Graph neural network-based long method and blob code smell detection
•We propose a graph neural network-based model for long method and blob code smell detection.•The best strategies for the class imbalance of graph data and graph pooling are determined through experiments in our method.•During model design for abstract syntax tree of code, Euclidean space and non-Eu...
Saved in:
Published in | Science of computer programming Vol. 243; p. 103284 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-6423 |
DOI | 10.1016/j.scico.2025.103284 |
Cover
Loading…
Abstract | •We propose a graph neural network-based model for long method and blob code smell detection.•The best strategies for the class imbalance of graph data and graph pooling are determined through experiments in our method.•During model design for abstract syntax tree of code, Euclidean space and non-Euclidean space are combined.•The experiments show that our proposed method outperforms machine learning methods and deep learning methods.
The concept of code smell was first proposed in the late nineties, to refer to signals that code may need refactoring. While not necessarily affecting functionality, code smell can hinder understandability and future scalability of the program. As a result, the precise detection of code smell has become an important topic in coding research. However, current detection methods are limited by imbalanced and industrial-irrelevant datasets, a lack of sufficient structural and logical information on the code, and simple model architecture. Given these limitations, this paper utilized an industry-relevant and sufficient dataset and then developed a graph neural network to better detect code smell. First, we identified Long Method and Blob as our research subjects due to their frequent occurrence and impacts on the maintainability of software. We then designed modified fuzzy sampling with focalloss to address the issue of data imbalance. Second, to deal with the large volume of data, we proposed a global and local attention scoring mechanism to extract the key information from the code. Third, in order to design a graph neural network specifically for the abstract syntax tree of code, we combined Euclidean space and non-Euclidean space. Finally, we compared our method with other machine learning methods and deep learning methods. The results demonstrate that our method outperforms the other methods on Long Method and Blob, which indicates the effectiveness of our proposed method. |
---|---|
AbstractList | •We propose a graph neural network-based model for long method and blob code smell detection.•The best strategies for the class imbalance of graph data and graph pooling are determined through experiments in our method.•During model design for abstract syntax tree of code, Euclidean space and non-Euclidean space are combined.•The experiments show that our proposed method outperforms machine learning methods and deep learning methods.
The concept of code smell was first proposed in the late nineties, to refer to signals that code may need refactoring. While not necessarily affecting functionality, code smell can hinder understandability and future scalability of the program. As a result, the precise detection of code smell has become an important topic in coding research. However, current detection methods are limited by imbalanced and industrial-irrelevant datasets, a lack of sufficient structural and logical information on the code, and simple model architecture. Given these limitations, this paper utilized an industry-relevant and sufficient dataset and then developed a graph neural network to better detect code smell. First, we identified Long Method and Blob as our research subjects due to their frequent occurrence and impacts on the maintainability of software. We then designed modified fuzzy sampling with focalloss to address the issue of data imbalance. Second, to deal with the large volume of data, we proposed a global and local attention scoring mechanism to extract the key information from the code. Third, in order to design a graph neural network specifically for the abstract syntax tree of code, we combined Euclidean space and non-Euclidean space. Finally, we compared our method with other machine learning methods and deep learning methods. The results demonstrate that our method outperforms the other methods on Long Method and Blob, which indicates the effectiveness of our proposed method. |
ArticleNumber | 103284 |
Author | Hou, Xin Tan, Huobin Capretz, Luiz Fernando Jia, Jingdong Zhang, Minnan |
Author_xml | – sequence: 1 givenname: Minnan surname: Zhang fullname: Zhang, Minnan organization: School of Software, Beihang University, Beijing 100191, China – sequence: 2 givenname: Jingdong surname: Jia fullname: Jia, Jingdong email: jiajingdong@buaa.edu.cn organization: School of Software, Beihang University, Beijing 100191, China – sequence: 3 givenname: Luiz Fernando surname: Capretz fullname: Capretz, Luiz Fernando organization: Department of Electrical & Computer Engineering, Western University, London N6A5B9, Ontario, Canada – sequence: 4 givenname: Xin surname: Hou fullname: Hou, Xin organization: School of Software, Beihang University, Beijing 100191, China – sequence: 5 givenname: Huobin surname: Tan fullname: Tan, Huobin organization: School of Software, Beihang University, Beijing 100191, China |
BookMark | eNp9j7FOwzAQhj0UibbwBCx-gQQ7dpxkYEAFClIlFpgtx3ehCYld2QHE25MQZqZfurvv9H8bsnLeISFXnKWccXXdpdG21qcZy_JpIrJSrsh62hSJkpk4J5sYO8aYkgVfk7t9MKcjdfgRTD_F-OXDe1KbiEB7797ogOPRAzUOaN37mloPSOOAfU8BR7Rj690FOWtMH_HyL7fk9eH-ZfeYHJ73T7vbQ2J5KcakktwyW3CsGBPSADOyyXlTGgF5iSLDDFSZ26rAQlVc8YJLo5TNc4CmVhbElojlrw0-xoCNPoV2MOFbc6Zned3pX3k9y-tFfqJuFgqnap8thvkGnUVow9Rfg2__5X8ADfhnWw |
Cites_doi | 10.1109/TSE.2021.3079841 10.4249/scholarpedia.2776 10.1016/j.infsof.2022.107057 10.1109/TSE.2015.2503740 10.1587/transinf.2023EDP7192 10.1007/s10664-015-9378-4 10.1109/TASLP.2024.3407575 10.1016/j.rse.2008.02.011 10.1016/j.infsof.2017.09.011 10.1016/j.infsof.2021.106736 10.1016/j.jss.2020.110610 10.1007/s10009-022-00662-2 10.18293/SEKE2015-182 10.1016/j.knosys.2022.109737 10.1007/978-981-19-0901-6_25 10.1214/aos/1016218223 10.1109/ACCESS.2022.3213844 10.1016/j.entcs.2005.02.059 10.1016/j.jss.2021.110936 10.3390/app14146149 10.1007/s10664-011-9171-y 10.1002/spe.2697 10.17485/ijst/2015/v8iS2/57796 10.1109/TSE.2013.60 10.1037/0033-2909.114.3.494 10.3390/e24101373 10.18293/SEKE2021-014 10.18293/SEKE2022-077 10.1007/s10664-019-09703-y 10.1016/j.jss.2010.11.918 10.1007/s10664-017-9535-z 10.1007/978-981-99-3734-9_7 10.1016/j.jss.2020.110693 10.1016/j.engappai.2024.109527 10.1016/j.scico.2021.102713 10.1002/smr.344 10.1007/s13369-019-04311-w 10.1109/TSE.2009.50 10.1016/j.infsof.2018.02.004 10.1016/j.eswa.2022.117607 10.1007/s10639-023-12007-w 10.1007/s11219-020-09498-y 10.1109/ACCESS.2024.3387856 10.1016/j.infsof.2016.02.003 10.1109/TSE.2012.89 10.1016/j.infsof.2021.106648 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.scico.2025.103284 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_scico_2025_103284 S0167642325000231 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADHUB ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEXQZ AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION EFKBS |
ID | FETCH-LOGICAL-c183t-941c0c71e90034ad0a4f51f8a3d58e32e2d685c97e769161714a66c55ddfb6cd3 |
IEDL.DBID | .~1 |
ISSN | 0167-6423 |
IngestDate | Tue Aug 05 12:06:11 EDT 2025 Sat Mar 15 15:42:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Code smell Class imbalance Graph pooling Graph neural network Hyperbolic space |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c183t-941c0c71e90034ad0a4f51f8a3d58e32e2d685c97e769161714a66c55ddfb6cd3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167642325000231 |
ParticipantIDs | crossref_primary_10_1016_j_scico_2025_103284 elsevier_sciencedirect_doi_10_1016_j_scico_2025_103284 |
PublicationCentury | 2000 |
PublicationDate | July 2025 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Science of computer programming |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Liu, Niu, Liu (bib0046) 2016; 42 Wilcoxon (bib0094) 1945; 6 Dexun, Peijun, Xiaohong, Tiantian (bib0036) 2012 Sahlaoui, Alaoui, Agoujil, Nayyar (bib0081) 2024; 29 Pecorelli, Palomba, Nucci, Lucia (bib0020) 2019 Olbrich, Cruzes, Sjøberg (bib0011) 2010 Afjehei, Chen, Tsantalis (bib0007) 2019; 24 Kovačević, Slivka, Vidaković, Grujić, Luburić, Prokić, Sladić (bib0048) 2022; 204 Chan, Paelinckx (bib0057) 2008; 112 Wang, Liu, Tan (bib0065) 2016 Diehl, Brunner, Le, Knoll (bib0083) 2019 Zhang, Dong (bib0067) 2021 Palomba, Di Nucci, Tufano, Bavota, Oliveto, Poshyvanyk, De Lucia (bib0090) 2015 Alon, Zilberstein, Levy, Yahav (bib0077) 2018 Khomh, Vaucher, Guéhéneuc, Sahraoui (bib0018) 2009 Palomba, Panichella, De Lucia, Oliveto, Zaidman (bib0044) 2016 Yu, Gao (bib0006) 2022; 43 Bavota, Oliveto, Gethers, Poshyvanyk, De Lucia (bib0040) 2014; 40 Chen, Chen, Ma, Zhou, Zhou, Xu (bib0008) 2018; 94 Tempero, Anslow, Dietrich, Han, Li, Lumpe, Melton, Noble (bib0052) 2010 Yedida, Menzies (bib0082) 2022; 48 Kagdi, Collard, Maletic (bib0045) 2007; 19 Di Nucci, Palomba, Tamburri, Serebrenik, Lucia (bib0053) 2018 Yu, Mao, Ye (bib0069) 2021 Fowler (bib0001) 1999 Bu, Liu, Li (bib0066) 2019; 30 Pecorelli, Di Nucci, De Roover, De Lucia (bib0025) 2020; 169 Marinescu (bib0039) 2004; 2004 Gao, Khoshgoftaar, Napolitano (bib0093) 2015 Alazba, Aljamaan (bib0059) 2021; 138 Ying, You, Morris, Ren, Hamilton, Leskovec (bib0084) 2018 Abbes, Khomh, Gueheneuc, Antoniol (bib0002) 2011 Polikar (bib0055) 2009; 4 Lin, Xiao, Zhang, Xiang (bib0024) 2019 Dewangan, Rao, Yadav (bib0050) 2022 Madeyski, Lewowski (bib0091) 2020 Kreimer (bib0017) 2005; 141 Li, Zhang (bib0070) 2022 Li, He, Zhu, Lyu (bib0063) 2017 Allamanis, Brockschmidt, Khademi (bib0075) 2017 Walter, Alkhaeir (bib0035) 2016; 74 Zhang, Kishi (bib0073) 2024; E107 Hadj-Kacem, Bouassida (bib0027) 2019 Brdar, Vlajkov, Slivka, Grujić, Kovačević (bib0092) 2022 Palomba, Bavota, Di Penta, Fasano, Oliveto, De Lucia (bib0079) 2018; 99 Lacerda, Petrillo, Pimenta, Guéhéneuc (bib0005) 2020; 167 Yadav, Rao, Mishra, Gupta (bib0062) 2025; 139 Peng, Mou, Li, Liu, Zhang, Jin (bib0068) 2015 Cui, Long, Jiang, Na (bib0033) 2022; 24 Guggulothu, Moiz (bib0021) 2020; 28 Jain, Saha (bib0047) 2021; 212 Tsantalis, Chaikalis, Chatzigeorgiou (bib0038) 2008 Dewangan, Rao (bib0019) 2022 Yang, Zhou, Zhihao, Liu, Pan, Xiong, King (bib0086) 2022 Song, Feng, Jing (bib0088) 2022 Yadav, Rao, Mishra (bib0060) 2024; 12 Cliff (bib0095) 1993; 3 Yamashita, Moonen (bib0004) 2013 Alkharabsheh, Alawadi, Kebande, Crespo, Fernández-Delgado, Taboada (bib0054) 2022; 143 Yadav, Rao, Mishara, Gupta (bib0061) 2024; 14 Palomba, Bavota, Penta, Fasano, Oliveto, Lucia (bib0078) 2018; 23 Mohammed, Hassine, Alshayeb (bib0016) 2022; 24 Singh, Bindal, Kumar (bib0043) 2020; 8 Bavota, De Lucia, Marcus, Oliveto (bib0042) 2010 Mesbah, El Madhoun, Al Agha, Chalouati (bib0071) 2024 Feng, Guo, Tang, Duan, Feng, Gong, Shou, Qin, Liu, Jiang, Zhou (bib0097) 2020 Zhang, Kishi (bib0074) 2023; 31 Al-Shaaby, Aljamaan, Alshayeb (bib0089) 2020; 45 Khomh, Penta, Guéhéneuc, Antoniol (bib0003) 2012; 17 Hamilton, Ying, Leskovec (bib0072) 2017 Zhang, Ge, Hong, Tian, Dong, Liu (bib0022) 2022; 255 Pecorelli, Di Nucci, De Roover, De Lucia (bib0026) 2019 Liu, Jin, Xu, Zou, Bu, Zhang (bib0029) 2019; 47 Chen, Han, Lin, He, Xie, Zhou, Liu, Sun (bib0087) 2024; 32 Bavota, De Lucia, Oliveto (bib0041) 2011; 84 Gupta, Rajnish, Bhattacharjee (bib0032) 2022; 10 Azhar, Pozi, Din, Jatowt (bib0080) 2023; 35 Dam, Pham, Ng, Tran, Grundy, Ghose, Kim, Kim (bib0064) 2019 Danphitsanuphan, Suwantada (bib0015) 2012 Fontana, Mäntylä, Zanoni, Marino (bib0051) 2016; 21 Xu, Zhang (bib0028) 2021 Fenske, Schulze, Meyer, Saake (bib0037) 2015 Zhang, Bu, Ester, Zhang, Yao, Yu, Wang (bib0085) 2019 Dewangan, Rao (bib0056) 2023; 725 Friedman, Hastie, Tibshirani (bib0058) 2000; 28 Sousa, Bigonha, Ferreira (bib0009) 2019; 49 Moha, Gueheneuc, Duchien, Meur (bib0014) 2010; 36 Fang, Zhao, Jia (bib0023) 2019 Das, Yadav, Dhal (bib0030) 2019 Sjoberg, Yamashita, Anda, Mockus, Dyba (bib0012) 2013; 39 Alon, Levy, Yahav (bib0076) 2018 Habchi, Moha, Rouvoy (bib0010) 2019 Marinescu, Marinescu, Mihancea, Ratiu, Wettel (bib0096) 2005 Zhou, He, Zeng, Ma (bib0034) 2022; 152 Thenral, Thenralmanoharan (bib0013) 2015; 8 Abdou, Ramadan (bib0049) 2022; 34 Sharma, Efstathiou, Louridas, Spinellis (bib0031) 2021; 176 Fenske (10.1016/j.scico.2025.103284_bib0037) 2015 Abdou (10.1016/j.scico.2025.103284_bib0049) 2022; 34 Sahlaoui (10.1016/j.scico.2025.103284_bib0081) 2024; 29 Yu (10.1016/j.scico.2025.103284_bib0006) 2022; 43 Cui (10.1016/j.scico.2025.103284_bib0033) 2022; 24 Pecorelli (10.1016/j.scico.2025.103284_bib0026) 2019 Mesbah (10.1016/j.scico.2025.103284_bib0071) 2024 Fontana (10.1016/j.scico.2025.103284_bib0051) 2016; 21 Palomba (10.1016/j.scico.2025.103284_bib0079) 2018; 99 Yadav (10.1016/j.scico.2025.103284_bib0061) 2024; 14 Sjoberg (10.1016/j.scico.2025.103284_bib0012) 2013; 39 Lin (10.1016/j.scico.2025.103284_bib0024) 2019 Sousa (10.1016/j.scico.2025.103284_bib0009) 2019; 49 Sharma (10.1016/j.scico.2025.103284_bib0031) 2021; 176 Pecorelli (10.1016/j.scico.2025.103284_bib0020) 2019 Dewangan (10.1016/j.scico.2025.103284_bib0050) 2022 Madeyski (10.1016/j.scico.2025.103284_bib0091) 2020 Palomba (10.1016/j.scico.2025.103284_bib0044) 2016 Bavota (10.1016/j.scico.2025.103284_bib0040) 2014; 40 Jain (10.1016/j.scico.2025.103284_bib0047) 2021; 212 Dewangan (10.1016/j.scico.2025.103284_bib0056) 2023; 725 Marinescu (10.1016/j.scico.2025.103284_bib0096) 2005 Abbes (10.1016/j.scico.2025.103284_bib0002) 2011 Di Nucci (10.1016/j.scico.2025.103284_bib0053) 2018 Diehl (10.1016/j.scico.2025.103284_bib0083) 2019 Singh (10.1016/j.scico.2025.103284_bib0043) 2020; 8 Palomba (10.1016/j.scico.2025.103284_bib0078) 2018; 23 Chen (10.1016/j.scico.2025.103284_bib0087) 2024; 32 Wilcoxon (10.1016/j.scico.2025.103284_bib0094) 1945; 6 Liu (10.1016/j.scico.2025.103284_bib0046) 2016; 42 Zhang (10.1016/j.scico.2025.103284_bib0022) 2022; 255 Alazba (10.1016/j.scico.2025.103284_bib0059) 2021; 138 Dam (10.1016/j.scico.2025.103284_bib0064) 2019 Xu (10.1016/j.scico.2025.103284_bib0028) 2021 Ying (10.1016/j.scico.2025.103284_bib0084) 2018 Pecorelli (10.1016/j.scico.2025.103284_bib0025) 2020; 169 Dewangan (10.1016/j.scico.2025.103284_bib0019) 2022 Bu (10.1016/j.scico.2025.103284_bib0066) 2019; 30 Al-Shaaby (10.1016/j.scico.2025.103284_bib0089) 2020; 45 Gao (10.1016/j.scico.2025.103284_bib0093) 2015 Chen (10.1016/j.scico.2025.103284_bib0008) 2018; 94 Feng (10.1016/j.scico.2025.103284_bib0097) 2020 Zhang (10.1016/j.scico.2025.103284_bib0085) 2019 Afjehei (10.1016/j.scico.2025.103284_bib0007) 2019; 24 Friedman (10.1016/j.scico.2025.103284_bib0058) 2000; 28 Peng (10.1016/j.scico.2025.103284_bib0068) 2015 Kagdi (10.1016/j.scico.2025.103284_bib0045) 2007; 19 Thenral (10.1016/j.scico.2025.103284_bib0013) 2015; 8 Das (10.1016/j.scico.2025.103284_bib0030) 2019 Alkharabsheh (10.1016/j.scico.2025.103284_bib0054) 2022; 143 Li (10.1016/j.scico.2025.103284_bib0063) 2017 Azhar (10.1016/j.scico.2025.103284_bib0080) 2023; 35 Walter (10.1016/j.scico.2025.103284_bib0035) 2016; 74 Zhang (10.1016/j.scico.2025.103284_bib0073) 2024; E107 Moha (10.1016/j.scico.2025.103284_bib0014) 2010; 36 Allamanis (10.1016/j.scico.2025.103284_bib0075) 2017 Lacerda (10.1016/j.scico.2025.103284_bib0005) 2020; 167 Liu (10.1016/j.scico.2025.103284_bib0029) 2019; 47 Yang (10.1016/j.scico.2025.103284_bib0086) 2022 Olbrich (10.1016/j.scico.2025.103284_bib0011) 2010 Hamilton (10.1016/j.scico.2025.103284_bib0072) 2017 Alon (10.1016/j.scico.2025.103284_bib0076) 2018 Polikar (10.1016/j.scico.2025.103284_bib0055) 2009; 4 Fang (10.1016/j.scico.2025.103284_bib0023) 2019 Kovačević (10.1016/j.scico.2025.103284_bib0048) 2022; 204 Zhang (10.1016/j.scico.2025.103284_bib0074) 2023; 31 Wang (10.1016/j.scico.2025.103284_bib0065) 2016 Palomba (10.1016/j.scico.2025.103284_bib0090) 2015 Habchi (10.1016/j.scico.2025.103284_bib0010) 2019 Zhang (10.1016/j.scico.2025.103284_bib0067) 2021 Cliff (10.1016/j.scico.2025.103284_bib0095) 1993; 3 Yamashita (10.1016/j.scico.2025.103284_bib0004) 2013 Gupta (10.1016/j.scico.2025.103284_bib0032) 2022; 10 Bavota (10.1016/j.scico.2025.103284_bib0042) 2010 Chan (10.1016/j.scico.2025.103284_bib0057) 2008; 112 Yu (10.1016/j.scico.2025.103284_bib0069) 2021 Song (10.1016/j.scico.2025.103284_bib0088) 2022 Danphitsanuphan (10.1016/j.scico.2025.103284_bib0015) 2012 Guggulothu (10.1016/j.scico.2025.103284_bib0021) 2020; 28 Bavota (10.1016/j.scico.2025.103284_bib0041) 2011; 84 Mohammed (10.1016/j.scico.2025.103284_bib0016) 2022; 24 Zhou (10.1016/j.scico.2025.103284_bib0034) 2022; 152 Tempero (10.1016/j.scico.2025.103284_bib0052) 2010 Hadj-Kacem (10.1016/j.scico.2025.103284_bib0027) 2019 Yedida (10.1016/j.scico.2025.103284_bib0082) 2022; 48 Khomh (10.1016/j.scico.2025.103284_bib0018) 2009 Li (10.1016/j.scico.2025.103284_bib0070) 2022 Dexun (10.1016/j.scico.2025.103284_bib0036) 2012 Marinescu (10.1016/j.scico.2025.103284_bib0039) 2004; 2004 Tsantalis (10.1016/j.scico.2025.103284_bib0038) 2008 Yadav (10.1016/j.scico.2025.103284_bib0060) 2024; 12 Brdar (10.1016/j.scico.2025.103284_bib0092) 2022 Khomh (10.1016/j.scico.2025.103284_bib0003) 2012; 17 Alon (10.1016/j.scico.2025.103284_bib0077) 2018 Yadav (10.1016/j.scico.2025.103284_bib0062) 2025; 139 Fowler (10.1016/j.scico.2025.103284_bib0001) 1999 Kreimer (10.1016/j.scico.2025.103284_bib0017) 2005; 141 |
References_xml | – volume: 39 start-page: 1144 year: 2013 end-page: 1156 ident: bib0012 article-title: Quantifying the effect of code smells on maintenance effort publication-title: IEEE Trans. Softw. Eng. – volume: 167 year: 2020 ident: bib0005 article-title: Code smells and refactoring: a tertiary systematic review of challenges and observations publication-title: J. Syst. Softw. – start-page: 19 year: 2019 end-page: 24 ident: bib0026 article-title: On the role of data balancing for machine learning-based code smell detection publication-title: Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation – volume: 152 year: 2022 ident: bib0034 article-title: Software defect prediction with semantic and structural information of codes based on Graph Neural Networks publication-title: Inf. Softw. Technol. – start-page: 445 year: 2019 end-page: 456 ident: bib0010 article-title: The rise of android code smells: who is to blame? publication-title: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR) – volume: 34 start-page: 37 year: 2022 ident: bib0049 article-title: Severity classification of software code smells using machine learning techniques: a comparative study publication-title: J. Softw. Evolut. Process. – volume: 3 start-page: 494 year: 1993 end-page: 509 ident: bib0095 article-title: Dominance statistics: ordinal analyses to answer ordinal questions publication-title: Psychol. Bull. – year: 2019 ident: bib0083 article-title: Towards graph pooling by edge contraction publication-title: the ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data – volume: 2004 start-page: 350 year: 2004 end-page: 359 ident: bib0039 article-title: Detection strategies: metrics-based rules for detecting design flaws publication-title: 20th IEEE International Conference on Software Maintenance – start-page: 46 year: 2019 end-page: 57 ident: bib0064 article-title: Lessons learned from using a deep tree-based model for software defect prediction in practice publication-title: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR) – volume: 10 start-page: 108870 year: 2022 end-page: 108894 ident: bib0032 article-title: Cognitive complexity and graph convolutional approach over control flow graph for software defect prediction publication-title: IEEe Access. – year: 2021 ident: bib0028 article-title: Multi-granularity code smell detection using deep learning method based on abstract syntax tree publication-title: International Conference on Software Engineering and Knowledge Engineering – volume: 29 start-page: 5447 year: 2024 end-page: 5483 ident: bib0081 article-title: An empirical assessment of smote variants techniques and interpretation methods in improving the accuracy and the interpretability of student performance models publication-title: Educ. Inf. Technol. – volume: 112 start-page: 2999 year: 2008 end-page: 3011 ident: bib0057 article-title: Evaluation of random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery publication-title: Remote Sens. Environ. – volume: 24 start-page: 1373 year: 2022 ident: bib0033 article-title: Research of software defect prediction model based on complex network and graph neural network publication-title: Entropy – start-page: 148 year: 2024 end-page: 161 ident: bib0071 article-title: Beyond the code: unraveling the applicability of graph neural networks in smell detection publication-title: 2024 Advances in Network-Based Information Systems (NBiS) – volume: 8 start-page: 2223 year: 2020 end-page: 2232 ident: bib0043 article-title: Long method and Long parameter list code smells detection using functional and semantic characteristics publication-title: Int. J. Recent Technol. Eng. – start-page: 1808 year: 2018 ident: bib0076 article-title: code2seq: generating sequences from structured representations of code publication-title: arXiv preprint – volume: 74 start-page: 127 year: 2016 end-page: 142 ident: bib0035 article-title: The relationship between design patterns and code smells: an exploratory study publication-title: Inf. Softw. Technol. – volume: 19 start-page: 77 year: 2007 end-page: 131 ident: bib0045 article-title: A survey and taxonomy of approaches for mining software repositories in the context of software evolution publication-title: J. Softw. Maint. – start-page: 547 year: 2015 end-page: 553 ident: bib0068 article-title: Building program vector representations for deep learning publication-title: 2015 8th International Conference on Knowledge Science, Engineering and Management (KSEM) – start-page: 1 year: 2012 end-page: 5 ident: bib0015 article-title: Code smell detecting tool and code smell-structure bug relationship publication-title: 2012 Spring Congress on Engineering and Technology – volume: 84 start-page: 397 year: 2011 end-page: 414 ident: bib0041 article-title: Identifying extract class refactoring opportunities using structural and semantic cohesion measures publication-title: J. Syst. Softw. – volume: 169 year: 2020 ident: bib0025 article-title: A large empirical assessment of the role of data balancing in machine-learning-based code smell detection publication-title: J. Syst. Softw. – volume: 255 year: 2022 ident: bib0022 article-title: DeleSmell: code smell detection based on deep learning and latent semantic analysis publication-title: Knowl. Based. Syst. – volume: 143 year: 2022 ident: bib0054 article-title: A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: a study of God class publication-title: Inf. Softw. Technol. – start-page: 612 year: 2018 end-page: 621 ident: bib0053 article-title: Detecting code smells using machine learning techniques: are we there yet? publication-title: 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER) – volume: E107 start-page: 1140 year: 2024 end-page: 1150 ident: bib0073 article-title: Large class detection using GNNs: a graph based deep learning approach utilizing three typical GNN model architectures publication-title: IEICe Trans. Inf. Syst. – start-page: 1 year: 2019 end-page: 8 ident: bib0027 article-title: Deep representation learning for code smells detection using variational auto-encoder publication-title: 2019 International Joint Conference on Neural Networks (IJCNN) – start-page: 171 year: 2015 end-page: 180 ident: bib0037 article-title: When code smells twice as much: metric-based detection of variability-aware code smells publication-title: 2015 IEEE 15th International Working Conference on Source Code Analysis and Manipulation (SCAM) – start-page: 151 year: 2010 end-page: 154 ident: bib0042 article-title: A two-step technique for extract class refactoring publication-title: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering – volume: 6 start-page: 196 year: 1945 end-page: 202 ident: bib0094 article-title: Individual comparisons by ranking methods publication-title: Biom – volume: 48 start-page: 3103 year: 2022 end-page: 3116 ident: bib0082 article-title: On the value of oversampling for deep learning in software defect prediction publication-title: IEEE Trans. Softw. Eng. – start-page: 336 year: 2010 end-page: 345 ident: bib0052 article-title: The Qualitas corpus: a curated collection of java code for empirical studies publication-title: 2010 Asia Pacific Software Engineering Conference – start-page: 403 year: 2022 end-page: 408 ident: bib0092 article-title: Semi-supervised detection of Long Method and God Class code smells publication-title: 2022 IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics (SISY) – volume: 47 start-page: 1811 year: 2019 end-page: 1837 ident: bib0029 article-title: Deep learning based code smell detection publication-title: IEEE Trans. Softw. Eng. – volume: 212 year: 2021 ident: bib0047 article-title: Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection publication-title: Sci. Comput. Program. – volume: 12 start-page: 53664 year: 2024 end-page: 53676 ident: bib0060 article-title: An evaluation of multi-label classification approaches for method-level code smells detection publication-title: IEEe Access. – start-page: 1803 year: 2018 ident: bib0077 article-title: code2vec: learning distributed representations of code publication-title: arXiv preprint – volume: 40 start-page: 671 year: 2014 end-page: 694 ident: bib0040 article-title: Methodbook: recommending move method refactorings via relational topic models publication-title: IEEE Trans. Softw. Eng. – start-page: 1911 year: 2019 ident: bib0085 article-title: Hierarchical graph pooling with structure learning publication-title: arXiv preprint – start-page: 1025 year: 2017 end-page: 1035 ident: bib0072 article-title: Inductive representation learning on large graphs publication-title: 2017 31st International Conference on Neural Information Processing Systems (NIPS'17) – start-page: 1711 year: 2017 ident: bib0075 article-title: Learning to represent programs with graphs publication-title: arXiv preprint – volume: 24 start-page: 3484 year: 2019 end-page: 3513 ident: bib0007 article-title: iPerfDetector: characterizing and detecting performance anti-patterns in iOS applications publication-title: Empir. Softw. Eng. – start-page: 2081 year: 2019 end-page: 2086 ident: bib0030 article-title: Detecting code smells using deep learning publication-title: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON) – volume: 24 start-page: 889 year: 2022 end-page: 910 ident: bib0016 article-title: GSDetector: a tool for automatic detection of bad smells in GRL goal models publication-title: Int. J. Softw. Tools. Technol. Transf. – volume: 21 start-page: 1143 year: 2016 end-page: 1191 ident: bib0051 article-title: Comparing and experimenting machine learning techniques for code smell detection publication-title: Empir. Softw. Eng. – start-page: 181 year: 2011 end-page: 190 ident: bib0002 article-title: An empirical study of the impact of two antipatterns, Blob and Spaghetti Code, on program comprehension publication-title: 2011 15th European Conference on Software Maintenance and Reengineering – volume: 94 start-page: 14 year: 2018 end-page: 29 ident: bib0008 article-title: Understanding metric-based detectable smells in Python software: a comparative study publication-title: Inf. Softw. Technol. – start-page: 299 year: 2012 end-page: 304 ident: bib0036 article-title: Detecting bad smells with weight based distance metrics theory publication-title: 2012 S International Conference on Instrumentation, Measurement, Computer, Communication and Control – volume: 4 start-page: 2776 year: 2009 ident: bib0055 article-title: Ensemble learning publication-title: Scholarpedia – year: 2021 ident: bib0067 article-title: MARS: detecting brain class/method code smell based on metric–attention mechanism and residual network publication-title: J. Softw. Evolut. Process. – volume: 45 year: 2020 ident: bib0089 article-title: Bad smell detection using machine learning techniques: a systematic literature review publication-title: Arabian J. Sci. Eng. – start-page: 2002 year: 2020 ident: bib0097 article-title: CodeBERT: a pre-trained model for programming and natural languages publication-title: arXiv preprint – volume: 49 year: 2019 ident: bib0009 article-title: An exploratory study on cooccurrence of design patterns and bad smells using software metrics publication-title: Softw. Pract. Exp. – start-page: 329 year: 2008 end-page: 331 ident: bib0038 article-title: JDeodorant: identification and removal of type-checking bad smells publication-title: 2008 12th European Conference on Software Maintenance and Reengineering – volume: 31 start-page: 469 year: 2023 end-page: 477 ident: bib0074 article-title: Long method detection using graph convolutional networks publication-title: J. Inf. Process. – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: bib0058 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann. Stat. – start-page: 1806 year: 2018 ident: bib0084 article-title: Hierarchical graph representation learning with differentiable pooling publication-title: arXiv preprint – volume: 99 start-page: 1 year: 2018 end-page: 10 ident: bib0079 article-title: A large-scale empirical study on the lifecycle of code smell co-occurrences publication-title: Inf. Softw. Technol. – volume: 32 start-page: 3101 year: 2024 end-page: 3112 ident: bib0087 article-title: Hyperbolic pre-trained language model publication-title: IEEE/ACM. Trans. Audio Speech. Lang. Process. – volume: 36 start-page: 20 year: 2010 end-page: 36 ident: bib0014 article-title: DECOR: a method for the specification and detection of code and design smells publication-title: IEEE Trans. Softw. Eng. – start-page: 342 year: 2020 end-page: 347 ident: bib0091 article-title: MLCQ: industry-relevant code smell data set publication-title: the 24th International Conference on Evaluation and Assessment in Software Engineering – year: 1999 ident: bib0001 article-title: Refactoring: Improving the Design of Existing Code – start-page: 1 year: 2010 end-page: 10 ident: bib0011 article-title: Are all code smells harmful? a study of God classes and Brain classes in the evolution of three open source systems publication-title: 2010 IEEE International Conference on Software Maintenance – start-page: 2205 year: 2022 ident: bib0088 article-title: Hyperbolic relevance matching for neural keyphase extraction publication-title: arXiv preprint – start-page: 2202 year: 2022 ident: bib0086 article-title: Hyperbolic graph neural networks: a review of methods and applications publication-title: arXiv preprint – volume: 28 start-page: 1063 year: 2020 end-page: 1086 ident: bib0021 article-title: Code smell detection using multi-label classification approach publication-title: Softw. Qual. J. – volume: 17 start-page: 243 year: 2012 end-page: 275 ident: bib0003 article-title: An exploratory study of the impact of antipatterns on class change- and fault-proneness publication-title: Empir. Softw. Eng. – start-page: 738 year: 2021 end-page: 748 ident: bib0069 article-title: A novel tree-based neural network for android code smells detection publication-title: 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS) – start-page: 25 year: 2005 end-page: 30 ident: bib0096 article-title: iPlasma: an integrated platform for quality assessment of object-oriented design publication-title: 21st IEEE International Conference on Software Maintenance (ICSM) – volume: 204 year: 2022 ident: bib0048 article-title: Automatic detection of long method and god class code smells through neural source code embeddings publication-title: Expert. Syst. Appl. – start-page: 1 year: 2016 end-page: 10 ident: bib0044 article-title: A textual-based technique for smell detection publication-title: 2016 IEEE 24th International Conference on Program Comprehension (ICPC) – start-page: 93 year: 2019 end-page: 104 ident: bib0020 article-title: Comparing heuristic and machine learning approaches for metric-based code smell detection publication-title: 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC) – start-page: 297 year: 2016 end-page: 308 ident: bib0065 article-title: Automatically learning semantic features for defect prediction publication-title: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) – volume: 42 start-page: 544 year: 2016 end-page: 558 ident: bib0046 article-title: Dynamic and automatic feedback-based threshold adaptation for code smell detection publication-title: IEEE Trans. Softw. Eng. – volume: 30 start-page: 1359 year: 2019 end-page: 1374 ident: bib0066 article-title: God Class detection approach based on deep learning publication-title: J. Softw. – start-page: 42 year: 2022 end-page: 47 ident: bib0070 article-title: Multi-label code smell detection with hybrid model based on deep learning publication-title: 2022 International Conference on Software Engineering and Knowledge Engineering – start-page: 257 year: 2022 end-page: 266 ident: bib0019 article-title: Code smell detection using classification approaches, in: intelligent Systems publication-title: Lecture Notes in Networks and Systems – volume: 14 start-page: 6149 year: 2024 ident: bib0061 article-title: Machine learning-based methods for code smell detection: a survey publication-title: Appl. Sci. – start-page: 1 year: 2022 end-page: 4 ident: bib0050 article-title: Dimensionally reduction based machine learning approaches for code smells detection publication-title: 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) – volume: 43 start-page: 2667 year: 2022 end-page: 2674 ident: bib0006 article-title: Research on developer perceived code smell intensity prediction model based on LightGBM and CFS publication-title: J. Chin. Comput. Syst. – volume: 8 start-page: 23 year: 2015 end-page: 28 ident: bib0013 article-title: Sequential ordering of code smells and usage of heuristic algorithm publication-title: Indian J. Sci. Technol. – start-page: 311 year: 2019 end-page: 317 ident: bib0023 article-title: Exercise difficulty prediction in online education systems publication-title: 2019 International Conference on Data Mining Workshops (ICDMW) – volume: 35 start-page: 6651 year: 2023 end-page: 6672 ident: bib0080 article-title: An investigation of SMOTE based methods for imbalanced datasets with data complexity analysis publication-title: IEEe Trans. Knowl. Data Eng. – volume: 139 year: 2025 ident: bib0062 article-title: Ensemble methods with feature selection and data balancing for improved code smells classification performance publication-title: Eng. Appl. Artif. Intell. – start-page: 318 year: 2017 end-page: 328 ident: bib0063 article-title: Software defect prediction via convolutional neural network publication-title: 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS) – volume: 176 year: 2021 ident: bib0031 article-title: Code smell detection by deep direct-learning and transfer-learning publication-title: J. Syst. Softw. – volume: 138 year: 2021 ident: bib0059 article-title: Code smell detection using feature selection and stacking ensemble: an empirical investigation publication-title: Inf. Softw. Technol. – start-page: 305 year: 2009 end-page: 314 ident: bib0018 article-title: A bayesian approach for the detection of code and design smells publication-title: 2009 Ninth International Conference on Quality Software – volume: 725 start-page: 77 year: 2023 end-page: 86 ident: bib0056 article-title: Method-level code smells detection using machine learning models publication-title: Lect. Notes Netw. Syst. – volume: 141 start-page: 117 year: 2005 end-page: 136 ident: bib0017 article-title: Adaptive detection of design flaws publication-title: Electr. Notes Theor. Comput. Sci. – start-page: 682 year: 2013 end-page: 691 ident: bib0004 article-title: Exploring the impact of inter-smell relations on software maintainability: an empirical study publication-title: 2013 International Conference on Software Engineering – start-page: 219 year: 2019 end-page: 232 ident: bib0024 article-title: Deep learning-based vulnerable function detection: a benchmark publication-title: 21st International Conference on Information and Communications Security (ICICS) – start-page: 482 year: 2015 end-page: 485 ident: bib0090 article-title: Landfill: an open dataset of code smells with public evaluation publication-title: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories – volume: 23 start-page: 1188 year: 2018 end-page: 1221 ident: bib0078 article-title: On the diffuseness and the impact on maintainability of code smells: a large scale empirical investigation publication-title: Empir. Softw. Eng. – start-page: 439 year: 2015 end-page: 444 ident: bib0093 article-title: Combining feature subset selection and data sampling for coping with highly imbalanced software data publication-title: International Conference on Software Engineering and Knowledge Engineering – volume: 48 start-page: 3103 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0082 article-title: On the value of oversampling for deep learning in software defect prediction publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2021.3079841 – volume: 4 start-page: 2776 year: 2009 ident: 10.1016/j.scico.2025.103284_bib0055 article-title: Ensemble learning publication-title: Scholarpedia doi: 10.4249/scholarpedia.2776 – start-page: 1806 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0084 article-title: Hierarchical graph representation learning with differentiable pooling publication-title: arXiv preprint – start-page: 299 year: 2012 ident: 10.1016/j.scico.2025.103284_bib0036 article-title: Detecting bad smells with weight based distance metrics theory – start-page: 148 year: 2024 ident: 10.1016/j.scico.2025.103284_bib0071 article-title: Beyond the code: unraveling the applicability of graph neural networks in smell detection – volume: 152 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0034 article-title: Software defect prediction with semantic and structural information of codes based on Graph Neural Networks publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2022.107057 – volume: 42 start-page: 544 year: 2016 ident: 10.1016/j.scico.2025.103284_bib0046 article-title: Dynamic and automatic feedback-based threshold adaptation for code smell detection publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2015.2503740 – volume: E107 start-page: 1140 year: 2024 ident: 10.1016/j.scico.2025.103284_bib0073 article-title: Large class detection using GNNs: a graph based deep learning approach utilizing three typical GNN model architectures publication-title: IEICe Trans. Inf. Syst. doi: 10.1587/transinf.2023EDP7192 – start-page: 151 year: 2010 ident: 10.1016/j.scico.2025.103284_bib0042 article-title: A two-step technique for extract class refactoring – volume: 21 start-page: 1143 year: 2016 ident: 10.1016/j.scico.2025.103284_bib0051 article-title: Comparing and experimenting machine learning techniques for code smell detection publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-015-9378-4 – volume: 32 start-page: 3101 year: 2024 ident: 10.1016/j.scico.2025.103284_bib0087 article-title: Hyperbolic pre-trained language model publication-title: IEEE/ACM. Trans. Audio Speech. Lang. Process. doi: 10.1109/TASLP.2024.3407575 – volume: 2004 start-page: 350 year: 2004 ident: 10.1016/j.scico.2025.103284_bib0039 article-title: Detection strategies: metrics-based rules for detecting design flaws – year: 2021 ident: 10.1016/j.scico.2025.103284_bib0067 article-title: MARS: detecting brain class/method code smell based on metric–attention mechanism and residual network publication-title: J. Softw. Evolut. Process. – volume: 112 start-page: 2999 year: 2008 ident: 10.1016/j.scico.2025.103284_bib0057 article-title: Evaluation of random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.011 – volume: 94 start-page: 14 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0008 article-title: Understanding metric-based detectable smells in Python software: a comparative study publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2017.09.011 – start-page: 336 year: 2010 ident: 10.1016/j.scico.2025.103284_bib0052 article-title: The Qualitas corpus: a curated collection of java code for empirical studies – volume: 143 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0054 article-title: A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: a study of God class publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2021.106736 – start-page: 482 year: 2015 ident: 10.1016/j.scico.2025.103284_bib0090 article-title: Landfill: an open dataset of code smells with public evaluation – volume: 167 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0005 article-title: Code smells and refactoring: a tertiary systematic review of challenges and observations publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2020.110610 – volume: 24 start-page: 889 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0016 article-title: GSDetector: a tool for automatic detection of bad smells in GRL goal models publication-title: Int. J. Softw. Tools. Technol. Transf. doi: 10.1007/s10009-022-00662-2 – start-page: 25 year: 2005 ident: 10.1016/j.scico.2025.103284_bib0096 article-title: iPlasma: an integrated platform for quality assessment of object-oriented design – start-page: 1911 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0085 article-title: Hierarchical graph pooling with structure learning publication-title: arXiv preprint – start-page: 439 year: 2015 ident: 10.1016/j.scico.2025.103284_bib0093 article-title: Combining feature subset selection and data sampling for coping with highly imbalanced software data doi: 10.18293/SEKE2015-182 – start-page: 19 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0026 article-title: On the role of data balancing for machine learning-based code smell detection – start-page: 1808 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0076 article-title: code2seq: generating sequences from structured representations of code publication-title: arXiv preprint – volume: 255 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0022 article-title: DeleSmell: code smell detection based on deep learning and latent semantic analysis publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2022.109737 – start-page: 445 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0010 article-title: The rise of android code smells: who is to blame? – start-page: 257 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0019 article-title: Code smell detection using classification approaches, in: intelligent Systems doi: 10.1007/978-981-19-0901-6_25 – start-page: 403 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0092 article-title: Semi-supervised detection of Long Method and God Class code smells – start-page: 1025 year: 2017 ident: 10.1016/j.scico.2025.103284_bib0072 article-title: Inductive representation learning on large graphs – volume: 31 start-page: 469 year: 2023 ident: 10.1016/j.scico.2025.103284_bib0074 article-title: Long method detection using graph convolutional networks publication-title: J. Inf. Process. – volume: 28 start-page: 337 year: 2000 ident: 10.1016/j.scico.2025.103284_bib0058 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – volume: 10 start-page: 108870 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0032 article-title: Cognitive complexity and graph convolutional approach over control flow graph for software defect prediction publication-title: IEEe Access. doi: 10.1109/ACCESS.2022.3213844 – start-page: 1711 year: 2017 ident: 10.1016/j.scico.2025.103284_bib0075 article-title: Learning to represent programs with graphs publication-title: arXiv preprint – volume: 35 start-page: 6651 year: 2023 ident: 10.1016/j.scico.2025.103284_bib0080 article-title: An investigation of SMOTE based methods for imbalanced datasets with data complexity analysis publication-title: IEEe Trans. Knowl. Data Eng. – volume: 43 start-page: 2667 issue: 12 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0006 article-title: Research on developer perceived code smell intensity prediction model based on LightGBM and CFS publication-title: J. Chin. Comput. Syst. – start-page: 181 year: 2011 ident: 10.1016/j.scico.2025.103284_bib0002 article-title: An empirical study of the impact of two antipatterns, Blob and Spaghetti Code, on program comprehension – year: 2019 ident: 10.1016/j.scico.2025.103284_bib0083 article-title: Towards graph pooling by edge contraction – start-page: 738 year: 2021 ident: 10.1016/j.scico.2025.103284_bib0069 article-title: A novel tree-based neural network for android code smells detection – volume: 141 start-page: 117 year: 2005 ident: 10.1016/j.scico.2025.103284_bib0017 article-title: Adaptive detection of design flaws publication-title: Electr. Notes Theor. Comput. Sci. doi: 10.1016/j.entcs.2005.02.059 – start-page: 329 year: 2008 ident: 10.1016/j.scico.2025.103284_bib0038 article-title: JDeodorant: identification and removal of type-checking bad smells – start-page: 219 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0024 article-title: Deep learning-based vulnerable function detection: a benchmark – volume: 176 year: 2021 ident: 10.1016/j.scico.2025.103284_bib0031 article-title: Code smell detection by deep direct-learning and transfer-learning publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2021.110936 – volume: 14 start-page: 6149 year: 2024 ident: 10.1016/j.scico.2025.103284_bib0061 article-title: Machine learning-based methods for code smell detection: a survey publication-title: Appl. Sci. doi: 10.3390/app14146149 – start-page: 547 year: 2015 ident: 10.1016/j.scico.2025.103284_bib0068 article-title: Building program vector representations for deep learning – start-page: 1 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0050 article-title: Dimensionally reduction based machine learning approaches for code smells detection – start-page: 2205 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0088 article-title: Hyperbolic relevance matching for neural keyphase extraction publication-title: arXiv preprint – volume: 17 start-page: 243 year: 2012 ident: 10.1016/j.scico.2025.103284_bib0003 article-title: An exploratory study of the impact of antipatterns on class change- and fault-proneness publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-011-9171-y – volume: 49 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0009 article-title: An exploratory study on cooccurrence of design patterns and bad smells using software metrics publication-title: Softw. Pract. Exp. doi: 10.1002/spe.2697 – volume: 8 start-page: 23 year: 2015 ident: 10.1016/j.scico.2025.103284_bib0013 article-title: Sequential ordering of code smells and usage of heuristic algorithm publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2015/v8iS2/57796 – start-page: 2081 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0030 article-title: Detecting code smells using deep learning – volume: 40 start-page: 671 year: 2014 ident: 10.1016/j.scico.2025.103284_bib0040 article-title: Methodbook: recommending move method refactorings via relational topic models publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2013.60 – start-page: 93 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0020 article-title: Comparing heuristic and machine learning approaches for metric-based code smell detection – volume: 3 start-page: 494 year: 1993 ident: 10.1016/j.scico.2025.103284_bib0095 article-title: Dominance statistics: ordinal analyses to answer ordinal questions publication-title: Psychol. Bull. doi: 10.1037/0033-2909.114.3.494 – volume: 24 start-page: 1373 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0033 article-title: Research of software defect prediction model based on complex network and graph neural network publication-title: Entropy doi: 10.3390/e24101373 – start-page: 1 year: 2016 ident: 10.1016/j.scico.2025.103284_bib0044 article-title: A textual-based technique for smell detection – year: 2021 ident: 10.1016/j.scico.2025.103284_bib0028 article-title: Multi-granularity code smell detection using deep learning method based on abstract syntax tree doi: 10.18293/SEKE2021-014 – start-page: 42 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0070 article-title: Multi-label code smell detection with hybrid model based on deep learning doi: 10.18293/SEKE2022-077 – volume: 24 start-page: 3484 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0007 article-title: iPerfDetector: characterizing and detecting performance anti-patterns in iOS applications publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-019-09703-y – start-page: 311 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0023 article-title: Exercise difficulty prediction in online education systems – volume: 84 start-page: 397 year: 2011 ident: 10.1016/j.scico.2025.103284_bib0041 article-title: Identifying extract class refactoring opportunities using structural and semantic cohesion measures publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2010.11.918 – volume: 23 start-page: 1188 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0078 article-title: On the diffuseness and the impact on maintainability of code smells: a large scale empirical investigation publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-017-9535-z – volume: 725 start-page: 77 year: 2023 ident: 10.1016/j.scico.2025.103284_bib0056 article-title: Method-level code smells detection using machine learning models publication-title: Lect. Notes Netw. Syst. doi: 10.1007/978-981-99-3734-9_7 – volume: 169 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0025 article-title: A large empirical assessment of the role of data balancing in machine-learning-based code smell detection publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2020.110693 – volume: 139 year: 2025 ident: 10.1016/j.scico.2025.103284_bib0062 article-title: Ensemble methods with feature selection and data balancing for improved code smells classification performance publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109527 – start-page: 297 year: 2016 ident: 10.1016/j.scico.2025.103284_bib0065 article-title: Automatically learning semantic features for defect prediction – volume: 30 start-page: 1359 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0066 article-title: God Class detection approach based on deep learning publication-title: J. Softw. – start-page: 342 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0091 article-title: MLCQ: industry-relevant code smell data set – volume: 212 year: 2021 ident: 10.1016/j.scico.2025.103284_bib0047 article-title: Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2021.102713 – volume: 8 start-page: 2223 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0043 article-title: Long method and Long parameter list code smells detection using functional and semantic characteristics publication-title: Int. J. Recent Technol. Eng. – start-page: 1803 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0077 article-title: code2vec: learning distributed representations of code publication-title: arXiv preprint – volume: 19 start-page: 77 year: 2007 ident: 10.1016/j.scico.2025.103284_bib0045 article-title: A survey and taxonomy of approaches for mining software repositories in the context of software evolution publication-title: J. Softw. Maint. doi: 10.1002/smr.344 – volume: 45 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0089 article-title: Bad smell detection using machine learning techniques: a systematic literature review publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-019-04311-w – start-page: 682 year: 2013 ident: 10.1016/j.scico.2025.103284_bib0004 article-title: Exploring the impact of inter-smell relations on software maintainability: an empirical study – volume: 36 start-page: 20 year: 2010 ident: 10.1016/j.scico.2025.103284_bib0014 article-title: DECOR: a method for the specification and detection of code and design smells publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2009.50 – volume: 6 start-page: 196 year: 1945 ident: 10.1016/j.scico.2025.103284_bib0094 article-title: Individual comparisons by ranking methods publication-title: Biom – start-page: 46 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0064 article-title: Lessons learned from using a deep tree-based model for software defect prediction in practice – year: 1999 ident: 10.1016/j.scico.2025.103284_bib0001 – volume: 99 start-page: 1 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0079 article-title: A large-scale empirical study on the lifecycle of code smell co-occurrences publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2018.02.004 – volume: 204 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0048 article-title: Automatic detection of long method and god class code smells through neural source code embeddings publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2022.117607 – volume: 29 start-page: 5447 year: 2024 ident: 10.1016/j.scico.2025.103284_bib0081 article-title: An empirical assessment of smote variants techniques and interpretation methods in improving the accuracy and the interpretability of student performance models publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-023-12007-w – volume: 28 start-page: 1063 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0021 article-title: Code smell detection using multi-label classification approach publication-title: Softw. Qual. J. doi: 10.1007/s11219-020-09498-y – start-page: 612 year: 2018 ident: 10.1016/j.scico.2025.103284_bib0053 article-title: Detecting code smells using machine learning techniques: are we there yet? – volume: 47 start-page: 1811 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0029 article-title: Deep learning based code smell detection publication-title: IEEE Trans. Softw. Eng. – start-page: 318 year: 2017 ident: 10.1016/j.scico.2025.103284_bib0063 article-title: Software defect prediction via convolutional neural network – start-page: 2002 year: 2020 ident: 10.1016/j.scico.2025.103284_bib0097 article-title: CodeBERT: a pre-trained model for programming and natural languages publication-title: arXiv preprint – start-page: 1 year: 2010 ident: 10.1016/j.scico.2025.103284_bib0011 article-title: Are all code smells harmful? a study of God classes and Brain classes in the evolution of three open source systems – start-page: 305 year: 2009 ident: 10.1016/j.scico.2025.103284_bib0018 article-title: A bayesian approach for the detection of code and design smells – start-page: 1 year: 2012 ident: 10.1016/j.scico.2025.103284_bib0015 article-title: Code smell detecting tool and code smell-structure bug relationship – volume: 34 start-page: 37 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0049 article-title: Severity classification of software code smells using machine learning techniques: a comparative study publication-title: J. Softw. Evolut. Process. – volume: 12 start-page: 53664 year: 2024 ident: 10.1016/j.scico.2025.103284_bib0060 article-title: An evaluation of multi-label classification approaches for method-level code smells detection publication-title: IEEe Access. doi: 10.1109/ACCESS.2024.3387856 – volume: 74 start-page: 127 year: 2016 ident: 10.1016/j.scico.2025.103284_bib0035 article-title: The relationship between design patterns and code smells: an exploratory study publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2016.02.003 – start-page: 171 year: 2015 ident: 10.1016/j.scico.2025.103284_bib0037 article-title: When code smells twice as much: metric-based detection of variability-aware code smells – start-page: 1 year: 2019 ident: 10.1016/j.scico.2025.103284_bib0027 article-title: Deep representation learning for code smells detection using variational auto-encoder – start-page: 2202 year: 2022 ident: 10.1016/j.scico.2025.103284_bib0086 article-title: Hyperbolic graph neural networks: a review of methods and applications publication-title: arXiv preprint – volume: 39 start-page: 1144 year: 2013 ident: 10.1016/j.scico.2025.103284_bib0012 article-title: Quantifying the effect of code smells on maintenance effort publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.89 – volume: 138 year: 2021 ident: 10.1016/j.scico.2025.103284_bib0059 article-title: Code smell detection using feature selection and stacking ensemble: an empirical investigation publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2021.106648 |
SSID | ssj0006471 |
Score | 2.467813 |
Snippet | •We propose a graph neural network-based model for long method and blob code smell detection.•The best strategies for the class imbalance of graph data and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103284 |
SubjectTerms | Class imbalance Code smell Graph neural network Graph pooling Hyperbolic space |
Title | Graph neural network-based long method and blob code smell detection |
URI | https://dx.doi.org/10.1016/j.scico.2025.103284 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZWHhjSiPygMjafOwnXasCqWA1AUqdYsc20FFwa1KWPnt-OxEgIQYGBPZUfTZvvPZ330HcIlXVzaWDYNI42kVL2SQcx0GoczjMBWoWOfUPmd8Oqf3C7ZowbjJhUFaZW37vU131rp-06_R7K-Xy_4jEug53jMyp9riMthpirO89_FF8-A-6HL63ti6UR5yHC_7XYkZgDHrOWE5-rt3-uZxJnuwU28Vycj_zT60tDmA3aYMA6lX5SFc36LoNEFlStvceF53gO5JkXJlnomvEk2EUSQvVznBNHby9qrLkihdOS6WOYL55OZpPA3q4giBtKuwCoY0kqFMI41HkVSoUNCCRcVAJIoNdBLrWPEBk8NUp3yIQUxEBeeSMaWKnEuVHEPbrIw-AaLtHknZwIVHRUKxYJ8QaRjLBGv45oWIO3DVgJKtvQZG1pDDXjKHYYYYZh7DDvAGuOzHUGbWSv_V8fS_Hc9gG588i_Yc2tXmXV_YvUKVd91k6MLW6O5hOvsEmX-7yg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QALb0R5emAkNC877ViVR0tLF1qpm-XYDioKaQXh_-OzEwQSYmBNclH0Ob7z2d99B3CJR1cml_W9QONuFcuklzLte75MQz8RqFhn1T6nbDiPHxZ00YBBXQuDtMrK9zufbr11daVTodlZL5edJyTQMzxnpFa1xaRALVSnok1o9Ufj4fTLITOXd1mJbzSoxYcszcu8WmIRYEivrbZc_HuA-hZ07nZgq1otkr77oF1o6GIPtutODKSamPtwc4-60wTFKc3jhaN2exihFMlXxTNxjaKJKBRJ81VKsJKdvL_qPCdKl5aOVRzA_O52Nhh6VX8ET5qJWHq9OJC-TAKNu5GxUL6IMxpkXREp2tVRqEPFulT2Ep2wHuYxQSwYk5QqlaVMqugQmsWq0EdAtFkmKZO7sCCLYuzZJ0TihzLCNr5pJsI2XNWg8LWTweA1P-yFWww5Ysgdhm1gNXD8x2hy46j_Mjz-r-EFbAxnjxM-GU3HJ7CJdxyp9hSa5duHPjNLhzI9r36NTyYtvns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+network-based+long+method+and+blob+code+smell+detection&rft.jtitle=Science+of+computer+programming&rft.au=Zhang%2C+Minnan&rft.au=Jia%2C+Jingdong&rft.au=Capretz%2C+Luiz+Fernando&rft.au=Hou%2C+Xin&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-6423&rft.volume=243&rft_id=info:doi/10.1016%2Fj.scico.2025.103284&rft.externalDocID=S0167642325000231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6423&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6423&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6423&client=summon |