Parameter estimation for the complex fractional Ornstein–Uhlenbeck processes with Hurst parameter H∈(0,12)
We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein–Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter H∈(14,12) and the results of...
Saved in:
Published in | Chaos, solitons and fractals Vol. 188; p. 115556 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein–Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter H∈(14,12) and the results of Hu et al. (2019) to a two-dimensional case. When H∈(0,14], it is found that the integrand of the estimator is not in the domain of the standard divergence operator. To facilitate the proofs, we develop a new inner product formula for functions of bounded variation in the reproducing kernel Hilbert space of fractional Brownian motion with Hurst parameter H∈(0,12). This formula is also applied to obtain the second moments of the so-called α-order fractional Brownian motion and the α-fractional bridges with the Hurst parameter H∈(0,12).
•We develop a new inner product formula for functions in the reproducing kernel Hilbert space of fBm.•We prove the asymptotics for the LS estimator of the drift coefficient in complex fOU processes.•We estimate the second moments of the α-order fBm and the α-fractional bridges. |
---|---|
AbstractList | We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein–Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter H∈(14,12) and the results of Hu et al. (2019) to a two-dimensional case. When H∈(0,14], it is found that the integrand of the estimator is not in the domain of the standard divergence operator. To facilitate the proofs, we develop a new inner product formula for functions of bounded variation in the reproducing kernel Hilbert space of fractional Brownian motion with Hurst parameter H∈(0,12). This formula is also applied to obtain the second moments of the so-called α-order fractional Brownian motion and the α-fractional bridges with the Hurst parameter H∈(0,12).
•We develop a new inner product formula for functions in the reproducing kernel Hilbert space of fBm.•We prove the asymptotics for the LS estimator of the drift coefficient in complex fOU processes.•We estimate the second moments of the α-order fBm and the α-fractional bridges. |
ArticleNumber | 115556 |
Author | Zhou, Hongjuan Alazemi, Fares Chen, Yong Alsenafi, Abdulaziz |
Author_xml | – sequence: 1 givenname: Fares orcidid: 0000-0002-0604-005X surname: Alazemi fullname: Alazemi, Fares email: fares.alazemi@ku.edu.kw organization: Department of Mathematics, Faculty of Science, Kuwait University, Kuwait – sequence: 2 givenname: Abdulaziz orcidid: 0000-0003-2850-5601 surname: Alsenafi fullname: Alsenafi, Abdulaziz organization: Department of Mathematics, Faculty of Science, Kuwait University, Kuwait – sequence: 3 givenname: Yong orcidid: 0000-0002-9590-4656 surname: Chen fullname: Chen, Yong organization: School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China – sequence: 4 givenname: Hongjuan surname: Zhou fullname: Zhou, Hongjuan organization: School of Mathematical and Statistical Sciences, Arizona State University, Tempe, 85287, AZ, USA |
BookMark | eNp9kD1PwzAQhj0UibbwC1g8gkSCnQ83GRhQBRSpUhnobCWXs-KS2pVtvjbG7vzD_hJSihgZTu9wel7dPSMyMNYgIWecxZxxcbWKoa2sjxOWZDHneZ6LARmyUrCITSblMRl5v2KMcSaSITGPlavWGNBR9EGvq6Ctoco6GlqkYNebDt-pchXsF1VHF874gNrsPr-WbYemRnimG2cBvUdP33Ro6ezF-UA3f82z3XZ7zi55cnFCjlTVeTz9zTFZ3t0-TWfRfHH_ML2ZR8CLNEQ1z1KRKGDY9JMB57USKUCJyPOibIoka8oCyibPmBIsL-oamwyYqHNUNah0TNJDLzjrvUMlN65_zn1IzuRek1zJH01yr0keNPXU9YHC_rRXjU560GgAG-0Qgmys_pf_Bgbvefc |
Cites_doi | 10.1007/s10473-021-0218-x 10.1080/17442508.2021.1959587 10.30757/ALEA.v14-30 10.1080/17442508.2018.1563606 10.1007/s440-000-8016-7 10.1007/s13171-021-00266-z 10.1016/j.jmaa.2006.07.100 10.1007/s11203-017-9168-2 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2024.115556 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
ExternalDocumentID | 10_1016_j_chaos_2024_115556 S0960077924011081 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c183t-b14362fc0edc0e4c11bf63cc9ee1589d824d98c9d540f6058bbed4c06b5efbcf3 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Wed Oct 09 16:47:46 EDT 2024 Sat Oct 26 15:43:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 60G22 α-fractional Brownian bridge 62M09 Least squares estimate Complex Wiener–Itô multiple integral Fractional Brownian motion α-order fractional Brownian motion 60G15 Fractional Ornstein–Uhlenbeck process Fourth moment theorem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c183t-b14362fc0edc0e4c11bf63cc9ee1589d824d98c9d540f6058bbed4c06b5efbcf3 |
ORCID | 0000-0003-2850-5601 0000-0002-0604-005X 0000-0002-9590-4656 |
ParticipantIDs | crossref_primary_10_1016_j_chaos_2024_115556 elsevier_sciencedirect_doi_10_1016_j_chaos_2024_115556 |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Carter (b16) 1958; 65 Wheeden, Zygmund (b13) 1977 Chen, Chen, Liu (b15) 2024 Chen, Hu, Wang (b4) 2017; 14 Hu, Nualart, Zhou (b6) 2019; 22 Pipiras, Taqqu (b17) 2000; 118 Chen, Gao, Li (b11) 2024 Es-Sebaiy, Nourdin (b8) 2013 Chen, Zhou (b18) 2021; 41B Mishura (b9) 2008 El Omari (b7) 2023; 85 Folland (b12) 1999; vol. 40 Shen, Tang, Yin (b5) 2022; 94 Hu, Nualart, Zhou (b1) 2019; 91 Jolis (b10) 2007; 330 Reed, Simon (b14) 1980 Arató (b3) 1982; vol. 45 Arató, Kolmogorov, Sinai (b2) 1962; 146 Chen (10.1016/j.chaos.2024.115556_b4) 2017; 14 Folland (10.1016/j.chaos.2024.115556_b12) 1999; vol. 40 Reed (10.1016/j.chaos.2024.115556_b14) 1980 Mishura (10.1016/j.chaos.2024.115556_b9) 2008 Chen (10.1016/j.chaos.2024.115556_b15) 2024 Carter (10.1016/j.chaos.2024.115556_b16) 1958; 65 El Omari (10.1016/j.chaos.2024.115556_b7) 2023; 85 Chen (10.1016/j.chaos.2024.115556_b18) 2021; 41B Arató (10.1016/j.chaos.2024.115556_b3) 1982; vol. 45 Wheeden (10.1016/j.chaos.2024.115556_b13) 1977 Pipiras (10.1016/j.chaos.2024.115556_b17) 2000; 118 Hu (10.1016/j.chaos.2024.115556_b6) 2019; 22 Chen (10.1016/j.chaos.2024.115556_b11) 2024 Shen (10.1016/j.chaos.2024.115556_b5) 2022; 94 Jolis (10.1016/j.chaos.2024.115556_b10) 2007; 330 Hu (10.1016/j.chaos.2024.115556_b1) 2019; 91 Arató (10.1016/j.chaos.2024.115556_b2) 1962; 146 Es-Sebaiy (10.1016/j.chaos.2024.115556_b8) 2013 |
References_xml | – volume: 118 start-page: 251 year: 2000 end-page: 291 ident: b17 article-title: Integration questions related to fractional Brownian motion publication-title: Probab Theory Related Fields contributor: fullname: Taqqu – volume: 22 start-page: 111 year: 2019 end-page: 142 ident: b6 article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter publication-title: Stat Inference Stoch Process contributor: fullname: Zhou – year: 2008 ident: b9 article-title: Stochastic calculus for fractional Brownian motion and related processes contributor: fullname: Mishura – volume: 94 start-page: 537 year: 2022 end-page: 558 ident: b5 article-title: Least-squares estimation for the Vasicek model driven by the complex fractional Brownian motion publication-title: Stochastics contributor: fullname: Yin – volume: 85 start-page: 572 year: 2023 end-page: 599 ident: b7 article-title: An publication-title: Sankhya A contributor: fullname: El Omari – year: 1980 ident: b14 article-title: Methods of modern mathematical physics publication-title: Volume I: functional analysis contributor: fullname: Simon – volume: 91 start-page: 1067 year: 2019 end-page: 1091 ident: b1 article-title: Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion publication-title: Stochastics contributor: fullname: Zhou – year: 2024 ident: b11 article-title: Statistical estimations for non-ergodic vasicek model driven by two types of Gaussian processes contributor: fullname: Li – year: 2024 ident: b15 article-title: Berry-Esséen bound for complex Wiener-Itô integral contributor: fullname: Liu – year: 1977 ident: b13 article-title: Measure and integral contributor: fullname: Zygmund – volume: 146 start-page: 747 year: 1962 end-page: 750 ident: b2 article-title: An estimate of the parameters of a complex stationary Gaussian Markov process publication-title: Dokl Akad Nauk SSSR contributor: fullname: Sinai – volume: 41B start-page: 573 year: 2021 end-page: 595 ident: b18 article-title: Parameter estimation for an Ornstein–Uhlenbeck processes driven by a general Gaussian noise publication-title: Acta Math Sci contributor: fullname: Zhou – volume: vol. 40 year: 1999 ident: b12 publication-title: Real analysis contributor: fullname: Folland – volume: vol. 45 year: 1982 ident: b3 article-title: Linear stochastic systems with constant coefficients publication-title: A statistical approach contributor: fullname: Arató – volume: 14 start-page: 613 year: 2017 end-page: 629 ident: b4 article-title: Parameter estimation of complex fractional Ornstein–Uhlenbeck processes with fractional noise publication-title: ALEA Lat Am J Probab Math Stat contributor: fullname: Wang – volume: 330 start-page: 1115 year: 2007 end-page: 1127 ident: b10 article-title: On the Wiener integral with respect to the fractional Brownian motion on an interval publication-title: J Math Anal Appl contributor: fullname: Jolis – volume: 65 start-page: 264 year: 1958 end-page: 266 ident: b16 article-title: L’Hospital’s rule for complex-valued functions publication-title: Appl Math Model contributor: fullname: Carter – start-page: 385 year: 2013 end-page: 412 ident: b8 article-title: Parameter estimation for publication-title: Malliavin calculus and stochastic analysis contributor: fullname: Nourdin – volume: 41B start-page: 573 issue: 2 year: 2021 ident: 10.1016/j.chaos.2024.115556_b18 article-title: Parameter estimation for an Ornstein–Uhlenbeck processes driven by a general Gaussian noise publication-title: Acta Math Sci doi: 10.1007/s10473-021-0218-x contributor: fullname: Chen – year: 1980 ident: 10.1016/j.chaos.2024.115556_b14 article-title: Methods of modern mathematical physics contributor: fullname: Reed – start-page: 385 year: 2013 ident: 10.1016/j.chaos.2024.115556_b8 article-title: Parameter estimation for α-fractional bridges contributor: fullname: Es-Sebaiy – volume: 146 start-page: 747 year: 1962 ident: 10.1016/j.chaos.2024.115556_b2 article-title: An estimate of the parameters of a complex stationary Gaussian Markov process publication-title: Dokl Akad Nauk SSSR contributor: fullname: Arató – volume: 94 start-page: 537 issue: 4 year: 2022 ident: 10.1016/j.chaos.2024.115556_b5 article-title: Least-squares estimation for the Vasicek model driven by the complex fractional Brownian motion publication-title: Stochastics doi: 10.1080/17442508.2021.1959587 contributor: fullname: Shen – year: 2024 ident: 10.1016/j.chaos.2024.115556_b15 contributor: fullname: Chen – year: 1977 ident: 10.1016/j.chaos.2024.115556_b13 contributor: fullname: Wheeden – volume: 14 start-page: 613 year: 2017 ident: 10.1016/j.chaos.2024.115556_b4 article-title: Parameter estimation of complex fractional Ornstein–Uhlenbeck processes with fractional noise publication-title: ALEA Lat Am J Probab Math Stat doi: 10.30757/ALEA.v14-30 contributor: fullname: Chen – year: 2024 ident: 10.1016/j.chaos.2024.115556_b11 contributor: fullname: Chen – volume: 65 start-page: 264 issue: 4 year: 1958 ident: 10.1016/j.chaos.2024.115556_b16 article-title: L’Hospital’s rule for complex-valued functions publication-title: Appl Math Model contributor: fullname: Carter – volume: vol. 40 year: 1999 ident: 10.1016/j.chaos.2024.115556_b12 contributor: fullname: Folland – volume: 91 start-page: 1067 issue: 8 year: 2019 ident: 10.1016/j.chaos.2024.115556_b1 article-title: Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion publication-title: Stochastics doi: 10.1080/17442508.2018.1563606 contributor: fullname: Hu – year: 2008 ident: 10.1016/j.chaos.2024.115556_b9 contributor: fullname: Mishura – volume: vol. 45 year: 1982 ident: 10.1016/j.chaos.2024.115556_b3 article-title: Linear stochastic systems with constant coefficients contributor: fullname: Arató – volume: 118 start-page: 251 issue: 2 year: 2000 ident: 10.1016/j.chaos.2024.115556_b17 article-title: Integration questions related to fractional Brownian motion publication-title: Probab Theory Related Fields doi: 10.1007/s440-000-8016-7 contributor: fullname: Pipiras – volume: 85 start-page: 572 issue: 1 year: 2023 ident: 10.1016/j.chaos.2024.115556_b7 article-title: An α-order fractional Brownian motion with hurst index H∈(0,1) and α∈R+ publication-title: Sankhya A doi: 10.1007/s13171-021-00266-z contributor: fullname: El Omari – volume: 330 start-page: 1115 issue: 2 year: 2007 ident: 10.1016/j.chaos.2024.115556_b10 article-title: On the Wiener integral with respect to the fractional Brownian motion on an interval publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2006.07.100 contributor: fullname: Jolis – volume: 22 start-page: 111 year: 2019 ident: 10.1016/j.chaos.2024.115556_b6 article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter publication-title: Stat Inference Stoch Process doi: 10.1007/s11203-017-9168-2 contributor: fullname: Hu |
SSID | ssj0001062 |
Score | 2.4882865 |
Snippet | We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein–Uhlenbeck processes... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 115556 |
SubjectTerms | Complex Wiener–Itô multiple integral Fourth moment theorem Fractional Brownian motion Fractional Ornstein–Uhlenbeck process Least squares estimate α-fractional Brownian bridge α-order fractional Brownian motion |
Title | Parameter estimation for the complex fractional Ornstein–Uhlenbeck processes with Hurst parameter H∈(0,12) |
URI | https://dx.doi.org/10.1016/j.chaos.2024.115556 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgbip-jhw8bLC6dk0_chzDUZVNQQe7lSZN2FS6sg_wJB539z_cX-JL004F8eChh5a8tPxI3vulee8XhC48G2KsdITBY48YxImo4buCwVJFKa_40pK-qh3uD9xgSG5GzqiEukUtjEqrzH2_9umZt86ftHI0W-lk0npQ5Nv0PFhAqBiWlV8TCEYwpi_fvtI8YMmT7SRAY0O1LpSHshwvPo6mSrO7TcB1OI46xfq36PQt4vT20G5OFXFHf00FlURSRTv9jc7qvIoq-dSc43quH93YR8l9pDKuADCsJDR0bSIGcorBEmc55OIVy5kuaYA33M2AI4pJsn7_GI5fVMoXf8apriCArtWvWhwsgSbidNNzsF6t6mbTajcO0LB39dgNjPxYBYPD_F0YDCiS25bcFDFchFsWk67NORXCcnwa-20SU5_TGMicVLumjImYcNNljpCMS_sQlZNpIo4QtiIwYia3XSqJjF0gkz5lQBHU8fWeoMeoWcAZplo9IyzSyp7CDP1QoR9q9I-RW0Ae_hgEIfj3vwxP_mt4irbVnS4uPEPlxWwpzoFlLFgtG0Y1tNW5vg0Gn9gp0-g |
link.rule.ids | 315,786,790,4521,24144,27955,27956,45618,45712 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgADogVEeXpgaKWG5v0YUUUVoC1ItFK3qHZstYDSqA-JCTF25x_2l3CXRwEJMTBkSXxOdLLvPsfffSbkwjEgx0pLKDx0TMW0hp7i2oLBUgWVV1ypSRdrhztd2--btwNrUCDNvBYGaZVZ7E9jehKtszuNzJuNeDxuPCL4Vh0HFhCYw7D8egPRAPK6Lt--eB6w5km2EqC1gs1z6aGE5MVHwwmKdusmxA7LwmOsf0tP31JOa5fsZFiRXqWfUyIFEZXJdmcttDork1I2N2e0mglI1_ZI9DBEyhV4jKKGRlqcSAGdUrCkCYlcvFI5TWsa4A33UwCJYhyt3j_6oxfkfPFnGqclBNA1_qul_gJwIo3XPfur5bKq1jW9tk_6rete01eycxUUDhN4rjDASLYuuSpCuEyuaUzaBueeEJrleqGrm6Hnci8ENCdx25QxEZpctZklJOPSOCDFaBKJQ0K1IRgxlRu2J00Z2oAmXY8BRsDz6x3hVUg9d2cQp_IZQc4rewoS7wfo_SD1foXYucuDH6MggAD_l-HRfw3Pyabf67SD9k337phs4ZO00vCEFOfThTgFyDFnZ8mQ-gTwvdWB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+for+the+complex+fractional+Ornstein%E2%80%93Uhlenbeck+processes+with+Hurst+parameter+H%E2%88%88%280%2C12%29&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Alazemi%2C+Fares&rft.au=Alsenafi%2C+Abdulaziz&rft.au=Chen%2C+Yong&rft.au=Zhou%2C+Hongjuan&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=188&rft_id=info:doi/10.1016%2Fj.chaos.2024.115556&rft.externalDocID=S0960077924011081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |