Effective Posture Classification Using Statistically Significant Data From Flexible Pressure Sensors
Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized p...
Saved in:
Published in | IEEE journal on flexible electronics Vol. 3; no. 5; pp. 173 - 180 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2768-167X 2768-167X |
DOI | 10.1109/JFLEX.2024.3400151 |
Cover
Abstract | Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized physical conditions with minimal or no inconvenience. However, managing a large volume of obtained sensor datasets and ensuring accurate predictions can take time and effort. While statistical analysis and the Pearson correlation coefficient can reduce data volume, whether this would lead to losing important information and affect downstream application performance is still being determined. In this article, we use posture classification as an exemplar of timely services in digital healthcare, especially for bedsores or decubitus ulcers. Our sensors, placed under hospital beds, have a thickness of just 0.4 mm and collect pressure data from 28 sensors (<inline-formula> <tex-math notation="LaTeX">7 \times 4 </tex-math></inline-formula>) at an 8-Hz cycle, categorizing postures into four types from five patients. We then collected sensor data to explore the possibility of using a small number of pressure sensors for patient posture classification. Next, we apply a statistical analysis to the datasets obtained to select the featured sensor data cells and evaluate the performance of posture classification models on various groups of sensors. Our evaluation involves the analysis of reduced datasets through statistical methods and the Pearson correlation coefficient. The classification performance using datasets comprising five featured and 28 sensors are 0.93 and 0.99, respectively. These results suggest comparable performance and the viability of useful classifiers for both the cases. Consequently, comparable posture classification performance can be achieved using only 17.9% of the entire dataset. |
---|---|
AbstractList | Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized physical conditions with minimal or no inconvenience. However, managing a large volume of obtained sensor datasets and ensuring accurate predictions can take time and effort. While statistical analysis and the Pearson correlation coefficient can reduce data volume, whether this would lead to losing important information and affect downstream application performance is still being determined. In this article, we use posture classification as an exemplar of timely services in digital healthcare, especially for bedsores or decubitus ulcers. Our sensors, placed under hospital beds, have a thickness of just 0.4 mm and collect pressure data from 28 sensors (<inline-formula> <tex-math notation="LaTeX">7 \times 4 </tex-math></inline-formula>) at an 8-Hz cycle, categorizing postures into four types from five patients. We then collected sensor data to explore the possibility of using a small number of pressure sensors for patient posture classification. Next, we apply a statistical analysis to the datasets obtained to select the featured sensor data cells and evaluate the performance of posture classification models on various groups of sensors. Our evaluation involves the analysis of reduced datasets through statistical methods and the Pearson correlation coefficient. The classification performance using datasets comprising five featured and 28 sensors are 0.93 and 0.99, respectively. These results suggest comparable performance and the viability of useful classifiers for both the cases. Consequently, comparable posture classification performance can be achieved using only 17.9% of the entire dataset. |
Author | Yoon, Jungeun Son, Seung Woo Moon, Aekyeung |
Author_xml | – sequence: 1 givenname: Jungeun orcidid: 0009-0006-3461-0693 surname: Yoon fullname: Yoon, Jungeun organization: Electronics and Telecommunication Research Institute, Daejeon, South Korea – sequence: 2 givenname: Aekyeung orcidid: 0009-0001-2502-0097 surname: Moon fullname: Moon, Aekyeung organization: Electronics and Telecommunication Research Institute, Daejeon, South Korea – sequence: 3 givenname: Seung Woo orcidid: 0000-0001-8922-418X surname: Son fullname: Son, Seung Woo email: seungwoo_son@uml.edu organization: Electrical and Computer Engineering Department, University of Massachusetts Lowell, Lowell, MA, USA |
BookMark | eNp9kMtKAzEUhoNUsNa-gLjIC0zNbZLMUmqnKgWFWuhuyGSSEklnJIli397pZVFcuDrnhHz_4XzXYNB2rQHgFqMJxqi4fykXs_WEIMImlCGEc3wBhkRwmWEu1oOz_gqMY_xACJGCYyrREDQza41O7tvAty6mr2Dg1KsYnXVaJde1cBVdu4HL1E8x9Y_e7-DSbdrDjzbBR5UULEO3haU3P672fVIwMe6jlqaNXYg34NIqH834VEdgVc7ep0_Z4nX-PH1YZBpLmjLGTYPrWkiGG60U5YIWiOU6V1ggZLnkEmFRS5lbJSUlRVPnhHDKCKVFIwUdAXLM1aGLMRhbfQa3VWFXYVTtVVUHVdVeVXVS1UPyD6RdOpyegnL-f_TuiDpjzNmunBQUM_oLT7F5vA |
CODEN | IJFEBL |
CitedBy_id | crossref_primary_10_3390_informatics11040076 crossref_primary_10_3390_fi17030107 |
Cites_doi | 10.1613/jair.953 10.1109/FLEPS57599.2023.10220219 10.1109/FLEPS.2019.8792250 10.1109/ICST47872.2019.9166287 10.1145/3313991.3314000 10.1021/acsnano.2c12606 10.1109/JBHI.2019.2899070 10.1145/3292500.3330680 10.1002/aisy.202000039 10.1109/JSEN.2023.3287291 10.3390/s22145337 10.3390/bdcc8020013 10.1080/15389588.2021.1892087 10.5555/1953048.2078195 10.3390/s21103346 10.1109/SMC.2019.8914459 10.1007/978-3-642-00296-0_5 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JFLEX.2024.3400151 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2768-167X |
EndPage | 180 |
ExternalDocumentID | 10_1109_JFLEX_2024_3400151 10529314 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Innovation Foundation (INNOPOLIS) grant funded by Korean Government [Ministry of Science and ICT (MSIT)] grantid: 2020-DD-UP-0278 – fundername: National Science Foundation grantid: 1751143 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c183t-46ed1bb7841dcaa36739045c5a1700f6868017b885fa88329db5226342339d873 |
IEDL.DBID | RIE |
ISSN | 2768-167X |
IngestDate | Thu Apr 24 22:57:23 EDT 2025 Tue Jul 01 03:01:02 EDT 2025 Wed Aug 27 02:34:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c183t-46ed1bb7841dcaa36739045c5a1700f6868017b885fa88329db5226342339d873 |
ORCID | 0009-0006-3461-0693 0000-0001-8922-418X 0009-0001-2502-0097 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_JFLEX_2024_3400151 ieee_primary_10529314 crossref_citationtrail_10_1109_JFLEX_2024_3400151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-May |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal on flexible electronics |
PublicationTitleAbbrev | JFLEX |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | Drummond (ref17); 11 Rivera-Romero (ref12) 2024; 8 ref15 Goodfellow (ref22) 2016 (ref14) 2024 ref20 Zhao (ref7) 2021; 21 ref11 ref10 ref21 ref2 ref1 ref16 ref19 Bourahmoune (ref13) 2022; 22 ref9 ref4 ref3 ref6 ref5 Brownlee (ref18) 2021 Kim (ref8) 2022; 27 |
References_xml | – ident: ref19 doi: 10.1613/jair.953 – ident: ref1 doi: 10.1109/FLEPS57599.2023.10220219 – ident: ref9 doi: 10.1109/FLEPS.2019.8792250 – ident: ref15 doi: 10.1109/ICST47872.2019.9166287 – ident: ref10 doi: 10.1145/3313991.3314000 – volume-title: Deep Learning year: 2016 ident: ref22 – ident: ref2 doi: 10.1021/acsnano.2c12606 – ident: ref3 doi: 10.1109/JBHI.2019.2899070 – ident: ref16 doi: 10.1145/3292500.3330680 – ident: ref4 doi: 10.1002/aisy.202000039 – ident: ref5 doi: 10.1109/JSEN.2023.3287291 – volume-title: MiDAS H&T year: 2024 ident: ref14 – volume: 27 start-page: 153 issue: 2 year: 2022 ident: ref8 article-title: Implementation of real-time sedentary posture correction cushion using capacitive pressure sensor based on conductive textile publication-title: J. Korea Soc. Comput. Inf. – volume: 22 start-page: 5337 issue: 14 year: 2022 ident: ref13 article-title: Intelligent posture training: Machine-learning-powered human sitting posture recognition based on a pressure-sensing IoT cushion publication-title: Sensors doi: 10.3390/s22145337 – volume: 11 start-page: 1 volume-title: Proc. Workshop Learn. Imbalanced Datasets II ident: ref17 article-title: C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling – volume: 8 start-page: 13 issue: 2 year: 2024 ident: ref12 article-title: Optimal image characterization for in-bed posture classification by using SVM algorithm publication-title: Big Data Cognit. Comput. doi: 10.3390/bdcc8020013 – ident: ref6 doi: 10.1080/15389588.2021.1892087 – year: 2021 ident: ref18 article-title: Random oversampling and undersampling for imbalanced classification publication-title: Mach. Learn. Mastery – ident: ref21 doi: 10.5555/1953048.2078195 – volume: 21 start-page: 3346 issue: 10 year: 2021 ident: ref7 article-title: Exploration of driver posture monitoring using pressure sensors with lower resolution publication-title: Sensors doi: 10.3390/s21103346 – ident: ref11 doi: 10.1109/SMC.2019.8914459 – ident: ref20 doi: 10.1007/978-3-642-00296-0_5 |
SSID | ssj0002961380 |
Score | 2.268083 |
Snippet | Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 173 |
SubjectTerms | Classification Estimation Feature extraction flexible and printable sensor Flexible electronics IoT monitoring Monitoring posture monitoring Pressure measurement pressure sensor Pressure sensors Support vector machines |
Title | Effective Posture Classification Using Statistically Significant Data From Flexible Pressure Sensors |
URI | https://ieeexplore.ieee.org/document/10529314 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwHGK8lAM31NK1aZccEayaJthlTNqtyqsIMTo02gP8euy0mwYSiFtVJVFU2_XnxP5MyCVoCWcxyz2Zm8Bjeag9pcCuulyHgTBWBAoLnB9GyWDChtN42hSru1oYa61LPrM-Prq7fDPXFR6VgYXH4J2wbfUm6FldrLU6UAkFeCYeLAtjAnE9TO_7UwgBQ-ZHDMFB95vzWeum4pxJuktGy23UOSQvflUqX3_-YGj89z73yE4DK-lNrQf7ZMMWB2R7jWzwkJiaqBj-bhQ79FYLS11HTMwVcuKhLn2AIvx07M1yNvug4-enwo0oSnonS0nTxfyVpkijqWawkovWYakxhMPzxXubTNL-4-3Aa3oseBrEVHossaarFN4-Gi1llPQiAShPxxKJ-_KEJ-DCeorzOJccrF8YhYgNeQMjYXgvOiKtYl7YY0JlKCG2YrEIBGeGJVKxyIAKMAUQRduwQ7rLj5_phoAc-2DMMheIBCJzAstQYFkjsA65Ws15q-k3_hzdRmGsjazlcPLL-1OyhdPr_MUz0ioXlT0HjFGqC6dbX1tYzio |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAs4jy9MCGUtLESe0RQaNS2i5QqVvkVxCipKikA_x67py0KkggtihyLCvfOfddfPcdIRdgJZxFLPNkZnyPZYH2lIJ91eQ68IWxwldY4NwfxJ0h646iUVWs7mphrLUu-cw28NKd5ZuJnuGvMtjhEXgnbFu9Bo6fRWW51uKXSiDAN3F_Xhrji6tu0muPIAgMWCNkSA-a39zPUj8V506SbTKYL6TMInlpzArV0J8_NBr_vdIdslURS3pdWsIuWbH5HtlckhvcJ6aUKobvG8UevbOppa4nJmYLOYCoSyCgSECdfrMcjz_ow_NT7kbkBb2VhaTJdPJKExTSVGOYycXrMNUDBMST6XuNDJP2403Hq7oseBqAKjwWW9NUCs8fjZYyjFuhAJ6nI4nSfVnMY3BiLcV5lEkO-18YhZwNlQNDYXgrPCCr-SS3h4TKQEJ0xSLhC84Mi6VioQEjYApIirZBnTTnLz_VlQQ5dsIYpy4U8UXqAEsRsLQCrE4uF8-8lQIcf46uIRhLI0scjn65f07WO4_9Xtq7G9wfkw2cqsxmPCGrxXRmT4FxFOrM2dkXUeLRdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Posture+Classification+Using+Statistically+Significant+Data+From+Flexible+Pressure+Sensors&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Yoon%2C+Jungeun&rft.au=Moon%2C+Aekyeung&rft.au=Son%2C+Seung+Woo&rft.date=2024-05-01&rft.pub=IEEE&rft.eissn=2768-167X&rft.volume=3&rft.issue=5&rft.spage=173&rft.epage=180&rft_id=info:doi/10.1109%2FJFLEX.2024.3400151&rft.externalDocID=10529314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon |