ACKgram: A robust approach for bearing fault diagnosis under complex interference

•An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to evaluate periodicity and impulsiveness.•A novel ACKgram framework is developed for bearing fault diagnosis under complex interference.•Simula...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 230; p. 112646
Main Authors Zhang, Yue, Zhao, Ming, Li, Sen, Chen, Dexin, Ma, Biao, Song, Zhihua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text
ISSN0888-3270
DOI10.1016/j.ymssp.2025.112646

Cover

Abstract •An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to evaluate periodicity and impulsiveness.•A novel ACKgram framework is developed for bearing fault diagnosis under complex interference.•Simulations and experiments validated ACKgram’s superior accuracy and reliability. As a vital component in rotating machinery, bearings usually generate repetitive transients when faults occur. However, these fault-characterizing transients are easily masked by various types of interference and noise. As a benchmark method for bearing fault diagnosis solutions, narrowband filtering demodulation (NFD) often relies on fixed-mode frequency band segmentation (FBS), which could result in the omission of essential fault information. Moreover, commonly used indicators for optimal frequency band (OFB) selection either suffer from susceptibility to interference, leading to diagnostic failures, or rely on prior fault information, which limits their practical application. Therefore, a robust bearing fault diagnosis method termed ACKgram is proposed. By iteratively calculating the average envelope of the spectrum, this method enables multi-level adaptive FBS based on the specific spectrum characteristics of different signals, ensuring the completeness of fault information in narrowband signals. In addition, an indicator named adaptive correlated kurtosis (ACK) is introduced, which can be calculated independently of prior fault information. In contrast to conventional indicators, ACK simultaneously evaluates the periodicity and impulsiveness of the signal, providing a reliable criterion for OFB selection. The performance of ACKgram is validated using simulated signals with various types of interference and multiple sets of experimental signals at different rotational speeds. Compared to other typical methods, ACKgram demonstrates exceptional performance in detecting bearing faults under complex interference.
AbstractList •An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to evaluate periodicity and impulsiveness.•A novel ACKgram framework is developed for bearing fault diagnosis under complex interference.•Simulations and experiments validated ACKgram’s superior accuracy and reliability. As a vital component in rotating machinery, bearings usually generate repetitive transients when faults occur. However, these fault-characterizing transients are easily masked by various types of interference and noise. As a benchmark method for bearing fault diagnosis solutions, narrowband filtering demodulation (NFD) often relies on fixed-mode frequency band segmentation (FBS), which could result in the omission of essential fault information. Moreover, commonly used indicators for optimal frequency band (OFB) selection either suffer from susceptibility to interference, leading to diagnostic failures, or rely on prior fault information, which limits their practical application. Therefore, a robust bearing fault diagnosis method termed ACKgram is proposed. By iteratively calculating the average envelope of the spectrum, this method enables multi-level adaptive FBS based on the specific spectrum characteristics of different signals, ensuring the completeness of fault information in narrowband signals. In addition, an indicator named adaptive correlated kurtosis (ACK) is introduced, which can be calculated independently of prior fault information. In contrast to conventional indicators, ACK simultaneously evaluates the periodicity and impulsiveness of the signal, providing a reliable criterion for OFB selection. The performance of ACKgram is validated using simulated signals with various types of interference and multiple sets of experimental signals at different rotational speeds. Compared to other typical methods, ACKgram demonstrates exceptional performance in detecting bearing faults under complex interference.
ArticleNumber 112646
Author Song, Zhihua
Li, Sen
Ma, Biao
Zhang, Yue
Zhao, Ming
Chen, Dexin
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
– sequence: 2
  givenname: Ming
  orcidid: 0000-0001-5989-5580
  surname: Zhao
  fullname: Zhao, Ming
  email: zhaomingxjtu@mail.xjtu.edu.cn
– sequence: 3
  givenname: Sen
  surname: Li
  fullname: Li, Sen
– sequence: 4
  givenname: Dexin
  surname: Chen
  fullname: Chen, Dexin
– sequence: 5
  givenname: Biao
  surname: Ma
  fullname: Ma, Biao
– sequence: 6
  givenname: Zhihua
  surname: Song
  fullname: Song, Zhihua
BookMark eNp9kE1OwzAYRL0oEm3hBGx8gQT_xI6DxKKqgCIqISRYW479pbhq7MhOEb09LWXNalZvNPNmaBJiAIRuKCkpofJ2Wx76nIeSESZKSpms5ARNiVKq4Kwml2iW85YQ0lRETtHbYvmySaa_wwucYrvPIzbDkKKxn7iLCbdgkg8b3Jn9bsTOm02I2We8Dw4StrEfdvCNfRghdZAgWLhCF53ZZbj-yzn6eHx4X66K9evT83KxLixVfCwqo0RjJVOyUVa1FTBimWhrK501NXWCNNQ03fGS49CC5I0RRpBaWMt44wifI37utSnmnKDTQ_K9SQdNiT6Z0Fv9a0KfTOiziSN1f6bgOO3LQ9LZ-tNs5xPYUbvo_-V_AKh9bNA
Cites_doi 10.1016/j.measurement.2023.112470
10.1016/j.aei.2024.102394
10.1016/j.measurement.2016.05.073
10.3390/a15100347
10.1109/TFUZZ.2018.2878200
10.1109/JSEN.2023.3235585
10.1109/TIM.2024.3450104
10.1016/j.ymssp.2013.10.007
10.1016/j.measurement.2021.110695
10.1016/j.isatra.2020.01.037
10.1016/j.eswa.2024.124453
10.1016/j.ymssp.2020.107511
10.1088/1361-6501/aa8a57
10.1016/j.measurement.2022.112333
10.1016/j.isatra.2021.08.025
10.1088/1361-6501/ac5d77
10.1177/1687814018764148
10.1109/JSEN.2023.3326112
10.1109/TIM.2021.3126847
10.1016/j.ymssp.2012.06.010
10.1016/j.ymssp.2005.12.002
10.1016/j.measurement.2023.112707
10.1016/j.ymssp.2004.09.002
10.1109/TIE.2022.3156156
10.1016/j.ymssp.2024.111629
10.1016/j.ymssp.2017.12.009
10.1016/j.measurement.2017.11.049
10.1016/j.engappai.2024.108102
10.1016/j.ymssp.2017.01.011
10.1016/j.isatra.2021.05.012
10.1016/j.ymssp.2004.09.001
10.1016/j.ymssp.2017.11.013
10.1016/j.ymssp.2023.110270
10.1177/14759217231226267
10.1109/TII.2024.3403248
10.1016/j.ymssp.2019.05.003
10.1016/j.measurement.2023.112770
10.1016/j.ymssp.2015.04.034
10.1016/j.ymssp.2018.02.034
10.1016/j.ymssp.2010.12.011
10.1016/j.ymssp.2019.106303
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2025.112646
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ymssp_2025_112646
S0888327025003474
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSH
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG5
LG9
LY7
M41
R2-
RIG
SBC
SET
WUQ
ID FETCH-LOGICAL-c183t-4a859c628698c8b4e20c25b7c6dca71d5091a9f101d3ebe639a5a5075cc239d03
IEDL.DBID AIKHN
ISSN 0888-3270
IngestDate Tue Jul 01 05:10:45 EDT 2025
Sat Apr 26 15:42:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Frequency band segmentation
Adaptive correlated kurtosis
Rolling bearing
Cyclic modulation spectrum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c183t-4a859c628698c8b4e20c25b7c6dca71d5091a9f101d3ebe639a5a5075cc239d03
ORCID 0000-0001-5989-5580
ParticipantIDs crossref_primary_10_1016_j_ymssp_2025_112646
elsevier_sciencedirect_doi_10_1016_j_ymssp_2025_112646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Hou, He, Yang (b0090) 2018; 116
Peng, Zhao, Zhang, Wang, Wang (b0110) 2024; 23
Fang, Hu, Yang, Cao, Jia (b0050) 2021; 33
Lei, Lin, He, Zi (b0105) 2011; 25
Yi, Zhang, Cao, Yan, Zhou, Shi, Tang, Ran, Lin (b0120) 2024; 254
Borghesani, Pennacchi, Chatterton (b0190) 2014; 43
Xu, Zhao, Lin, Lei (b0180) 2016; 91
Zhang, Huang, Xin, Chen (b0200) 2022; 190
Antoni (b0075) 2006; 20
Li, Luo, Bai (b0060) 2024; 35
Zheng, Wang, Pan, Tong, Zhang, Liu (b0115) 2021; 70
Zou, Zhang, Jiang, Zhang, Xu (b0185) 2024; 219
Peng, Bi, Xue, Zhang, Wan (b0030) 2022; 15
Antoni, Xin, Hamzaoui (b0220) 2017; 92
Wang, Huang, Xiong, Yang, Dong, Wu, Wu, Lu (b0005) 2024; 35
Antoni, Randall (b0080) 2006; 20
Miao, Zhao, Lin (b0170) 2017; 28
McDonald, Zhao, Zuo (b0230) 2012; 33
Liu, Yang, Liu, Lin, Gu (b0145) 2021; 154
Chen, Cheng, Zhang, Gu, Mei (b0215) 2022; 127
Chen, Yang, Xue, Huang, Ferrero, Wang (b0040) 2023; 72
Chen, Zhang, Xi Gu, Song, Cheng, Zhou, Gu, Ball (b0205) 2023; 193
Smith, Borghesani, Ni, Wang, Peng (b0195) 2019; 134
Li, de Oliveira, Cerrada, Cabrera, Sanchez, Zurita (b0010) 2019; 27
Cai, Zhang, Tang (b0210) 2023; 206
Wang, Liao, Ding, Zhang (b0025) 2020; 101
Pan, Zhang, Cheng, Zheng, Tong (b0155) 2023; 213
Sui, Ma, Jiang, Zhang, Xu (b0140) 2024; 73
Sharma, Upadhyay, Kankar, Amarnath (b0085) 2018; 10
Wang (b0175) 2018; 104
Moshrefzadeh, Fasana (b0150) 2018; 105
Zhang, Miao, Lin, Li (b0225) 2022; 123
Liu, Cui, Wang (b0035) 2023; 23
Li, Wu, Liu, Li (b0065) 2023; 23
Shi, Miao, Li, Gu (b0045) 2024; 133
Ma, Zhao, Ou, Ma, Zhang (b0015) 2024; 20
Yang, Zhang, Wang, Han, Bao, Liu, Li (b0165) 2022; 33
Pan, Yi, Song, Xu, Zhou, Li, Lin (b0125) 2023; 213
Zhang, Miao, Lin, Liu (b0100) 2023; 210
Miao, Zhang, Li, Lin, Zhang (b0055) 2023; 70
Jiang, Zhang, Zhang, Xu (b0020) 2023; 72
Wang (b0160) 2018; 108
Xu, Zhang, Ma, Cui, Tian (b0135) 2019; 130
Antoni (b0070) 2007; 21
Antoni (b0095) 2016; 74
Liu, Cheng, Hu, Cheng, Yang (b0130) 2024; 60
Jiang (10.1016/j.ymssp.2025.112646_b0020) 2023; 72
Antoni (10.1016/j.ymssp.2025.112646_b0070) 2007; 21
Antoni (10.1016/j.ymssp.2025.112646_b0095) 2016; 74
Miao (10.1016/j.ymssp.2025.112646_b0170) 2017; 28
McDonald (10.1016/j.ymssp.2025.112646_b0230) 2012; 33
Li (10.1016/j.ymssp.2025.112646_b0060) 2024; 35
Zhang (10.1016/j.ymssp.2025.112646_b0100) 2023; 210
Zhang (10.1016/j.ymssp.2025.112646_b0200) 2022; 190
Lei (10.1016/j.ymssp.2025.112646_b0105) 2011; 25
Peng (10.1016/j.ymssp.2025.112646_b0030) 2022; 15
Cai (10.1016/j.ymssp.2025.112646_b0210) 2023; 206
Xu (10.1016/j.ymssp.2025.112646_b0180) 2016; 91
Liu (10.1016/j.ymssp.2025.112646_b0145) 2021; 154
Antoni (10.1016/j.ymssp.2025.112646_b0080) 2006; 20
Chen (10.1016/j.ymssp.2025.112646_b0215) 2022; 127
Zheng (10.1016/j.ymssp.2025.112646_b0115) 2021; 70
Xu (10.1016/j.ymssp.2025.112646_b0135) 2019; 130
Sharma (10.1016/j.ymssp.2025.112646_b0085) 2018; 10
Miao (10.1016/j.ymssp.2025.112646_b0055) 2023; 70
Wang (10.1016/j.ymssp.2025.112646_b0005) 2024; 35
Chen (10.1016/j.ymssp.2025.112646_b0040) 2023; 72
Peng (10.1016/j.ymssp.2025.112646_b0110) 2024; 23
Chen (10.1016/j.ymssp.2025.112646_b0205) 2023; 193
Antoni (10.1016/j.ymssp.2025.112646_b0220) 2017; 92
Liu (10.1016/j.ymssp.2025.112646_b0035) 2023; 23
Antoni (10.1016/j.ymssp.2025.112646_b0075) 2006; 20
Yi (10.1016/j.ymssp.2025.112646_b0120) 2024; 254
Fang (10.1016/j.ymssp.2025.112646_b0050) 2021; 33
Wang (10.1016/j.ymssp.2025.112646_b0175) 2018; 104
Shi (10.1016/j.ymssp.2025.112646_b0045) 2024; 133
Li (10.1016/j.ymssp.2025.112646_b0010) 2019; 27
Wang (10.1016/j.ymssp.2025.112646_b0160) 2018; 108
Zou (10.1016/j.ymssp.2025.112646_b0185) 2024; 219
Pan (10.1016/j.ymssp.2025.112646_b0155) 2023; 213
Liu (10.1016/j.ymssp.2025.112646_b0090) 2018; 116
Pan (10.1016/j.ymssp.2025.112646_b0125) 2023; 213
Sui (10.1016/j.ymssp.2025.112646_b0140) 2024; 73
Moshrefzadeh (10.1016/j.ymssp.2025.112646_b0150) 2018; 105
Zhang (10.1016/j.ymssp.2025.112646_b0225) 2022; 123
Yang (10.1016/j.ymssp.2025.112646_b0165) 2022; 33
Liu (10.1016/j.ymssp.2025.112646_b0130) 2024; 60
Smith (10.1016/j.ymssp.2025.112646_b0195) 2019; 134
Wang (10.1016/j.ymssp.2025.112646_b0025) 2020; 101
Borghesani (10.1016/j.ymssp.2025.112646_b0190) 2014; 43
Ma (10.1016/j.ymssp.2025.112646_b0015) 2024; 20
Li (10.1016/j.ymssp.2025.112646_b0065) 2023; 23
References_xml – volume: 33
  year: 2022
  ident: b0165
  article-title: Fast nonlinear Hoyergram for bearings fault diagnosis under random impact interference
  publication-title: Meas. Sci. Technol.
– volume: 20
  start-page: 308
  year: 2006
  end-page: 331
  ident: b0080
  article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
  publication-title: Mech. Syst. Sig. Process.
– volume: 91
  start-page: 385
  year: 2016
  end-page: 397
  ident: b0180
  article-title: Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis
  publication-title: Measurement
– volume: 210
  year: 2023
  ident: b0100
  article-title: A new two-stage strategy to adaptively design and finely tune the filters for bearing fault-related mode decomposition
  publication-title: Measurement
– volume: 134
  year: 2019
  ident: b0195
  article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools
  publication-title: Mech. Syst. Sig. Process.
– volume: 20
  start-page: 282
  year: 2006
  end-page: 307
  ident: b0075
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
– volume: 105
  start-page: 294
  year: 2018
  end-page: 318
  ident: b0150
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 123
  start-page: 398
  year: 2022
  end-page: 412
  ident: b0225
  article-title: Weighted envelope spectrum based on the spectral coherence for bearing diagnosis
  publication-title: ISA Trans.,
– volume: 254
  year: 2024
  ident: b0120
  article-title: Cyclostationary harmonic product spectrum with its application for rolling bearing fault resonance frequency band adaptive location
  publication-title: Expert Syst. Appl.
– volume: 213
  year: 2023
  ident: b0125
  article-title: A novel adaptive resonant band detection method based on cyclostationarity for wheelset-bearing compound fault diagnosis
  publication-title: Measurement
– volume: 25
  start-page: 1738
  year: 2011
  end-page: 1749
  ident: b0105
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 108
  start-page: 360
  year: 2018
  end-page: 368
  ident: b0160
  article-title: Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients
  publication-title: Mech. Syst. Sig. Process.
– volume: 21
  start-page: 108
  year: 2007
  end-page: 124
  ident: b0070
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Sig. Process.
– volume: 92
  start-page: 248
  year: 2017
  end-page: 277
  ident: b0220
  article-title: Fast computation of the spectral correlation
  publication-title: Mech. Syst. Sig. Process.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0115
  article-title: The Traverse Symplectic Correlation-Gram (TSCgram): A New and Effective Method of Optimal Demodulation Band Selection for Rolling Bearing
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 27
  start-page: 1362
  year: 2019
  end-page: 1382
  ident: b0010
  article-title: A Systematic Review of Fuzzy Formalisms for Bearing Fault Diagnosis
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 116
  start-page: 523
  year: 2018
  end-page: 532
  ident: b0090
  article-title: L-Kurtosis and its application for fault detection of rolling element bearings
  publication-title: Measurement
– volume: 104
  start-page: 290
  year: 2018
  end-page: 293
  ident: b0175
  article-title: Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
– volume: 23
  start-page: 3336
  year: 2024
  end-page: 3351
  ident: b0110
  article-title: An adaptive reweighted-Kurtogram for bearing fault diagnosis under strong external impulse noise
  publication-title: Struct. Health Monit.
– volume: 190
  year: 2022
  ident: b0200
  article-title: Ewtfergram and its application in fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 101
  start-page: 366
  year: 2020
  end-page: 378
  ident: b0025
  article-title: Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings
  publication-title: ISA Trans
– volume: 33
  start-page: 237
  year: 2012
  end-page: 255
  ident: b0230
  article-title: Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection
  publication-title: Mech. Syst. Sig. Process.
– volume: 20
  start-page: 11273
  year: 2024
  end-page: 11284
  ident: b0015
  article-title: Physics-Inspired Sparse Voiceprint Sensing for Bearing Fault Diagnosis
  publication-title: IEEE Trans. Ind. Inf.
– volume: 10
  year: 2018
  ident: b0085
  article-title: Nonlinear dynamic investigations on rolling element bearings: A review
  publication-title: Adv. Mech. Eng.
– volume: 127
  start-page: 395
  year: 2022
  end-page: 414
  ident: b0215
  article-title: Optimal frequency band selection using blind and targeted features for spectral coherence-based bearing diagnostics: A comparative study
  publication-title: ISA Trans.,
– volume: 15
  year: 2022
  ident: b0030
  article-title: A Survey on Fault Diagnosis of Rolling Bearings
  publication-title: Algorithms
– volume: 213
  year: 2023
  ident: b0155
  article-title: Adaptive multi-layer empirical Ramanujan decomposition and its application in roller bearing fault diagnosis
  publication-title: Measurement
– volume: 73
  start-page: 1
  year: 2024
  end-page: 9
  ident: b0140
  article-title: The CTIgram: A Novel Optimal Demodulation Band Selection Method and Its Applications in Condition Monitoring of Rotating Machinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 133
  year: 2024
  ident: b0045
  article-title: A novel bearing intelligent fault diagnosis method based on spectrum sparse deep deconvolution
  publication-title: Eng. Appl. Artif. Intel.
– volume: 130
  start-page: 87
  year: 2019
  end-page: 107
  ident: b0135
  article-title: Adaptive Kurtogram and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 219
  year: 2024
  ident: b0185
  article-title: Toward accurate extraction of bearing fault modulation characteristics with novel time–frequency modulation bispectrum and modulation Gini index analysis
  publication-title: Mech. Syst. Sig. Process.
– volume: 33
  year: 2021
  ident: b0050
  article-title: A blind deconvolution algorithm based on backward automatic differentiation and its application to rolling bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
– volume: 74
  start-page: 73
  year: 2016
  end-page: 94
  ident: b0095
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Sig. Process.
– volume: 23
  start-page: 29969
  year: 2023
  end-page: 29990
  ident: b0035
  article-title: Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review
  publication-title: IEEE Sens. J.
– volume: 23
  start-page: 6439
  year: 2023
  end-page: 6459
  ident: b0065
  article-title: Rotating Machinery Fault Diagnosis Based on Typical Resonance Demodulation Methods: A Review
  publication-title: IEEE Sens. J.
– volume: 154
  year: 2021
  ident: b0145
  article-title: Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 35
  year: 2024
  ident: b0005
  article-title: A survey on fault diagnosis of rotating machinery based on machine learning
  publication-title: Meas. Sci. Technol.
– volume: 72
  year: 2023
  ident: b0040
  article-title: Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 60
  year: 2024
  ident: b0130
  article-title: A novel empirical random feature decomposition method and its application to gear fault diagnosis
  publication-title: Adv. Eng. Inf.
– volume: 206
  year: 2023
  ident: b0210
  article-title: Encogram: An autonomous weak transient fault enhancement strategy and its application in bearing fault diagnosis
  publication-title: Measurement
– volume: 72
  start-page: 1
  year: 2023
  end-page: 8
  ident: b0020
  article-title: A Tacholess Order Tracking Method Based on Spectral Amplitude Modulation for Variable Speed Bearing Fault Diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 70
  start-page: 1949
  year: 2023
  end-page: 1960
  ident: b0055
  article-title: Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.,
– volume: 193
  year: 2023
  ident: b0205
  article-title: Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 43
  start-page: 25
  year: 2014
  end-page: 43
  ident: b0190
  article-title: The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 35
  year: 2024
  ident: b0060
  article-title: Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal
  publication-title: Meas. Sci. Technol.
– volume: 28
  year: 2017
  ident: b0170
  article-title: Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification
  publication-title: Meas. Sci. Technol.
– volume: 72
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0040
  article-title: Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 210
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0100
  article-title: A new two-stage strategy to adaptively design and finely tune the filters for bearing fault-related mode decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112470
– volume: 60
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0130
  article-title: A novel empirical random feature decomposition method and its application to gear fault diagnosis
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2024.102394
– volume: 91
  start-page: 385
  year: 2016
  ident: 10.1016/j.ymssp.2025.112646_b0180
  article-title: Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.073
– volume: 35
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0005
  article-title: A survey on fault diagnosis of rotating machinery based on machine learning
  publication-title: Meas. Sci. Technol.
– volume: 15
  year: 2022
  ident: 10.1016/j.ymssp.2025.112646_b0030
  article-title: A Survey on Fault Diagnosis of Rolling Bearings
  publication-title: Algorithms
  doi: 10.3390/a15100347
– volume: 27
  start-page: 1362
  year: 2019
  ident: 10.1016/j.ymssp.2025.112646_b0010
  article-title: A Systematic Review of Fuzzy Formalisms for Bearing Fault Diagnosis
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2878200
– volume: 23
  start-page: 6439
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0065
  article-title: Rotating Machinery Fault Diagnosis Based on Typical Resonance Demodulation Methods: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3235585
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0140
  article-title: The CTIgram: A Novel Optimal Demodulation Band Selection Method and Its Applications in Condition Monitoring of Rotating Machinery
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3450104
– volume: 43
  start-page: 25
  year: 2014
  ident: 10.1016/j.ymssp.2025.112646_b0190
  article-title: The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.10.007
– volume: 190
  year: 2022
  ident: 10.1016/j.ymssp.2025.112646_b0200
  article-title: Ewtfergram and its application in fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110695
– volume: 101
  start-page: 366
  year: 2020
  ident: 10.1016/j.ymssp.2025.112646_b0025
  article-title: Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.01.037
– volume: 254
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0120
  article-title: Cyclostationary harmonic product spectrum with its application for rolling bearing fault resonance frequency band adaptive location
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124453
– volume: 154
  year: 2021
  ident: 10.1016/j.ymssp.2025.112646_b0145
  article-title: Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107511
– volume: 28
  year: 2017
  ident: 10.1016/j.ymssp.2025.112646_b0170
  article-title: Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa8a57
– volume: 206
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0210
  article-title: Encogram: An autonomous weak transient fault enhancement strategy and its application in bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112333
– volume: 127
  start-page: 395
  year: 2022
  ident: 10.1016/j.ymssp.2025.112646_b0215
  article-title: Optimal frequency band selection using blind and targeted features for spectral coherence-based bearing diagnostics: A comparative study
  publication-title: ISA Trans.,
  doi: 10.1016/j.isatra.2021.08.025
– volume: 33
  year: 2022
  ident: 10.1016/j.ymssp.2025.112646_b0165
  article-title: Fast nonlinear Hoyergram for bearings fault diagnosis under random impact interference
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac5d77
– volume: 10
  year: 2018
  ident: 10.1016/j.ymssp.2025.112646_b0085
  article-title: Nonlinear dynamic investigations on rolling element bearings: A review
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018764148
– volume: 23
  start-page: 29969
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0035
  article-title: Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3326112
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ymssp.2025.112646_b0115
  article-title: The Traverse Symplectic Correlation-Gram (TSCgram): A New and Effective Method of Optimal Demodulation Band Selection for Rolling Bearing
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3126847
– volume: 33
  start-page: 237
  year: 2012
  ident: 10.1016/j.ymssp.2025.112646_b0230
  article-title: Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.06.010
– volume: 21
  start-page: 108
  year: 2007
  ident: 10.1016/j.ymssp.2025.112646_b0070
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2005.12.002
– volume: 213
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0155
  article-title: Adaptive multi-layer empirical Ramanujan decomposition and its application in roller bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112707
– volume: 20
  start-page: 308
  year: 2006
  ident: 10.1016/j.ymssp.2025.112646_b0080
  article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2004.09.002
– volume: 70
  start-page: 1949
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0055
  article-title: Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.,
  doi: 10.1109/TIE.2022.3156156
– volume: 219
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0185
  article-title: Toward accurate extraction of bearing fault modulation characteristics with novel time–frequency modulation bispectrum and modulation Gini index analysis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2024.111629
– volume: 105
  start-page: 294
  year: 2018
  ident: 10.1016/j.ymssp.2025.112646_b0150
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.12.009
– volume: 33
  year: 2021
  ident: 10.1016/j.ymssp.2025.112646_b0050
  article-title: A blind deconvolution algorithm based on backward automatic differentiation and its application to rolling bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
– volume: 116
  start-page: 523
  year: 2018
  ident: 10.1016/j.ymssp.2025.112646_b0090
  article-title: L-Kurtosis and its application for fault detection of rolling element bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.11.049
– volume: 133
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0045
  article-title: A novel bearing intelligent fault diagnosis method based on spectrum sparse deep deconvolution
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2024.108102
– volume: 92
  start-page: 248
  year: 2017
  ident: 10.1016/j.ymssp.2025.112646_b0220
  article-title: Fast computation of the spectral correlation
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.01.011
– volume: 123
  start-page: 398
  year: 2022
  ident: 10.1016/j.ymssp.2025.112646_b0225
  article-title: Weighted envelope spectrum based on the spectral coherence for bearing diagnosis
  publication-title: ISA Trans.,
  doi: 10.1016/j.isatra.2021.05.012
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0020
  article-title: A Tacholess Order Tracking Method Based on Spectral Amplitude Modulation for Variable Speed Bearing Fault Diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 20
  start-page: 282
  year: 2006
  ident: 10.1016/j.ymssp.2025.112646_b0075
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2004.09.001
– volume: 104
  start-page: 290
  year: 2018
  ident: 10.1016/j.ymssp.2025.112646_b0175
  article-title: Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.11.013
– volume: 193
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0205
  article-title: Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2023.110270
– volume: 23
  start-page: 3336
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0110
  article-title: An adaptive reweighted-Kurtogram for bearing fault diagnosis under strong external impulse noise
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217231226267
– volume: 20
  start-page: 11273
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0015
  article-title: Physics-Inspired Sparse Voiceprint Sensing for Bearing Fault Diagnosis
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2024.3403248
– volume: 130
  start-page: 87
  year: 2019
  ident: 10.1016/j.ymssp.2025.112646_b0135
  article-title: Adaptive Kurtogram and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.05.003
– volume: 213
  year: 2023
  ident: 10.1016/j.ymssp.2025.112646_b0125
  article-title: A novel adaptive resonant band detection method based on cyclostationarity for wheelset-bearing compound fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112770
– volume: 74
  start-page: 73
  year: 2016
  ident: 10.1016/j.ymssp.2025.112646_b0095
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.04.034
– volume: 108
  start-page: 360
  year: 2018
  ident: 10.1016/j.ymssp.2025.112646_b0160
  article-title: Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.02.034
– volume: 35
  year: 2024
  ident: 10.1016/j.ymssp.2025.112646_b0060
  article-title: Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal
  publication-title: Meas. Sci. Technol.
– volume: 25
  start-page: 1738
  year: 2011
  ident: 10.1016/j.ymssp.2025.112646_b0105
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2010.12.011
– volume: 134
  year: 2019
  ident: 10.1016/j.ymssp.2025.112646_b0195
  article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.106303
SSID ssj0009406
Score 2.4575841
Snippet •An adaptive frequency band segmentation method based on spectral trends is proposed.•Adaptive correlated kurtosis (ACK) is introduced as a blind indicator to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112646
SubjectTerms Adaptive correlated kurtosis
Cyclic modulation spectrum
Fault diagnosis
Frequency band segmentation
Rolling bearing
Title ACKgram: A robust approach for bearing fault diagnosis under complex interference
URI https://dx.doi.org/10.1016/j.ymssp.2025.112646
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9sQePrk2zm2ziLRRLtVgQLfQWNrsbqGhbmhT04m93Ng-sIB48JuxA8u3uzHf45huASyETrDqyR5l2HMq5ZDRwhaR4KU2QpkiYi2EwD2N_OOH3U2_agH7dC2NllVXuL3N6ka2rN90Kze5yNus-4f3A4yhsEXcYF7wJbZeFvteCdnQ3Go6_vXd5MWLTrqc2oDYfKmReH29ZZn0rXa_oprFE-LcCtVF0BruwU7FFEpUftAcNM9-H7Q0PwQN4jPojq7C6IRFZLZJ1lpPaJ5wgISUJHmVcSFK5fs2JLpV1s4zY5rEVKRTl5p1Y14hV1fp3CJPB7XN_SKs5CVThhcwpl4EXKttjGgYqSLhxHeV6iVC-VlL0tOUEMkzxhzXDPUNOIj2JPNBTCgHTDjuC1nwxN8dAGBPS8aWjdWB4aoS1g9McwzQPMbfpDlzV4MTL0g4jrnViL3GBZWyxjEssO-DXAMY_djXGhP1X4Ml_A09hyz6VksQzaOWrtTlH2pAnF9C8_uxdVIfjC1NEwUI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YER0zR24oStqqgKfUiIVupmOXYiFUFbJakEC7-ds5OIIiEG1uROSs73-IbvPiN0zWUEU0e2CNWOQxiTlAQulwSKMg6SBACzvQxmOPJ7E_Y49aY11Kl2YQytsuz9RU-33bp80iyj2VzOZs1nqA9IR26GuEMZZxtok3mUG17f7ec3zyNk9oJNY02MeSU9ZEleH29ZZlQrXc_u0hgY_Nt4Whs53T20W2JF3C4-Zx_V4vkB2llTEDxET-1O3_Cr7nAbp4toleW4UgnHAEdxBIkMhjiRq9cc64JXN8uwWR1LseWTx-_YaEak5eLfEZp078edHilvSSAKyjEnTAZeqMyGaRioIGKx6yjXi7jytZK8pQ0ikGECP6wpnBggEulJQIGeUi4NtUOPUX2-mMcnCFPKpeNLR-sgZknMjRicZuCmWQidTTfQTRUcsSzEMETFEnsRNpbCxFIUsWwgvwqg-HGmAtr1X46n_3W8Qlu98XAgBg-j_hnaNm8KcuI5qufpKr4AAJFHlzZBvgDvT8IN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACKgram%3A+A+robust+approach+for+bearing+fault+diagnosis+under+complex+interference&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Zhang%2C+Yue&rft.au=Zhao%2C+Ming&rft.au=Li%2C+Sen&rft.au=Chen%2C+Dexin&rft.date=2025-05-01&rft.issn=0888-3270&rft.volume=230&rft.spage=112646&rft_id=info:doi/10.1016%2Fj.ymssp.2025.112646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2025_112646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon