Open Pit Mine Integrating YOLO Optimization Model and Triangulation Network Stope Data Extraction Method

To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated with a triangulated network. An attention mechanism is incorporated to improve the capture of channel,...

Full description

Saved in:
Bibliographic Details
Published inArchives of mining sciences = Archiwum górnictwa Vol. 70; no. 2; p. 205
Main Author Li, Tianwen
Format Journal Article
LanguageEnglish
Published Warsaw Polish Academy of Sciences 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated with a triangulated network. An attention mechanism is incorporated to improve the capture of channel, spatial, and global multi-scale features, enabling the model to effectively consider both global context and boundary details of open-pit stopes while enhancing its ability to distinguish positive samples through an optimized loss function. Following dataset training and validation, the average accuracy for stope identification and segmentation using the Mine-YOLO model has improved by 0.15 and 0.079 respectively compared to the baseline model. The Mine-YOLO framework is employed to extract stope areas from DEM data; subsequently, indices such as stope area, volume, and mining depth are automatically calculated via a constructed triangulation network. The average errors in extracted stope area, volume, and mining depth are found to be 0.058, 0.047, and 0.002 respectively – demonstrating that the proposed methodology possesses high accuracy and significant practical application value.
AbstractList To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on an enhanced Mine-YOLO model integrated with a triangulated network. An attention mechanism is incorporated to improve the capture of channel, spatial, and global multi-scale features, enabling the model to effectively consider both global context and boundary details of open-pit stopes while enhancing its ability to distinguish positive samples through an optimized loss function. Following dataset training and validation, the average accuracy for stope identification and segmentation using the Mine-YOLO model has improved by 0.15 and 0.079 respectively compared to the baseline model. The Mine-YOLO framework is employed to extract stope areas from DEM data; subsequently, indices such as stope area, volume, and mining depth are automatically calculated via a constructed triangulation network. The average errors in extracted stope area, volume, and mining depth are found to be 0.058, 0.047, and 0.002 respectively – demonstrating that the proposed methodology possesses high accuracy and significant practical application value.
Author Li, Tianwen
Author_xml – sequence: 1
  givenname: Tianwen
  surname: Li
  fullname: Li, Tianwen
BookMark eNotjUtLw0AYRQepYK3duxxwnTrvx1Jq1UJqBOvCVZkkX9LRdiYmUxR_vYW6OnDg3HuJRiEGQOiakhkTgslbtx9mjDA5o1Ioac_QmCpjMyKUHaExMYpkmhB6gabD4EtCNTecKjpG26KDgF98wisfAC9DgrZ3yYcWvxd5gYsu-b3_PZoY8CrWsMMu1Hjdexfaw-7knyF9x_4Tv6bYAb53yeHFT-pddaogbWN9hc4btxtg-s8JentYrOdPWV48Lud3eVZRw20GrKmsMqoEsEJWxJpaad1oXZuGllRq4rQFqxtbcVsaCaBAlkJXIKSxSvAJujntdn38OsCQNh_x0Ifj5YYzzoQi1Bj-BxZkXFU
ContentType Journal Article
Copyright 2025. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7QH
7TN
7UA
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
KB.
L.G
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOI 10.24425/ams.2025.154659
DatabaseName Aqualine
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Materials Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1689-0469
GroupedDBID 0R~
23N
2WC
4.4
5GY
7QH
7TN
7UA
8FE
8FG
ABJCF
ABUWG
ACGFS
ACIWK
ADBLJ
AENEX
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
E0C
EBS
F1W
GNUQQ
H96
H97
HCIFZ
HZ~
KB.
KQ8
L.G
O9-
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PYCSY
SA.
Y2W
~02
ID FETCH-LOGICAL-c1839-e2fc9686bee945c098d677f77d8f1b1570a79e97f9c39b85ee6e5b47ce4589643
IEDL.DBID BENPR
ISSN 0860-7001
IngestDate Tue Aug 05 07:10:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1839-e2fc9686bee945c098d677f77d8f1b1570a79e97f9c39b85ee6e5b47ce4589643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3232460188?pq-origsite=%requestingapplication%
PQID 3232460188
PQPubID 2040373
ParticipantIDs proquest_journals_3232460188
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Archives of mining sciences = Archiwum górnictwa
PublicationYear 2025
Publisher Polish Academy of Sciences
Publisher_xml – name: Polish Academy of Sciences
SSID ssib017383161
ssj0001529365
Score 2.3082504
Snippet To achieve the automatic, rapid, and precise extraction of stope data from open-pit mines, this paper introduces a novel stope data extraction method based on...
SourceID proquest
SourceType Aggregation Database
StartPage 205
SubjectTerms Accuracy
Anniversaries
Deep learning
Mineral resources
Mines
Open pit mining
Optimization models
Remote sensing
Semantics
Triangulation
Unmanned aerial vehicles
Title Open Pit Mine Integrating YOLO Optimization Model and Triangulation Network Stope Data Extraction Method
URI https://www.proquest.com/docview/3232460188
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JTwIxFG4ULnowrnFB0oPXhhmmnbYnAwIiYYtCgifSzrxRExkQxsSfbztToomJ1zbpoa_93v4-hG6kioSxU32ihA4I1VpbIndKAKinosTjEOcFssOwO6W9GZu5gNvGlVVuMTEH6ngZ2Rh5LbCq33gPQtyuPohljbLZVUehsYvKBoKFcb7KzfZw_Lh9UT43DpjvOjeLvmGj3nJ-SWPKe8QmXYvcpdFydVZTCzvBu85svCVk8g8-50qnc4gOnLWIG4V4j9AOpMdo_9cMwRP0aktC8PgtwwOziB_c-Aezh59H_REeGUxYuGZLbJnP3rFKYzwxDy99cdxdeFgUg-OnbLkC3FKZwu2vbF00PeBBzjJ9iqad9uSuSxx9Aoms2UOgnkQyFKEGkJRFnhRxyHnCeSwSX_uMe4pLkDyRUSC1YAAhME15BJQJO6brDJXSZQrnCAcBqIAzloRS0zqNpfKojhWPQZpzuH-BKtuLmrs_sJn_SOzy_-0rtGcvvQhsVFApW3_CtVH1ma6iXdG5r6Jyo9Xs96pOut-Oi6mi
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFA61HtSDuOJSNQc9Dp0lmSQHEbGtrd0EW9BTTWbeqGCntR1R_5S_0WQWFARvXhPIIe_L2_Le-xA6FjLg2k91LMmVZxGllCFyJxYAsWUQ2QzCtEC25zeH5OqW3pbQZ9ELY8oqC52YKupwEpgcedUzpl9HD5yfTV8swxplflcLCo0MFm34eNMh2_y0VdPyPXHdRn1w0bRyVgErMN6ABW4UCJ_7CkAQGtiChz5jEWMhjxzlUGZLJkCwSASeUJwC-EAVYQEQys30Kn3uAloknifMi-KNywK_DtPhnpP3iWZdytqYpmyWOnCwLfPFm_2Uapvq0qocm3nhLjXZHZ-KX9YgNXGNNbSa-6b4PAPTOipBvIFWfkws3ESPpgAFXz8luKsXcSsfNqH38F2_08d9rYHGeWsnNjxrz1jGIR5omMcPOVMY7mWl5_gmmUwB12Qicf09mWUtFribclpvoeG_XOs2KseTGHYQ9jyQHqM08oUiLgmFtIkKJQtB6HOYs4sqxUWN8hc3H33jY-_v7SO01Bx0O6NOq9feR8tGAFlKpYLKyewVDrSTkajDVLIY3f83lL4ArZziSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open+Pit+Mine+Integrating+YOLO+Optimization+Model+and+Triangulation+Network+Stope+Data+Extraction+Method&rft.jtitle=Archives+of+mining+sciences+%3D+Archiwum+g%C3%B3rnictwa&rft.au=Li%2C+Tianwen&rft.date=2025&rft.pub=Polish+Academy+of+Sciences&rft.issn=0860-7001&rft.eissn=1689-0469&rft.volume=70&rft.issue=2&rft.spage=205&rft_id=info:doi/10.24425%2Fams.2025.154659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0860-7001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0860-7001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0860-7001&client=summon