Effective Posture Classification Using Statistically Significant Data From Flexible Pressure Sensors

Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized p...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 3; no. 5; pp. 173 - 180
Main Authors Yoon, Jungeun, Moon, Aekyeung, Son, Seung Woo
Format Journal Article
LanguageEnglish
Published IEEE 01.05.2024
Subjects
Online AccessGet full text
ISSN2768-167X
2768-167X
DOI10.1109/JFLEX.2024.3400151

Cover

Abstract Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized physical conditions with minimal or no inconvenience. However, managing a large volume of obtained sensor datasets and ensuring accurate predictions can take time and effort. While statistical analysis and the Pearson correlation coefficient can reduce data volume, whether this would lead to losing important information and affect downstream application performance is still being determined. In this article, we use posture classification as an exemplar of timely services in digital healthcare, especially for bedsores or decubitus ulcers. Our sensors, placed under hospital beds, have a thickness of just 0.4 mm and collect pressure data from 28 sensors (<inline-formula> <tex-math notation="LaTeX">7 \times 4 </tex-math></inline-formula>) at an 8-Hz cycle, categorizing postures into four types from five patients. We then collected sensor data to explore the possibility of using a small number of pressure sensors for patient posture classification. Next, we apply a statistical analysis to the datasets obtained to select the featured sensor data cells and evaluate the performance of posture classification models on various groups of sensors. Our evaluation involves the analysis of reduced datasets through statistical methods and the Pearson correlation coefficient. The classification performance using datasets comprising five featured and 28 sensors are 0.93 and 0.99, respectively. These results suggest comparable performance and the viability of useful classifiers for both the cases. Consequently, comparable posture classification performance can be achieved using only 17.9% of the entire dataset.
AbstractList Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized physical conditions with minimal or no inconvenience. However, managing a large volume of obtained sensor datasets and ensuring accurate predictions can take time and effort. While statistical analysis and the Pearson correlation coefficient can reduce data volume, whether this would lead to losing important information and affect downstream application performance is still being determined. In this article, we use posture classification as an exemplar of timely services in digital healthcare, especially for bedsores or decubitus ulcers. Our sensors, placed under hospital beds, have a thickness of just 0.4 mm and collect pressure data from 28 sensors (<inline-formula> <tex-math notation="LaTeX">7 \times 4 </tex-math></inline-formula>) at an 8-Hz cycle, categorizing postures into four types from five patients. We then collected sensor data to explore the possibility of using a small number of pressure sensors for patient posture classification. Next, we apply a statistical analysis to the datasets obtained to select the featured sensor data cells and evaluate the performance of posture classification models on various groups of sensors. Our evaluation involves the analysis of reduced datasets through statistical methods and the Pearson correlation coefficient. The classification performance using datasets comprising five featured and 28 sensors are 0.93 and 0.99, respectively. These results suggest comparable performance and the viability of useful classifiers for both the cases. Consequently, comparable posture classification performance can be achieved using only 17.9% of the entire dataset.
Author Yoon, Jungeun
Son, Seung Woo
Moon, Aekyeung
Author_xml – sequence: 1
  givenname: Jungeun
  orcidid: 0009-0006-3461-0693
  surname: Yoon
  fullname: Yoon, Jungeun
  organization: Electronics and Telecommunication Research Institute, Daejeon, South Korea
– sequence: 2
  givenname: Aekyeung
  orcidid: 0009-0001-2502-0097
  surname: Moon
  fullname: Moon, Aekyeung
  organization: Electronics and Telecommunication Research Institute, Daejeon, South Korea
– sequence: 3
  givenname: Seung Woo
  orcidid: 0000-0001-8922-418X
  surname: Son
  fullname: Son, Seung Woo
  email: seungwoo_son@uml.edu
  organization: Electrical and Computer Engineering Department, University of Massachusetts Lowell, Lowell, MA, USA
BookMark eNp9kMtKAzEUhoNUsNa-gLjIC0zNbZLMUmqnKgWFWuhuyGSSEklnJIli397pZVFcuDrnhHz_4XzXYNB2rQHgFqMJxqi4fykXs_WEIMImlCGEc3wBhkRwmWEu1oOz_gqMY_xACJGCYyrREDQza41O7tvAty6mr2Dg1KsYnXVaJde1cBVdu4HL1E8x9Y_e7-DSbdrDjzbBR5UULEO3haU3P672fVIwMe6jlqaNXYg34NIqH834VEdgVc7ep0_Z4nX-PH1YZBpLmjLGTYPrWkiGG60U5YIWiOU6V1ggZLnkEmFRS5lbJSUlRVPnhHDKCKVFIwUdAXLM1aGLMRhbfQa3VWFXYVTtVVUHVdVeVXVS1UPyD6RdOpyegnL-f_TuiDpjzNmunBQUM_oLT7F5vA
CODEN IJFEBL
CitedBy_id crossref_primary_10_3390_informatics11040076
crossref_primary_10_3390_fi17030107
Cites_doi 10.1613/jair.953
10.1109/FLEPS57599.2023.10220219
10.1109/FLEPS.2019.8792250
10.1109/ICST47872.2019.9166287
10.1145/3313991.3314000
10.1021/acsnano.2c12606
10.1109/JBHI.2019.2899070
10.1145/3292500.3330680
10.1002/aisy.202000039
10.1109/JSEN.2023.3287291
10.3390/s22145337
10.3390/bdcc8020013
10.1080/15389588.2021.1892087
10.5555/1953048.2078195
10.3390/s21103346
10.1109/SMC.2019.8914459
10.1007/978-3-642-00296-0_5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JFLEX.2024.3400151
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2768-167X
EndPage 180
ExternalDocumentID 10_1109_JFLEX_2024_3400151
10529314
Genre orig-research
GrantInformation_xml – fundername: Korea Innovation Foundation (INNOPOLIS) grant funded by Korean Government [Ministry of Science and ICT (MSIT)]
  grantid: 2020-DD-UP-0278
– fundername: National Science Foundation
  grantid: 1751143
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c183t-46ed1bb7841dcaa36739045c5a1700f6868017b885fa88329db5226342339d873
IEDL.DBID RIE
ISSN 2768-167X
IngestDate Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 03:01:02 EDT 2025
Wed Aug 27 02:34:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c183t-46ed1bb7841dcaa36739045c5a1700f6868017b885fa88329db5226342339d873
ORCID 0009-0006-3461-0693
0000-0001-8922-418X
0009-0001-2502-0097
PageCount 8
ParticipantIDs crossref_primary_10_1109_JFLEX_2024_3400151
ieee_primary_10529314
crossref_citationtrail_10_1109_JFLEX_2024_3400151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-May
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May
PublicationDecade 2020
PublicationTitle IEEE journal on flexible electronics
PublicationTitleAbbrev JFLEX
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References Drummond (ref17); 11
Rivera-Romero (ref12) 2024; 8
ref15
Goodfellow (ref22) 2016
(ref14) 2024
ref20
Zhao (ref7) 2021; 21
ref11
ref10
ref21
ref2
ref1
ref16
ref19
Bourahmoune (ref13) 2022; 22
ref9
ref4
ref3
ref6
ref5
Brownlee (ref18) 2021
Kim (ref8) 2022; 27
References_xml – ident: ref19
  doi: 10.1613/jair.953
– ident: ref1
  doi: 10.1109/FLEPS57599.2023.10220219
– ident: ref9
  doi: 10.1109/FLEPS.2019.8792250
– ident: ref15
  doi: 10.1109/ICST47872.2019.9166287
– ident: ref10
  doi: 10.1145/3313991.3314000
– volume-title: Deep Learning
  year: 2016
  ident: ref22
– ident: ref2
  doi: 10.1021/acsnano.2c12606
– ident: ref3
  doi: 10.1109/JBHI.2019.2899070
– ident: ref16
  doi: 10.1145/3292500.3330680
– ident: ref4
  doi: 10.1002/aisy.202000039
– ident: ref5
  doi: 10.1109/JSEN.2023.3287291
– volume-title: MiDAS H&T
  year: 2024
  ident: ref14
– volume: 27
  start-page: 153
  issue: 2
  year: 2022
  ident: ref8
  article-title: Implementation of real-time sedentary posture correction cushion using capacitive pressure sensor based on conductive textile
  publication-title: J. Korea Soc. Comput. Inf.
– volume: 22
  start-page: 5337
  issue: 14
  year: 2022
  ident: ref13
  article-title: Intelligent posture training: Machine-learning-powered human sitting posture recognition based on a pressure-sensing IoT cushion
  publication-title: Sensors
  doi: 10.3390/s22145337
– volume: 11
  start-page: 1
  volume-title: Proc. Workshop Learn. Imbalanced Datasets II
  ident: ref17
  article-title: C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling
– volume: 8
  start-page: 13
  issue: 2
  year: 2024
  ident: ref12
  article-title: Optimal image characterization for in-bed posture classification by using SVM algorithm
  publication-title: Big Data Cognit. Comput.
  doi: 10.3390/bdcc8020013
– ident: ref6
  doi: 10.1080/15389588.2021.1892087
– year: 2021
  ident: ref18
  article-title: Random oversampling and undersampling for imbalanced classification
  publication-title: Mach. Learn. Mastery
– ident: ref21
  doi: 10.5555/1953048.2078195
– volume: 21
  start-page: 3346
  issue: 10
  year: 2021
  ident: ref7
  article-title: Exploration of driver posture monitoring using pressure sensors with lower resolution
  publication-title: Sensors
  doi: 10.3390/s21103346
– ident: ref11
  doi: 10.1109/SMC.2019.8914459
– ident: ref20
  doi: 10.1007/978-3-642-00296-0_5
SSID ssj0002961380
Score 2.268083
Snippet Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Classification
Estimation
Feature extraction
flexible and printable sensor
Flexible electronics
IoT monitoring
Monitoring
posture monitoring
Pressure measurement
pressure sensor
Pressure sensors
Support vector machines
Title Effective Posture Classification Using Statistically Significant Data From Flexible Pressure Sensors
URI https://ieeexplore.ieee.org/document/10529314
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwHGK8lAM31NK1aZccEayaJthlTNqtyqsIMTo02gP8euy0mwYSiFtVJVFU2_XnxP5MyCVoCWcxyz2Zm8Bjeag9pcCuulyHgTBWBAoLnB9GyWDChtN42hSru1oYa61LPrM-Prq7fDPXFR6VgYXH4J2wbfUm6FldrLU6UAkFeCYeLAtjAnE9TO_7UwgBQ-ZHDMFB95vzWeum4pxJuktGy23UOSQvflUqX3_-YGj89z73yE4DK-lNrQf7ZMMWB2R7jWzwkJiaqBj-bhQ79FYLS11HTMwVcuKhLn2AIvx07M1yNvug4-enwo0oSnonS0nTxfyVpkijqWawkovWYakxhMPzxXubTNL-4-3Aa3oseBrEVHossaarFN4-Gi1llPQiAShPxxKJ-_KEJ-DCeorzOJccrF8YhYgNeQMjYXgvOiKtYl7YY0JlKCG2YrEIBGeGJVKxyIAKMAUQRduwQ7rLj5_phoAc-2DMMheIBCJzAstQYFkjsA65Ws15q-k3_hzdRmGsjazlcPLL-1OyhdPr_MUz0ioXlT0HjFGqC6dbX1tYzio
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAs4jy9MCGUtLESe0RQaNS2i5QqVvkVxCipKikA_x67py0KkggtihyLCvfOfddfPcdIRdgJZxFLPNkZnyPZYH2lIJ91eQ68IWxwldY4NwfxJ0h646iUVWs7mphrLUu-cw28NKd5ZuJnuGvMtjhEXgnbFu9Bo6fRWW51uKXSiDAN3F_Xhrji6tu0muPIAgMWCNkSA-a39zPUj8V506SbTKYL6TMInlpzArV0J8_NBr_vdIdslURS3pdWsIuWbH5HtlckhvcJ6aUKobvG8UevbOppa4nJmYLOYCoSyCgSECdfrMcjz_ow_NT7kbkBb2VhaTJdPJKExTSVGOYycXrMNUDBMST6XuNDJP2403Hq7oseBqAKjwWW9NUCs8fjZYyjFuhAJ6nI4nSfVnMY3BiLcV5lEkO-18YhZwNlQNDYXgrPCCr-SS3h4TKQEJ0xSLhC84Mi6VioQEjYApIirZBnTTnLz_VlQQ5dsIYpy4U8UXqAEsRsLQCrE4uF8-8lQIcf46uIRhLI0scjn65f07WO4_9Xtq7G9wfkw2cqsxmPCGrxXRmT4FxFOrM2dkXUeLRdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Posture+Classification+Using+Statistically+Significant+Data+From+Flexible+Pressure+Sensors&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Yoon%2C+Jungeun&rft.au=Moon%2C+Aekyeung&rft.au=Son%2C+Seung+Woo&rft.date=2024-05-01&rft.pub=IEEE&rft.eissn=2768-167X&rft.volume=3&rft.issue=5&rft.spage=173&rft.epage=180&rft_id=info:doi/10.1109%2FJFLEX.2024.3400151&rft.externalDocID=10529314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon