Tuning a PID controller using genetic algorithms

This paper details the development of PID controller tuning, based on the implementation of advanced optimization techniques in  MATLAB to find the optimal gains for control actions. The methodology used to create the solutions was that of genetic algorithms, an artificial intelligence technique dev...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied research and technology Vol. 23; no. 3; pp. 240 - 251
Main Authors López-Reyna, D., López-Reyna, I., González-Badillo, G., Martínez-Montejano, M. F., Martinez-Montejano, R. C.
Format Journal Article
LanguageEnglish
Published 30.06.2025
Online AccessGet full text
ISSN1665-6423
2448-6736
DOI10.22201/icat.24486736e.2025.23.3.2785

Cover

Abstract This paper details the development of PID controller tuning, based on the implementation of advanced optimization techniques in  MATLAB to find the optimal gains for control actions. The methodology used to create the solutions was that of genetic algorithms, an artificial intelligence technique developed in the 1970s and inspired by Darwin's natural selection, within the field of evolutionary computing. Its implementation is based on selection, crossover, and mutation processes, which allow the solutions to iteratively converge towards increasingly optimal results. Two different genetic algorithms were programmed and designed. The first focused exclusively on a single objective, which was the settling time; while the second was based on a multi-objective technique that additionally considered the maximum overshoot, rise time, and delay time. Different fitness functions were developed to create these neural models; subsequently, the gain results obtained from these genetic methods were compared with those proposed by analytical and experimental methods, both in the field of simulation and in physical implementation. The analysis of the responses validated theefficiency and effectiveness of the proposed algorithms for controller tuning, showing better performance with the gains obtained through genetic algorithms.
AbstractList This paper details the development of PID controller tuning, based on the implementation of advanced optimization techniques in  MATLAB to find the optimal gains for control actions. The methodology used to create the solutions was that of genetic algorithms, an artificial intelligence technique developed in the 1970s and inspired by Darwin's natural selection, within the field of evolutionary computing. Its implementation is based on selection, crossover, and mutation processes, which allow the solutions to iteratively converge towards increasingly optimal results. Two different genetic algorithms were programmed and designed. The first focused exclusively on a single objective, which was the settling time; while the second was based on a multi-objective technique that additionally considered the maximum overshoot, rise time, and delay time. Different fitness functions were developed to create these neural models; subsequently, the gain results obtained from these genetic methods were compared with those proposed by analytical and experimental methods, both in the field of simulation and in physical implementation. The analysis of the responses validated theefficiency and effectiveness of the proposed algorithms for controller tuning, showing better performance with the gains obtained through genetic algorithms.
Author González-Badillo, G.
Martinez-Montejano, R. C.
López-Reyna, D.
López-Reyna, I.
Martínez-Montejano, M. F.
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0009-0001-7526-4487
  surname: López-Reyna
  fullname: López-Reyna, D.
– sequence: 2
  givenname: I.
  orcidid: 0009-0000-2534-9223
  surname: López-Reyna
  fullname: López-Reyna, I.
– sequence: 3
  givenname: G.
  orcidid: 0000-0001-5130-1485
  surname: González-Badillo
  fullname: González-Badillo, G.
– sequence: 4
  givenname: M. F.
  orcidid: 0000-0002-0521-6762
  surname: Martínez-Montejano
  fullname: Martínez-Montejano, M. F.
– sequence: 5
  givenname: R. C.
  orcidid: 0000-0002-8996-4134
  surname: Martinez-Montejano
  fullname: Martinez-Montejano, R. C.
BookMark eNo90M9LwzAUwPEgE5xz_0NP3hqTvPzqRZCpczDQwzyHNH2pha6VpDv432uneHrwvvB4fK7JYhgHJOSWMyqEYPyuC36iQkqrDWikgglFBVCgwlh1QZZzKue2IEuutSq1FHBF1jl3NQMtmTVWLwk7nIZuaAtfvO0eizAOUxr7HlNxyvO6xQGnLhS-b8fUTR_HfEMuo-8zrv_mirw_Px02L-X-dbvbPOzLwC2osqoN8MY2hmspm8p6ZAYbwaLmUSJCVasoRayiDZVRMiDz8vwUUwg_FVbk_vduSGPOCaP7TN3Rpy_HmTsTuJnA_RO4mcAJcOBmAvgGFPpSMA
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.22201/icat.24486736e.2025.23.3.2785
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2448-6736
EndPage 251
ExternalDocumentID 10_22201_icat_24486736e_2025_23_3_2785
GroupedDBID 0R~
2WC
4.4
457
5GY
5VS
635
AAEDT
AAFWJ
AAIKJ
AAYXX
ADCUG
ADDVE
ADEZE
AGHFR
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AZFZN
CITATION
DU5
E3Z
FDB
KQ8
KWQ
O9-
OK1
RDY
RNS
SCD
TR2
ID FETCH-LOGICAL-c1835-9b731d8d71644d98ae07ed20f61f4ee39b5f42f9f8c9754ce0a46408705e339b3
ISSN 1665-6423
IngestDate Thu Jul 10 07:27:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1835-9b731d8d71644d98ae07ed20f61f4ee39b5f42f9f8c9754ce0a46408705e339b3
ORCID 0009-0000-2534-9223
0000-0001-5130-1485
0000-0002-0521-6762
0009-0001-7526-4487
0000-0002-8996-4134
OpenAccessLink https://jart.icat.unam.mx/index.php/jart/article/download/2785/1203
PageCount 12
ParticipantIDs crossref_primary_10_22201_icat_24486736e_2025_23_3_2785
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of applied research and technology
PublicationYear 2025
SSID ssib036408786
ssj0068840
Score 2.3242674
Snippet This paper details the development of PID controller tuning, based on the implementation of advanced optimization techniques in  MATLAB to find the optimal...
SourceID crossref
SourceType Index Database
StartPage 240
Title Tuning a PID controller using genetic algorithms
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiF6qMpLUCjKAXFZOTh-xM6RsvQBFAFqpd4iJ3bKolW2WmUP7A_r72NsJ9nQoqr0EkX2eJR4RuPxeOYzQm-klkRpneC00hRzYQUuVEkwlSW13HBDtc-2-JoenvJPZ-JsNLocZC0tmyIuV_-sK7mLVKEN5OqqZP9Dsj1TaIB3kC88QcLwvJ2Mlz6qocffjiZd0vnMLsZLHwCAYdbDsc7O54tp87PFJb_uierWE22Bf0KtW3Mt5v7FHarvsQu7wj_s71BLNolv6j3qew_m9cqfySczINjTZtqe-Rz0JA7QwJNMaiA5dqhZv7S_GHx8HI_342F8goouma43qWkqMOxyghmzvg18CtUVHfR2uKWYDrfpwagGQKd2faYBoPaq6Qc_x9854CKdsePv2DscVCpiymIWUxnuBvobc_vKWthnKMLeyHPMHb-855c7fjllOcsdv3voPpXSpwd8_t7bMZZyojwsX_AIUqVCYW43Ew_Q2-6L3934vQNnaeD1nGyjrVZJovdB9x6hka0fo80BiOUTRIIWRjoCLYzWWhh5LYxaLYzWWvgUne5_PPlwiNt7OHAJBl_grJAsMcq4rTU3mdKWSGsoqdKk4tayrBAVp1VWqTKTgpeWaO6ngAjLoJc9Qxv1vLbPUVQQk_EypaZKrMtFyFTBskqL0sBKYqryBZLdD-cXAW4lv50odu488iV6uNbbV2ijWSztLniaTfHai_UPIZxwAg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+a+PID+controller+using+genetic+algorithms&rft.jtitle=Journal+of+applied+research+and+technology&rft.au=L%C3%B3pez-Reyna%2C+D.&rft.au=L%C3%B3pez-Reyna%2C+I.&rft.au=Gonz%C3%A1lez-Badillo%2C+G.&rft.au=Mart%C3%ADnez-Montejano%2C+M.+F.&rft.date=2025-06-30&rft.issn=1665-6423&rft.eissn=2448-6736&rft.volume=23&rft.issue=3&rft.spage=240&rft.epage=251&rft_id=info:doi/10.22201%2Ficat.24486736e.2025.23.3.2785&rft.externalDBID=n%2Fa&rft.externalDocID=10_22201_icat_24486736e_2025_23_3_2785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1665-6423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1665-6423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1665-6423&client=summon