ACKgram: A robust approach for bearing fault diagnosis under complex interference
•An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to evaluate periodicity and impulsiveness.•A novel ACKgram framework is developed for bearing fault diagnosis under complex interference.•Simula...
Saved in:
Published in | Mechanical systems and signal processing Vol. 230; p. 112646 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-3270 |
DOI | 10.1016/j.ymssp.2025.112646 |
Cover
Abstract | •An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to evaluate periodicity and impulsiveness.•A novel ACKgram framework is developed for bearing fault diagnosis under complex interference.•Simulations and experiments validated ACKgram’s superior accuracy and reliability.
As a vital component in rotating machinery, bearings usually generate repetitive transients when faults occur. However, these fault-characterizing transients are easily masked by various types of interference and noise. As a benchmark method for bearing fault diagnosis solutions, narrowband filtering demodulation (NFD) often relies on fixed-mode frequency band segmentation (FBS), which could result in the omission of essential fault information. Moreover, commonly used indicators for optimal frequency band (OFB) selection either suffer from susceptibility to interference, leading to diagnostic failures, or rely on prior fault information, which limits their practical application. Therefore, a robust bearing fault diagnosis method termed ACKgram is proposed. By iteratively calculating the average envelope of the spectrum, this method enables multi-level adaptive FBS based on the specific spectrum characteristics of different signals, ensuring the completeness of fault information in narrowband signals. In addition, an indicator named adaptive correlated kurtosis (ACK) is introduced, which can be calculated independently of prior fault information. In contrast to conventional indicators, ACK simultaneously evaluates the periodicity and impulsiveness of the signal, providing a reliable criterion for OFB selection. The performance of ACKgram is validated using simulated signals with various types of interference and multiple sets of experimental signals at different rotational speeds. Compared to other typical methods, ACKgram demonstrates exceptional performance in detecting bearing faults under complex interference. |
---|---|
AbstractList | •An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to evaluate periodicity and impulsiveness.•A novel ACKgram framework is developed for bearing fault diagnosis under complex interference.•Simulations and experiments validated ACKgram’s superior accuracy and reliability.
As a vital component in rotating machinery, bearings usually generate repetitive transients when faults occur. However, these fault-characterizing transients are easily masked by various types of interference and noise. As a benchmark method for bearing fault diagnosis solutions, narrowband filtering demodulation (NFD) often relies on fixed-mode frequency band segmentation (FBS), which could result in the omission of essential fault information. Moreover, commonly used indicators for optimal frequency band (OFB) selection either suffer from susceptibility to interference, leading to diagnostic failures, or rely on prior fault information, which limits their practical application. Therefore, a robust bearing fault diagnosis method termed ACKgram is proposed. By iteratively calculating the average envelope of the spectrum, this method enables multi-level adaptive FBS based on the specific spectrum characteristics of different signals, ensuring the completeness of fault information in narrowband signals. In addition, an indicator named adaptive correlated kurtosis (ACK) is introduced, which can be calculated independently of prior fault information. In contrast to conventional indicators, ACK simultaneously evaluates the periodicity and impulsiveness of the signal, providing a reliable criterion for OFB selection. The performance of ACKgram is validated using simulated signals with various types of interference and multiple sets of experimental signals at different rotational speeds. Compared to other typical methods, ACKgram demonstrates exceptional performance in detecting bearing faults under complex interference. |
ArticleNumber | 112646 |
Author | Song, Zhihua Li, Sen Ma, Biao Zhang, Yue Zhao, Ming Chen, Dexin |
Author_xml | – sequence: 1 givenname: Yue surname: Zhang fullname: Zhang, Yue – sequence: 2 givenname: Ming orcidid: 0000-0001-5989-5580 surname: Zhao fullname: Zhao, Ming email: zhaomingxjtu@mail.xjtu.edu.cn – sequence: 3 givenname: Sen surname: Li fullname: Li, Sen – sequence: 4 givenname: Dexin surname: Chen fullname: Chen, Dexin – sequence: 5 givenname: Biao surname: Ma fullname: Ma, Biao – sequence: 6 givenname: Zhihua surname: Song fullname: Song, Zhihua |
BookMark | eNp9kE1OwzAYRL0oEm3hBGx8gQT_xI6DxKKqgCIqISRYW479pbhq7MhOEb09LWXNalZvNPNmaBJiAIRuKCkpofJ2Wx76nIeSESZKSpms5ARNiVKq4Kwml2iW85YQ0lRETtHbYvmySaa_wwucYrvPIzbDkKKxn7iLCbdgkg8b3Jn9bsTOm02I2We8Dw4StrEfdvCNfRghdZAgWLhCF53ZZbj-yzn6eHx4X66K9evT83KxLixVfCwqo0RjJVOyUVa1FTBimWhrK501NXWCNNQ03fGS49CC5I0RRpBaWMt44wifI37utSnmnKDTQ_K9SQdNiT6Z0Fv9a0KfTOiziSN1f6bgOO3LQ9LZ-tNs5xPYUbvo_-V_AKh9bNA |
Cites_doi | 10.1016/j.measurement.2023.112470 10.1016/j.aei.2024.102394 10.1016/j.measurement.2016.05.073 10.3390/a15100347 10.1109/TFUZZ.2018.2878200 10.1109/JSEN.2023.3235585 10.1109/TIM.2024.3450104 10.1016/j.ymssp.2013.10.007 10.1016/j.measurement.2021.110695 10.1016/j.isatra.2020.01.037 10.1016/j.eswa.2024.124453 10.1016/j.ymssp.2020.107511 10.1088/1361-6501/aa8a57 10.1016/j.measurement.2022.112333 10.1016/j.isatra.2021.08.025 10.1088/1361-6501/ac5d77 10.1177/1687814018764148 10.1109/JSEN.2023.3326112 10.1109/TIM.2021.3126847 10.1016/j.ymssp.2012.06.010 10.1016/j.ymssp.2005.12.002 10.1016/j.measurement.2023.112707 10.1016/j.ymssp.2004.09.002 10.1109/TIE.2022.3156156 10.1016/j.ymssp.2024.111629 10.1016/j.ymssp.2017.12.009 10.1016/j.measurement.2017.11.049 10.1016/j.engappai.2024.108102 10.1016/j.ymssp.2017.01.011 10.1016/j.isatra.2021.05.012 10.1016/j.ymssp.2004.09.001 10.1016/j.ymssp.2017.11.013 10.1016/j.ymssp.2023.110270 10.1177/14759217231226267 10.1109/TII.2024.3403248 10.1016/j.ymssp.2019.05.003 10.1016/j.measurement.2023.112770 10.1016/j.ymssp.2015.04.034 10.1016/j.ymssp.2018.02.034 10.1016/j.ymssp.2010.12.011 10.1016/j.ymssp.2019.106303 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ymssp.2025.112646 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ymssp_2025_112646 S0888327025003474 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSH SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG5 LG9 LY7 M41 R2- RIG SBC SET WUQ |
ID | FETCH-LOGICAL-c183t-4a859c628698c8b4e20c25b7c6dca71d5091a9f101d3ebe639a5a5075cc239d03 |
IEDL.DBID | AIKHN |
ISSN | 0888-3270 |
IngestDate | Tue Jul 01 05:10:45 EDT 2025 Sat Apr 26 15:42:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Frequency band segmentation Adaptive correlated kurtosis Rolling bearing Cyclic modulation spectrum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c183t-4a859c628698c8b4e20c25b7c6dca71d5091a9f101d3ebe639a5a5075cc239d03 |
ORCID | 0000-0001-5989-5580 |
ParticipantIDs | crossref_primary_10_1016_j_ymssp_2025_112646 elsevier_sciencedirect_doi_10_1016_j_ymssp_2025_112646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Hou, He, Yang (b0090) 2018; 116 Peng, Zhao, Zhang, Wang, Wang (b0110) 2024; 23 Fang, Hu, Yang, Cao, Jia (b0050) 2021; 33 Lei, Lin, He, Zi (b0105) 2011; 25 Yi, Zhang, Cao, Yan, Zhou, Shi, Tang, Ran, Lin (b0120) 2024; 254 Borghesani, Pennacchi, Chatterton (b0190) 2014; 43 Xu, Zhao, Lin, Lei (b0180) 2016; 91 Zhang, Huang, Xin, Chen (b0200) 2022; 190 Antoni (b0075) 2006; 20 Li, Luo, Bai (b0060) 2024; 35 Zheng, Wang, Pan, Tong, Zhang, Liu (b0115) 2021; 70 Zou, Zhang, Jiang, Zhang, Xu (b0185) 2024; 219 Peng, Bi, Xue, Zhang, Wan (b0030) 2022; 15 Antoni, Xin, Hamzaoui (b0220) 2017; 92 Wang, Huang, Xiong, Yang, Dong, Wu, Wu, Lu (b0005) 2024; 35 Antoni, Randall (b0080) 2006; 20 Miao, Zhao, Lin (b0170) 2017; 28 McDonald, Zhao, Zuo (b0230) 2012; 33 Liu, Yang, Liu, Lin, Gu (b0145) 2021; 154 Chen, Cheng, Zhang, Gu, Mei (b0215) 2022; 127 Chen, Yang, Xue, Huang, Ferrero, Wang (b0040) 2023; 72 Chen, Zhang, Xi Gu, Song, Cheng, Zhou, Gu, Ball (b0205) 2023; 193 Smith, Borghesani, Ni, Wang, Peng (b0195) 2019; 134 Li, de Oliveira, Cerrada, Cabrera, Sanchez, Zurita (b0010) 2019; 27 Cai, Zhang, Tang (b0210) 2023; 206 Wang, Liao, Ding, Zhang (b0025) 2020; 101 Pan, Zhang, Cheng, Zheng, Tong (b0155) 2023; 213 Sui, Ma, Jiang, Zhang, Xu (b0140) 2024; 73 Sharma, Upadhyay, Kankar, Amarnath (b0085) 2018; 10 Wang (b0175) 2018; 104 Moshrefzadeh, Fasana (b0150) 2018; 105 Zhang, Miao, Lin, Li (b0225) 2022; 123 Liu, Cui, Wang (b0035) 2023; 23 Li, Wu, Liu, Li (b0065) 2023; 23 Shi, Miao, Li, Gu (b0045) 2024; 133 Ma, Zhao, Ou, Ma, Zhang (b0015) 2024; 20 Yang, Zhang, Wang, Han, Bao, Liu, Li (b0165) 2022; 33 Pan, Yi, Song, Xu, Zhou, Li, Lin (b0125) 2023; 213 Zhang, Miao, Lin, Liu (b0100) 2023; 210 Miao, Zhang, Li, Lin, Zhang (b0055) 2023; 70 Jiang, Zhang, Zhang, Xu (b0020) 2023; 72 Wang (b0160) 2018; 108 Xu, Zhang, Ma, Cui, Tian (b0135) 2019; 130 Antoni (b0070) 2007; 21 Antoni (b0095) 2016; 74 Liu, Cheng, Hu, Cheng, Yang (b0130) 2024; 60 Jiang (10.1016/j.ymssp.2025.112646_b0020) 2023; 72 Antoni (10.1016/j.ymssp.2025.112646_b0070) 2007; 21 Antoni (10.1016/j.ymssp.2025.112646_b0095) 2016; 74 Miao (10.1016/j.ymssp.2025.112646_b0170) 2017; 28 McDonald (10.1016/j.ymssp.2025.112646_b0230) 2012; 33 Li (10.1016/j.ymssp.2025.112646_b0060) 2024; 35 Zhang (10.1016/j.ymssp.2025.112646_b0100) 2023; 210 Zhang (10.1016/j.ymssp.2025.112646_b0200) 2022; 190 Lei (10.1016/j.ymssp.2025.112646_b0105) 2011; 25 Peng (10.1016/j.ymssp.2025.112646_b0030) 2022; 15 Cai (10.1016/j.ymssp.2025.112646_b0210) 2023; 206 Xu (10.1016/j.ymssp.2025.112646_b0180) 2016; 91 Liu (10.1016/j.ymssp.2025.112646_b0145) 2021; 154 Antoni (10.1016/j.ymssp.2025.112646_b0080) 2006; 20 Chen (10.1016/j.ymssp.2025.112646_b0215) 2022; 127 Zheng (10.1016/j.ymssp.2025.112646_b0115) 2021; 70 Xu (10.1016/j.ymssp.2025.112646_b0135) 2019; 130 Sharma (10.1016/j.ymssp.2025.112646_b0085) 2018; 10 Miao (10.1016/j.ymssp.2025.112646_b0055) 2023; 70 Wang (10.1016/j.ymssp.2025.112646_b0005) 2024; 35 Chen (10.1016/j.ymssp.2025.112646_b0040) 2023; 72 Peng (10.1016/j.ymssp.2025.112646_b0110) 2024; 23 Chen (10.1016/j.ymssp.2025.112646_b0205) 2023; 193 Antoni (10.1016/j.ymssp.2025.112646_b0220) 2017; 92 Liu (10.1016/j.ymssp.2025.112646_b0035) 2023; 23 Antoni (10.1016/j.ymssp.2025.112646_b0075) 2006; 20 Yi (10.1016/j.ymssp.2025.112646_b0120) 2024; 254 Fang (10.1016/j.ymssp.2025.112646_b0050) 2021; 33 Wang (10.1016/j.ymssp.2025.112646_b0175) 2018; 104 Shi (10.1016/j.ymssp.2025.112646_b0045) 2024; 133 Li (10.1016/j.ymssp.2025.112646_b0010) 2019; 27 Wang (10.1016/j.ymssp.2025.112646_b0160) 2018; 108 Zou (10.1016/j.ymssp.2025.112646_b0185) 2024; 219 Pan (10.1016/j.ymssp.2025.112646_b0155) 2023; 213 Liu (10.1016/j.ymssp.2025.112646_b0090) 2018; 116 Pan (10.1016/j.ymssp.2025.112646_b0125) 2023; 213 Sui (10.1016/j.ymssp.2025.112646_b0140) 2024; 73 Moshrefzadeh (10.1016/j.ymssp.2025.112646_b0150) 2018; 105 Zhang (10.1016/j.ymssp.2025.112646_b0225) 2022; 123 Yang (10.1016/j.ymssp.2025.112646_b0165) 2022; 33 Liu (10.1016/j.ymssp.2025.112646_b0130) 2024; 60 Smith (10.1016/j.ymssp.2025.112646_b0195) 2019; 134 Wang (10.1016/j.ymssp.2025.112646_b0025) 2020; 101 Borghesani (10.1016/j.ymssp.2025.112646_b0190) 2014; 43 Ma (10.1016/j.ymssp.2025.112646_b0015) 2024; 20 Li (10.1016/j.ymssp.2025.112646_b0065) 2023; 23 |
References_xml | – volume: 33 year: 2022 ident: b0165 article-title: Fast nonlinear Hoyergram for bearings fault diagnosis under random impact interference publication-title: Meas. Sci. Technol. – volume: 20 start-page: 308 year: 2006 end-page: 331 ident: b0080 article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines publication-title: Mech. Syst. Sig. Process. – volume: 91 start-page: 385 year: 2016 end-page: 397 ident: b0180 article-title: Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis publication-title: Measurement – volume: 210 year: 2023 ident: b0100 article-title: A new two-stage strategy to adaptively design and finely tune the filters for bearing fault-related mode decomposition publication-title: Measurement – volume: 134 year: 2019 ident: b0195 article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools publication-title: Mech. Syst. Sig. Process. – volume: 20 start-page: 282 year: 2006 end-page: 307 ident: b0075 article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals publication-title: Mech. Syst. Sig. Process. – volume: 105 start-page: 294 year: 2018 end-page: 318 ident: b0150 article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 123 start-page: 398 year: 2022 end-page: 412 ident: b0225 article-title: Weighted envelope spectrum based on the spectral coherence for bearing diagnosis publication-title: ISA Trans., – volume: 254 year: 2024 ident: b0120 article-title: Cyclostationary harmonic product spectrum with its application for rolling bearing fault resonance frequency band adaptive location publication-title: Expert Syst. Appl. – volume: 213 year: 2023 ident: b0125 article-title: A novel adaptive resonant band detection method based on cyclostationarity for wheelset-bearing compound fault diagnosis publication-title: Measurement – volume: 25 start-page: 1738 year: 2011 end-page: 1749 ident: b0105 article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Sig. Process. – volume: 108 start-page: 360 year: 2018 end-page: 368 ident: b0160 article-title: Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients publication-title: Mech. Syst. Sig. Process. – volume: 21 start-page: 108 year: 2007 end-page: 124 ident: b0070 article-title: Fast computation of the kurtogram for the detection of transient faults publication-title: Mech. Syst. Sig. Process. – volume: 92 start-page: 248 year: 2017 end-page: 277 ident: b0220 article-title: Fast computation of the spectral correlation publication-title: Mech. Syst. Sig. Process. – volume: 70 start-page: 1 year: 2021 end-page: 15 ident: b0115 article-title: The Traverse Symplectic Correlation-Gram (TSCgram): A New and Effective Method of Optimal Demodulation Band Selection for Rolling Bearing publication-title: IEEE Trans. Instrum. Meas. – volume: 27 start-page: 1362 year: 2019 end-page: 1382 ident: b0010 article-title: A Systematic Review of Fuzzy Formalisms for Bearing Fault Diagnosis publication-title: IEEE Trans. Fuzzy Syst. – volume: 116 start-page: 523 year: 2018 end-page: 532 ident: b0090 article-title: L-Kurtosis and its application for fault detection of rolling element bearings publication-title: Measurement – volume: 104 start-page: 290 year: 2018 end-page: 293 ident: b0175 article-title: Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals publication-title: Mech. Syst. Sig. Process. – volume: 23 start-page: 3336 year: 2024 end-page: 3351 ident: b0110 article-title: An adaptive reweighted-Kurtogram for bearing fault diagnosis under strong external impulse noise publication-title: Struct. Health Monit. – volume: 190 year: 2022 ident: b0200 article-title: Ewtfergram and its application in fault diagnosis of rolling bearings publication-title: Measurement – volume: 101 start-page: 366 year: 2020 end-page: 378 ident: b0025 article-title: Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings publication-title: ISA Trans – volume: 33 start-page: 237 year: 2012 end-page: 255 ident: b0230 article-title: Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection publication-title: Mech. Syst. Sig. Process. – volume: 20 start-page: 11273 year: 2024 end-page: 11284 ident: b0015 article-title: Physics-Inspired Sparse Voiceprint Sensing for Bearing Fault Diagnosis publication-title: IEEE Trans. Ind. Inf. – volume: 10 year: 2018 ident: b0085 article-title: Nonlinear dynamic investigations on rolling element bearings: A review publication-title: Adv. Mech. Eng. – volume: 127 start-page: 395 year: 2022 end-page: 414 ident: b0215 article-title: Optimal frequency band selection using blind and targeted features for spectral coherence-based bearing diagnostics: A comparative study publication-title: ISA Trans., – volume: 15 year: 2022 ident: b0030 article-title: A Survey on Fault Diagnosis of Rolling Bearings publication-title: Algorithms – volume: 213 year: 2023 ident: b0155 article-title: Adaptive multi-layer empirical Ramanujan decomposition and its application in roller bearing fault diagnosis publication-title: Measurement – volume: 73 start-page: 1 year: 2024 end-page: 9 ident: b0140 article-title: The CTIgram: A Novel Optimal Demodulation Band Selection Method and Its Applications in Condition Monitoring of Rotating Machinery publication-title: IEEE Trans. Instrum. Meas. – volume: 133 year: 2024 ident: b0045 article-title: A novel bearing intelligent fault diagnosis method based on spectrum sparse deep deconvolution publication-title: Eng. Appl. Artif. Intel. – volume: 130 start-page: 87 year: 2019 end-page: 107 ident: b0135 article-title: Adaptive Kurtogram and its applications in rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 219 year: 2024 ident: b0185 article-title: Toward accurate extraction of bearing fault modulation characteristics with novel time–frequency modulation bispectrum and modulation Gini index analysis publication-title: Mech. Syst. Sig. Process. – volume: 33 year: 2021 ident: b0050 article-title: A blind deconvolution algorithm based on backward automatic differentiation and its application to rolling bearing fault diagnosis publication-title: Meas. Sci. Technol. – volume: 74 start-page: 73 year: 2016 end-page: 94 ident: b0095 article-title: The infogram: Entropic evidence of the signature of repetitive transients publication-title: Mech. Syst. Sig. Process. – volume: 23 start-page: 29969 year: 2023 end-page: 29990 ident: b0035 article-title: Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review publication-title: IEEE Sens. J. – volume: 23 start-page: 6439 year: 2023 end-page: 6459 ident: b0065 article-title: Rotating Machinery Fault Diagnosis Based on Typical Resonance Demodulation Methods: A Review publication-title: IEEE Sens. J. – volume: 154 year: 2021 ident: b0145 article-title: Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 35 year: 2024 ident: b0005 article-title: A survey on fault diagnosis of rotating machinery based on machine learning publication-title: Meas. Sci. Technol. – volume: 72 year: 2023 ident: b0040 article-title: Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016 publication-title: IEEE Trans. Instrum. Meas. – volume: 60 year: 2024 ident: b0130 article-title: A novel empirical random feature decomposition method and its application to gear fault diagnosis publication-title: Adv. Eng. Inf. – volume: 206 year: 2023 ident: b0210 article-title: Encogram: An autonomous weak transient fault enhancement strategy and its application in bearing fault diagnosis publication-title: Measurement – volume: 72 start-page: 1 year: 2023 end-page: 8 ident: b0020 article-title: A Tacholess Order Tracking Method Based on Spectral Amplitude Modulation for Variable Speed Bearing Fault Diagnosis publication-title: IEEE Trans. Instrum. Meas. – volume: 70 start-page: 1949 year: 2023 end-page: 1960 ident: b0055 article-title: Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis publication-title: IEEE Trans. Ind. Electron., – volume: 193 year: 2023 ident: b0205 article-title: Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 43 start-page: 25 year: 2014 end-page: 43 ident: b0190 article-title: The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings publication-title: Mech. Syst. Sig. Process. – volume: 35 year: 2024 ident: b0060 article-title: Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal publication-title: Meas. Sci. Technol. – volume: 28 year: 2017 ident: b0170 article-title: Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification publication-title: Meas. Sci. Technol. – volume: 72 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0040 article-title: Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016 publication-title: IEEE Trans. Instrum. Meas. – volume: 210 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0100 article-title: A new two-stage strategy to adaptively design and finely tune the filters for bearing fault-related mode decomposition publication-title: Measurement doi: 10.1016/j.measurement.2023.112470 – volume: 60 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0130 article-title: A novel empirical random feature decomposition method and its application to gear fault diagnosis publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2024.102394 – volume: 91 start-page: 385 year: 2016 ident: 10.1016/j.ymssp.2025.112646_b0180 article-title: Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.05.073 – volume: 35 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0005 article-title: A survey on fault diagnosis of rotating machinery based on machine learning publication-title: Meas. Sci. Technol. – volume: 15 year: 2022 ident: 10.1016/j.ymssp.2025.112646_b0030 article-title: A Survey on Fault Diagnosis of Rolling Bearings publication-title: Algorithms doi: 10.3390/a15100347 – volume: 27 start-page: 1362 year: 2019 ident: 10.1016/j.ymssp.2025.112646_b0010 article-title: A Systematic Review of Fuzzy Formalisms for Bearing Fault Diagnosis publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2878200 – volume: 23 start-page: 6439 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0065 article-title: Rotating Machinery Fault Diagnosis Based on Typical Resonance Demodulation Methods: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3235585 – volume: 73 start-page: 1 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0140 article-title: The CTIgram: A Novel Optimal Demodulation Band Selection Method and Its Applications in Condition Monitoring of Rotating Machinery publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3450104 – volume: 43 start-page: 25 year: 2014 ident: 10.1016/j.ymssp.2025.112646_b0190 article-title: The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2013.10.007 – volume: 190 year: 2022 ident: 10.1016/j.ymssp.2025.112646_b0200 article-title: Ewtfergram and its application in fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2021.110695 – volume: 101 start-page: 366 year: 2020 ident: 10.1016/j.ymssp.2025.112646_b0025 article-title: Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings publication-title: ISA Trans doi: 10.1016/j.isatra.2020.01.037 – volume: 254 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0120 article-title: Cyclostationary harmonic product spectrum with its application for rolling bearing fault resonance frequency band adaptive location publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124453 – volume: 154 year: 2021 ident: 10.1016/j.ymssp.2025.112646_b0145 article-title: Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107511 – volume: 28 year: 2017 ident: 10.1016/j.ymssp.2025.112646_b0170 article-title: Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa8a57 – volume: 206 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0210 article-title: Encogram: An autonomous weak transient fault enhancement strategy and its application in bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.112333 – volume: 127 start-page: 395 year: 2022 ident: 10.1016/j.ymssp.2025.112646_b0215 article-title: Optimal frequency band selection using blind and targeted features for spectral coherence-based bearing diagnostics: A comparative study publication-title: ISA Trans., doi: 10.1016/j.isatra.2021.08.025 – volume: 33 year: 2022 ident: 10.1016/j.ymssp.2025.112646_b0165 article-title: Fast nonlinear Hoyergram for bearings fault diagnosis under random impact interference publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac5d77 – volume: 10 year: 2018 ident: 10.1016/j.ymssp.2025.112646_b0085 article-title: Nonlinear dynamic investigations on rolling element bearings: A review publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018764148 – volume: 23 start-page: 29969 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0035 article-title: Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3326112 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.ymssp.2025.112646_b0115 article-title: The Traverse Symplectic Correlation-Gram (TSCgram): A New and Effective Method of Optimal Demodulation Band Selection for Rolling Bearing publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3126847 – volume: 33 start-page: 237 year: 2012 ident: 10.1016/j.ymssp.2025.112646_b0230 article-title: Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2012.06.010 – volume: 21 start-page: 108 year: 2007 ident: 10.1016/j.ymssp.2025.112646_b0070 article-title: Fast computation of the kurtogram for the detection of transient faults publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2005.12.002 – volume: 213 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0155 article-title: Adaptive multi-layer empirical Ramanujan decomposition and its application in roller bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2023.112707 – volume: 20 start-page: 308 year: 2006 ident: 10.1016/j.ymssp.2025.112646_b0080 article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2004.09.002 – volume: 70 start-page: 1949 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0055 article-title: Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis publication-title: IEEE Trans. Ind. Electron., doi: 10.1109/TIE.2022.3156156 – volume: 219 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0185 article-title: Toward accurate extraction of bearing fault modulation characteristics with novel time–frequency modulation bispectrum and modulation Gini index analysis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2024.111629 – volume: 105 start-page: 294 year: 2018 ident: 10.1016/j.ymssp.2025.112646_b0150 article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.12.009 – volume: 33 year: 2021 ident: 10.1016/j.ymssp.2025.112646_b0050 article-title: A blind deconvolution algorithm based on backward automatic differentiation and its application to rolling bearing fault diagnosis publication-title: Meas. Sci. Technol. – volume: 116 start-page: 523 year: 2018 ident: 10.1016/j.ymssp.2025.112646_b0090 article-title: L-Kurtosis and its application for fault detection of rolling element bearings publication-title: Measurement doi: 10.1016/j.measurement.2017.11.049 – volume: 133 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0045 article-title: A novel bearing intelligent fault diagnosis method based on spectrum sparse deep deconvolution publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2024.108102 – volume: 92 start-page: 248 year: 2017 ident: 10.1016/j.ymssp.2025.112646_b0220 article-title: Fast computation of the spectral correlation publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.01.011 – volume: 123 start-page: 398 year: 2022 ident: 10.1016/j.ymssp.2025.112646_b0225 article-title: Weighted envelope spectrum based on the spectral coherence for bearing diagnosis publication-title: ISA Trans., doi: 10.1016/j.isatra.2021.05.012 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0020 article-title: A Tacholess Order Tracking Method Based on Spectral Amplitude Modulation for Variable Speed Bearing Fault Diagnosis publication-title: IEEE Trans. Instrum. Meas. – volume: 20 start-page: 282 year: 2006 ident: 10.1016/j.ymssp.2025.112646_b0075 article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2004.09.001 – volume: 104 start-page: 290 year: 2018 ident: 10.1016/j.ymssp.2025.112646_b0175 article-title: Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.11.013 – volume: 193 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0205 article-title: Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2023.110270 – volume: 23 start-page: 3336 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0110 article-title: An adaptive reweighted-Kurtogram for bearing fault diagnosis under strong external impulse noise publication-title: Struct. Health Monit. doi: 10.1177/14759217231226267 – volume: 20 start-page: 11273 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0015 article-title: Physics-Inspired Sparse Voiceprint Sensing for Bearing Fault Diagnosis publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2024.3403248 – volume: 130 start-page: 87 year: 2019 ident: 10.1016/j.ymssp.2025.112646_b0135 article-title: Adaptive Kurtogram and its applications in rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.05.003 – volume: 213 year: 2023 ident: 10.1016/j.ymssp.2025.112646_b0125 article-title: A novel adaptive resonant band detection method based on cyclostationarity for wheelset-bearing compound fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2023.112770 – volume: 74 start-page: 73 year: 2016 ident: 10.1016/j.ymssp.2025.112646_b0095 article-title: The infogram: Entropic evidence of the signature of repetitive transients publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.04.034 – volume: 108 start-page: 360 year: 2018 ident: 10.1016/j.ymssp.2025.112646_b0160 article-title: Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.02.034 – volume: 35 year: 2024 ident: 10.1016/j.ymssp.2025.112646_b0060 article-title: Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal publication-title: Meas. Sci. Technol. – volume: 25 start-page: 1738 year: 2011 ident: 10.1016/j.ymssp.2025.112646_b0105 article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2010.12.011 – volume: 134 year: 2019 ident: 10.1016/j.ymssp.2025.112646_b0195 article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.106303 |
SSID | ssj0009406 |
Score | 2.4575841 |
Snippet | •An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112646 |
SubjectTerms | Adaptive correlated kurtosis Cyclic modulation spectrum Fault diagnosis Frequency band segmentation Rolling bearing |
Title | ACKgram: A robust approach for bearing fault diagnosis under complex interference |
URI | https://dx.doi.org/10.1016/j.ymssp.2025.112646 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9sQePrk2zm2ziLRRLtVgQLfQWNrsbqGhbmhT04m93Ng-sIB48JuxA8u3uzHf45huASyETrDqyR5l2HMq5ZDRwhaR4KU2QpkiYi2EwD2N_OOH3U2_agH7dC2NllVXuL3N6ka2rN90Kze5yNus-4f3A4yhsEXcYF7wJbZeFvteCdnQ3Go6_vXd5MWLTrqc2oDYfKmReH29ZZn0rXa_oprFE-LcCtVF0BruwU7FFEpUftAcNM9-H7Q0PwQN4jPojq7C6IRFZLZJ1lpPaJ5wgISUJHmVcSFK5fs2JLpV1s4zY5rEVKRTl5p1Y14hV1fp3CJPB7XN_SKs5CVThhcwpl4EXKttjGgYqSLhxHeV6iVC-VlL0tOUEMkzxhzXDPUNOIj2JPNBTCgHTDjuC1nwxN8dAGBPS8aWjdWB4aoS1g9McwzQPMbfpDlzV4MTL0g4jrnViL3GBZWyxjEssO-DXAMY_djXGhP1X4Ml_A09hyz6VksQzaOWrtTlH2pAnF9C8_uxdVIfjC1NEwUI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YER0zR24oStqqgKfUiIVupmOXYiFUFbJakEC7-ds5OIIiEG1uROSs73-IbvPiN0zWUEU0e2CNWOQxiTlAQulwSKMg6SBACzvQxmOPJ7E_Y49aY11Kl2YQytsuz9RU-33bp80iyj2VzOZs1nqA9IR26GuEMZZxtok3mUG17f7ec3zyNk9oJNY02MeSU9ZEleH29ZZlQrXc_u0hgY_Nt4Whs53T20W2JF3C4-Zx_V4vkB2llTEDxET-1O3_Cr7nAbp4toleW4UgnHAEdxBIkMhjiRq9cc64JXN8uwWR1LseWTx-_YaEak5eLfEZp078edHilvSSAKyjEnTAZeqMyGaRioIGKx6yjXi7jytZK8pQ0ikGECP6wpnBggEulJQIGeUi4NtUOPUX2-mMcnCFPKpeNLR-sgZknMjRicZuCmWQidTTfQTRUcsSzEMETFEnsRNpbCxFIUsWwgvwqg-HGmAtr1X46n_3W8Qlu98XAgBg-j_hnaNm8KcuI5qufpKr4AAJFHlzZBvgDvT8IN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACKgram%3A+A+robust+approach+for+bearing+fault+diagnosis+under+complex+interference&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Zhang%2C+Yue&rft.au=Zhao%2C+Ming&rft.au=Li%2C+Sen&rft.au=Chen%2C+Dexin&rft.date=2025-05-01&rft.issn=0888-3270&rft.volume=230&rft.spage=112646&rft_id=info:doi/10.1016%2Fj.ymssp.2025.112646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2025_112646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |