Open Pit Mine Integrating YOLO Optimization Model and Triangulation Network Stope Data Extraction Method
To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated with a triangulated network. An attention mechanism is incorporated to improve the capture of channel,...
Saved in:
Published in | Archives of mining sciences = Archiwum górnictwa Vol. 70; no. 2; p. 205 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Warsaw
Polish Academy of Sciences
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated with a triangulated network. An attention mechanism is incorporated to improve the capture of channel, spatial, and global multi-scale features, enabling the model to effectively consider both global context and boundary details of open-pit stopes while enhancing its ability to distinguish positive samples through an optimized loss function. Following dataset training and validation, the average accuracy for stope identification and segmentation using the Mine-YOLO model has improved by 0.15 and 0.079 respectively compared to the baseline model. The Mine-YOLO framework is employed to extract stope areas from DEM data; subsequently, indices such as stope area, volume, and mining depth are automatically calculated via a constructed triangulation network. The average errors in extracted stope area, volume, and mining depth are found to be 0.058, 0.047, and 0.002 respectively – demonstrating that the proposed methodology possesses high accuracy and significant practical application value. |
---|---|
AbstractList | To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated with a triangulated network. An attention mechanism is incorporated to improve the capture of channel, spatial, and global multi-scale features, enabling the model to effectively consider both global context and boundary details of open-pit stopes while enhancing its ability to distinguish positive samples through an optimized loss function. Following dataset training and validation, the average accuracy for stope identification and segmentation using the Mine-YOLO model has improved by 0.15 and 0.079 respectively compared to the baseline model. The Mine-YOLO framework is employed to extract stope areas from DEM data; subsequently, indices such as stope area, volume, and mining depth are automatically calculated via a constructed triangulation network. The average errors in extracted stope area, volume, and mining depth are found to be 0.058, 0.047, and 0.002 respectively – demonstrating that the proposed methodology possesses high accuracy and significant practical application value. |
Author | Li, Tianwen |
Author_xml | – sequence: 1 givenname: Tianwen surname: Li fullname: Li, Tianwen |
BookMark | eNotjUtLw0AYRQepYK3duxxwnTrvx1Jq1UJqBOvCVZkkX9LRdiYmUxR_vYW6OnDg3HuJRiEGQOiakhkTgslbtx9mjDA5o1Ioac_QmCpjMyKUHaExMYpkmhB6gabD4EtCNTecKjpG26KDgF98wisfAC9DgrZ3yYcWvxd5gYsu-b3_PZoY8CrWsMMu1Hjdexfaw-7knyF9x_4Tv6bYAb53yeHFT-pddaogbWN9hc4btxtg-s8JentYrOdPWV48Lud3eVZRw20GrKmsMqoEsEJWxJpaad1oXZuGllRq4rQFqxtbcVsaCaBAlkJXIKSxSvAJujntdn38OsCQNh_x0Ifj5YYzzoQi1Bj-BxZkXFU |
ContentType | Journal Article |
Copyright | 2025. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 7QH 7TN 7UA 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO F1W GNUQQ H96 H97 HCIFZ KB. L.G PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY |
DOI | 10.24425/ams.2025.154659 |
DatabaseName | Aqualine Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Materials Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
DatabaseTitle | Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1689-0469 |
GroupedDBID | 0R~ 23N 2WC 4.4 5GY 7QH 7TN 7UA 8FE 8FG ABJCF ABUWG ACGFS ACIWK ADBLJ AENEX AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO E0C EBS F1W GNUQQ H96 H97 HCIFZ HZ~ KB. KQ8 L.G O9- PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PYCSY SA. Y2W ~02 |
ID | FETCH-LOGICAL-c1839-e2fc9686bee945c098d677f77d8f1b1570a79e97f9c39b85ee6e5b47ce4589643 |
IEDL.DBID | BENPR |
ISSN | 0860-7001 |
IngestDate | Tue Aug 05 07:10:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1839-e2fc9686bee945c098d677f77d8f1b1570a79e97f9c39b85ee6e5b47ce4589643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3232460188?pq-origsite=%requestingapplication% |
PQID | 3232460188 |
PQPubID | 2040373 |
ParticipantIDs | proquest_journals_3232460188 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Archives of mining sciences = Archiwum górnictwa |
PublicationYear | 2025 |
Publisher | Polish Academy of Sciences |
Publisher_xml | – name: Polish Academy of Sciences |
SSID | ssib017383161 ssj0001529365 |
Score | 2.3082504 |
Snippet | To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 205 |
SubjectTerms | Accuracy Anniversaries Deep learning Mineral resources Mines Open pit mining Optimization models Remote sensing Semantics Triangulation Unmanned aerial vehicles |
Title | Open Pit Mine Integrating YOLO Optimization Model and Triangulation Network Stope Data Extraction Method |
URI | https://www.proquest.com/docview/3232460188 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JTwIxFG4ULnowrnFB0oPXhhmmnbYnAwIiYYtCgifSzrxRExkQxsSfbztToomJ1zbpoa_93v4-hG6kioSxU32ihA4I1VpbIndKAKinosTjEOcFssOwO6W9GZu5gNvGlVVuMTEH6ngZ2Rh5LbCq33gPQtyuPohljbLZVUehsYvKBoKFcb7KzfZw_Lh9UT43DpjvOjeLvmGj3nJ-SWPKe8QmXYvcpdFydVZTCzvBu85svCVk8g8-50qnc4gOnLWIG4V4j9AOpMdo_9cMwRP0aktC8PgtwwOziB_c-Aezh59H_REeGUxYuGZLbJnP3rFKYzwxDy99cdxdeFgUg-OnbLkC3FKZwu2vbF00PeBBzjJ9iqad9uSuSxx9Aoms2UOgnkQyFKEGkJRFnhRxyHnCeSwSX_uMe4pLkDyRUSC1YAAhME15BJQJO6brDJXSZQrnCAcBqIAzloRS0zqNpfKojhWPQZpzuH-BKtuLmrs_sJn_SOzy_-0rtGcvvQhsVFApW3_CtVH1ma6iXdG5r6Jyo9Xs96pOut-Oi6mi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFA61HtSDuOJSNQc9Dp0lmSQHEbGtrd0EW9BTTWbeqGCntR1R_5S_0WQWFARvXhPIIe_L2_Le-xA6FjLg2k91LMmVZxGllCFyJxYAsWUQ2QzCtEC25zeH5OqW3pbQZ9ELY8oqC52YKupwEpgcedUzpl9HD5yfTV8swxplflcLCo0MFm34eNMh2_y0VdPyPXHdRn1w0bRyVgErMN6ABW4UCJ_7CkAQGtiChz5jEWMhjxzlUGZLJkCwSASeUJwC-EAVYQEQys30Kn3uAloknifMi-KNywK_DtPhnpP3iWZdytqYpmyWOnCwLfPFm_2Uapvq0qocm3nhLjXZHZ-KX9YgNXGNNbSa-6b4PAPTOipBvIFWfkws3ESPpgAFXz8luKsXcSsfNqH38F2_08d9rYHGeWsnNjxrz1jGIR5omMcPOVMY7mWl5_gmmUwB12Qicf09mWUtFribclpvoeG_XOs2KseTGHYQ9jyQHqM08oUiLgmFtIkKJQtB6HOYs4sqxUWN8hc3H33jY-_v7SO01Bx0O6NOq9feR8tGAFlKpYLKyewVDrSTkajDVLIY3f83lL4ArZziSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open+Pit+Mine+Integrating+YOLO+Optimization+Model+and+Triangulation+Network+Stope+Data+Extraction+Method&rft.jtitle=Archives+of+mining+sciences+%3D+Archiwum+g%C3%B3rnictwa&rft.au=Li%2C+Tianwen&rft.date=2025&rft.pub=Polish+Academy+of+Sciences&rft.issn=0860-7001&rft.eissn=1689-0469&rft.volume=70&rft.issue=2&rft.spage=205&rft_id=info:doi/10.24425%2Fams.2025.154659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0860-7001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0860-7001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0860-7001&client=summon |