oscillators in simplicial structures: odd and even dimensions display different synchronization scenarios
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110888
– volume: 34
  issue: 6
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b11
  article-title: Chimeric states induced by higher-order interactions in coupled prey–predator systems
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/5.0213288
– volume: 109
  issue: 2
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b26
  article-title: Phase chimera states on nonlocal hyperrings
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.109.L022201
– volume: 353
  start-page: 163
  issue: 6295
  year: 2016
  ident: 10.1016/j.chaos.2025.116243_b13
  article-title: Higher-order organization of complex networks
  publication-title: Science
  doi: 10.1126/science.aad9029
– volume: 548
  start-page: 210
  issue: 7666
  year: 2017
  ident: 10.1016/j.chaos.2025.116243_b10
  article-title: Higher-order interactions stabilize dynamics in competitive network models
  publication-title: Nature
  doi: 10.1038/nature23273
– volume: 32
  issue: 9
  year: 2022
  ident: 10.1016/j.chaos.2025.116243_b38
  article-title: Matrix coupling and generalized frustration in kuramoto oscillators
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/5.0108672
– volume: 52
  start-page: 144
  year: 2025
  ident: 10.1016/j.chaos.2025.116243_b9
  article-title: Patterns of neuronal synchrony in higher-order networks
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2024.12.013
– volume: 18
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.chaos.2025.116243_b43
  article-title: Low dimensional behavior of large systems of globally coupled oscillators
  publication-title: Chaos
– volume: 17
  issue: 12
  year: 2019
  ident: 10.1016/j.chaos.2025.116243_b12
  article-title: High-order interactions distort the functional landscape of microbial consortia
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3000550
– volume: 5
  issue: 1
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b25
  article-title: Global synchronization on time-varying higher-order structures
  publication-title: J Phys.: Complex
– volume: 5
  start-page: 586
  issue: 5
  year: 2021
  ident: 10.1016/j.chaos.2025.116243_b15
  article-title: Evolutionary dynamics of higher-order interactions in social networks
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-020-01024-1
– volume: 187
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b35
  article-title: Third order interactions shift the critical coupling in multidimensional kuramoto models
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.115467
– volume: 11
  start-page: 5666
  issue: 1
  year: 2021
  ident: 10.1016/j.chaos.2025.116243_b1
  article-title: Multilayer representation of collaboration networks with higher-order interactions
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85133-5
– volume: 11
  issue: 101
  year: 2014
  ident: 10.1016/j.chaos.2025.116243_b5
  article-title: Homological scaffolds of brain functional networks
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2014.0873
– volume: 112
  start-page: 13455
  issue: 44
  year: 2015
  ident: 10.1016/j.chaos.2025.116243_b6
  article-title: Clique topology reveals intrinsic geometric structure in neural correlations
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1506407112
– volume: 92
  issue: 10
  year: 2004
  ident: 10.1016/j.chaos.2025.116243_b40
  article-title: Capacity of oscillatory associative-memory networks with error-free retrieval
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.92.108101
– volume: 2
  issue: 2
  year: 2020
  ident: 10.1016/j.chaos.2025.116243_b14
  article-title: Social contagion models on hypergraphs
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.2.023032
– volume: 34
  issue: 1
  year: 2024
  ident: 10.1016/j.chaos.2025.116243_b31
  article-title: Higher-order interactions induce anomalous transitions to synchrony
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/5.0176748
– volume: 175
  year: 2023
  ident: 10.1016/j.chaos.2025.116243_b37
  article-title: Diverse phase transitions in kuramoto model with adaptive mean-field coupling breaking the rotational symmetry
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.113981
– volume: 14
  start-page: 188
  issue: 1
  year: 2015
  ident: 10.1016/j.chaos.2025.116243_b39
  article-title: Stability and long term behavior of a hebbian network of kuramoto oscillators
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/140965168
– volume: 343
  start-page: 279
  year: 2004
  ident: 10.1016/j.chaos.2025.116243_b18
  article-title: Fitness for synchronization of network motifs
  publication-title: Phys A
  doi: 10.1016/j.physa.2004.05.033
SSID ssj0001062
Score 2.461451
Snippet Higher order interactions can lead to new equilibrium states and bifurcations in systems of coupled oscillators described by the Kuramoto model. However, even...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116243
SubjectTerms Coupled oscillators
Higher-order interactions
Synchronization
Title Exact solutions of the Kuramoto model with asymmetric higher order interactions of arbitrary order
URI https://dx.doi.org/10.1016/j.chaos.2025.116243
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjBCGrEB9mDB02sIOx26ZEQCErgoiTcmn01YAIlpSR68bc7s21RE-PBY7c7STO7M99sd-YbQq615FyrZsezVvkeAwDwZEszTxiAE2xvbTQeFMcTfzhlTzM-K5FeUQuDaZW57898uvPW-Ugj12ZjvVg0njH4bgoRAIgjcGOhOWMCd_n9x1eaBxx53E0CTPZwdsE85HK89FzGyNnd4uA6_BZr_45O3xBncEQO81CRdrOvqZCSXVXJwXjHs7qpkkpumht6k_NH3x4T1X-TOqW7TUXjiIIMHW0TCQsTU9f9huIfWCo378slNtXSdO4yPqjj4qTIIpFkNQ9OXiZq4Qr0s_cnZDrov_SGXt5KwdNgs6mnTaTbyJ2vmLRCQhQQGVgmACdtAaJ5C-zYBtya4IFpqzrGaBE0bQAmKpURon1Kyqt4Zc8INRCQKG5kFGi8VDUdy7iCICIyEcSSQtfIXaHCcJ0xZoRFKtlr6DQeosbDTOM14hdqDn8sfAg-_S_B8_8KXpB9fMryvS5JOU229goii1TV3dapk73u42g4-QRQ6M8H
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDEdSIzz140MQGLN2WHgmBFHlchIRbs68GTKCklET_vbPblmhiPHjtdpJmdme-b7uz3wA8CEap4M22pRR3LQcBwGK2cCxPIpzo9tZS6I3ieOIGM-d1Tucl6BZ3YXRZZZ77s5xusnX-pJF7s7FZLhtvmnw3Pc9HENfATQ-gotWpaBkqncEwmOwTMu56zGECvm9pg0J8yJR5iQWLtWy3TTF7uLbT-h2gvoFO_xROcrZIOtkHVaGk1jU4Hu-lVrc1qObRuSWPuYT00xnw3gcTKdmvKxJHBG3IcJcwnJuYmAY4RP-EJWz7uVrpvlqCLEzRBzFynEQLSSTZtQdjzxK-NHf0s_FzmPV7025g5d0ULIFhm1pCRqKl5fO5w5THkAhEEmcK8UkoRGlqYygrnyrpvzhC8baUwvObyscoZVx6XusCyut4rS6BSOQknEoW-UKfq8q2cihHHhHJCOmkJ-rwXLgw3GSiGWFRTfYeGo-H2uNh5vE6uIWbwx9zH2Ja_8vw6r-G93AYTMejcDSYDK_hSI9k5V83UE6TnbpFopHyu3whfQF2ztG4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+solutions+of+the+Kuramoto+model+with+asymmetric+higher+order+interactions+of+arbitrary+order&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Costa%2C+Guilherme+S.&rft.au=Novaes%2C+Marcel&rft.au=de+Aguiar%2C+Marcus+A.M.&rft.date=2025-06-01&rft.issn=0960-0779&rft.volume=195&rft.spage=116243&rft_id=info:doi/10.1016%2Fj.chaos.2025.116243&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2025_116243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon