A Review of Infrared Thermography Applications for Civil Infrastructure
Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural health. Accumulated damage on structures increases operational costs and poses significant risks to public safety. Effective maintenance, repa...
Saved in:
Published in | Structural durability & health monitoring Vol. 19; no. 2; pp. 193 - 231 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Forsyth
Tech Science Press
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural health. Accumulated damage on structures increases operational costs and poses significant risks to public safety. Effective maintenance, repair, and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability. Non-Destructive Evaluation (NDE) methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards. Within the last decade, there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment. This paper aims to review one of those methods, namely, Infrared Thermography (IRT), and its applications in civil infrastructure. A comprehensive review is presented by investigating numerous journal articles, research papers, and technical reports describing numerous IRT applications for bridges, buildings, and general civil structures made from different materials. The capability of IRT to identify and pinpoint anomalies, typically in the early stages of degradation, has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation. Furthermore, the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures. It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment. With further advancement and fine-tuning of the available techniques, it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure. |
---|---|
AbstractList | Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural health. Accumulated damage on structures increases operational costs and poses significant risks to public safety. Effective maintenance, repair, and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability. Non-Destructive Evaluation (NDE) methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards. Within the last decade, there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment. This paper aims to review one of those methods, namely, Infrared Thermography (IRT), and its applications in civil infrastructure. A comprehensive review is presented by investigating numerous journal articles, research papers, and technical reports describing numerous IRT applications for bridges, buildings, and general civil structures made from different materials. The capability of IRT to identify and pinpoint anomalies, typically in the early stages of degradation, has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation. Furthermore, the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures. It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment. With further advancement and fine-tuning of the available techniques, it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure. |
Author | Barth, Karl Rifai, Sahabeddin Avci, Onur Shrestha, Prabal Seek, Michael Abla, Feras Halabe, Udaya |
Author_xml | – sequence: 1 givenname: Prabal surname: Shrestha fullname: Shrestha, Prabal – sequence: 2 givenname: Sahabeddin surname: Rifai fullname: Rifai, Sahabeddin – sequence: 3 givenname: Feras surname: Abla fullname: Abla, Feras – sequence: 4 givenname: Karl surname: Barth fullname: Barth, Karl – sequence: 5 givenname: Onur surname: Avci fullname: Avci, Onur – sequence: 6 givenname: Michael surname: Seek fullname: Seek, Michael – sequence: 7 givenname: Udaya surname: Halabe fullname: Halabe, Udaya |
BookMark | eNpNkMtqwzAQRUVJoUnaD-hO0HVSPSzbWobQRyBQKOlayNKocUgsd2Sn5O-b1F10NXdxuHc4EzJqYgOE3HM2lyJn2WPy28NcMJHNWaaVZFdkzLVkM6E1H_3LN2SS0o6xLBdSjcnLgr7DsYZvGgNdNQEtgqebLeAhfqJttye6aNt97WxXxybREJEu62O9H-DUYe-6HuGWXAe7T3D3d6fk4_lps3ydrd9eVsvFeuZ4ef7ASc0rG6wQJec8-ABBF2Bz6UrvrZdSFRUUIErItXY-V9K5Slc8s4VljAs5JQ9Db4vxq4fUmV3ssTlPGikuhFJKnyk-UA5jSgjBtFgfLJ4MZ-bXl7n4MhdfZvAlfwCTqmDL |
Cites_doi | 10.1016/j.conbuildmat.2021.124614 10.3390/app8101986 10.1016/S1296-2074(02)01159-7 10.1155/2016/1053856 10.1007/s10921-012-0133-0 10.3221/IGF-ESIS.38.43 10.1061/(ASCE)BE.1943-5592.0000117 10.1016/S0378-7788(97)00039-X 10.1002/pse.160 10.1016/j.ndteint.2013.03.008 10.3390/app11209757 10.3390/s16020234 10.1080/17686733.2016.1145842 10.1007/978-981-19-1894-0_1 10.3390/ma12233996 10.1016/j.procs.2019.08.067 10.1016/j.infrared.2006.06.010 10.1520/GTJ20150245 10.3390/app8020257 10.3390/rs12162621 10.3846/jcem.2018.6186 10.1007/s13349-016-0169-4 10.1007/s13349-010-0002-4 10.1061/(ASCE)BE.1943-5592.0000350 10.1007/s44150-021-00008-7 10.1016/j.enconman.2010.06.026 10.3390/s20247067 10.1007/s13349-016-0180-9 10.1016/j.aej.2017.01.020 10.3390/rs12050892 10.1155/2022/5229911 10.1016/j.conbuildmat.2018.02.126 10.1016/j.compstruc.2017.05.011 10.1016/j.infrared.2004.03.020 10.1016/j.conbuildmat.2021.125265 10.1007/s13349-018-0289-0 10.1016/j.conbuildmat.2015.10.156 10.3390/s21051604 10.1088/1757-899X/586/1/012041 10.1016/j.proeng.2017.04.510 10.1016/j.egypro.2017.09.636 10.1016/S0963-8695(02)00060-9 10.1080/09349847.2017.1304597 10.1007/s12541-015-0290-z 10.1016/j.conbuildmat.2016.02.026 10.1109/TMECH.2021.3106867 10.1016/j.engfracmech.2017.05.024 10.1088/1757-899X/81/1/012100 10.1016/j.infrared.2006.06.012 10.1016/j.apenergy.2013.03.066 10.3390/ma12050835 10.3390/app11104323 10.1061/(ASCE)BE.1943-5592.0001124 10.1016/j.trpro.2022.01.095 10.1016/j.conbuildmat.2015.06.065 10.1016/S0963-8695(00)00039-6 10.1016/j.ndteint.2007.12.003 10.1016/j.proeng.2017.05.308 10.3390/s20216015 10.1061/(ASCE)BE.1943-5592.0000066 10.33552/CTCSE.2022.08.000695 10.1016/j.conbuildmat.2022.129531 10.3390/s140712305 10.1063/1.1472946 10.1007/s13349-022-00550-y 10.3390/s18020609 10.3390/rs13091809 10.1016/S1350-4495(02)00145-7 10.1016/j.apenergy.2014.08.005 10.5194/adgeo-24-69-2010 10.1061/(ASCE)EM.1943-7889.0000441 10.1016/j.prostr.2016.06.267 10.1784/insi.2008.50.5.240 10.1063/1.1916868 10.1007/s10921-018-0482-4 10.3390/s22020423 |
ContentType | Journal Article |
Copyright | 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.32604/sdhm.2024.049530 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database (ProQuest) ProQuest Engineering Collection Engineering Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1930-2991 |
EndPage | 231 |
ExternalDocumentID | 10_32604_sdhm_2024_049530 |
GroupedDBID | AAFWJ AAYXX ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION EBS EJD HCIFZ KB. M7S OK1 PDBOC PHGZM PHGZT PIMPY PTHSS RTS 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c1830-c391bafa228111fdfef97ea63c8ddad3357be7e28e699cd653ccb9b14a7a00123 |
IEDL.DBID | BENPR |
ISSN | 1930-2991 1930-2983 |
IngestDate | Fri Jul 25 11:14:14 EDT 2025 Sun Jul 06 05:08:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1830-c391bafa228111fdfef97ea63c8ddad3357be7e28e699cd653ccb9b14a7a00123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3200125559?pq-origsite=%requestingapplication% |
PQID | 3200125559 |
PQPubID | 4577404 |
PageCount | 39 |
ParticipantIDs | proquest_journals_3200125559 crossref_primary_10_32604_sdhm_2024_049530 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Forsyth |
PublicationPlace_xml | – name: Forsyth |
PublicationTitle | Structural durability & health monitoring |
PublicationYear | 2025 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | ref56 Senthilkumar (ref30) 2021; 29 Omar (ref4) 2022; 8 Schuller (ref98) 2003; 5 Sakagami (ref57) 2016; 2 Mulaveesala (ref7) 2019 Chung (ref23) 2020; 20 Ludwig (ref77) 2004; 46 Usamentiaga (ref26) 2014; 14 Feroz (ref112) 2021; 13 Halabe (ref64) 2010 Jun 7–11 Foudazi (ref67) 2014 Garrido (ref102) 2022; 2022 Cotič (ref103) 2013 Sep 4–6 Kylili (ref85) 2014; 134 Meola (ref97) 2007; 49 Xin (ref82) 2021; 304 Washer (ref43) 2010; 15 Tejedor (ref11) 2022 Seo (ref10) 2017; 40 Barreira (ref18) 2016; 110 Clark (ref16) 2003; 36 ref3 Chun (ref48) 2021; 26 Tsai (ref104) 2019; 27 Lehmann (ref99) 2013; 110 Omar (ref9) 2018; 168 Abdel-Qader (ref50) 2008; 41 Sakalle (ref22) 2021; 12 Oswald-Tranta (ref60) 2018; 8 Matovu (ref8) 2016; 6 Netzelmann (ref59) 2016; 13 Cannard (ref15) 2014 Jul 7–11 Tkáč (ref107) 2019; 14 Janků (ref38) 2017; 190 Vaghefi (ref33) 2011 Oct Escobar-Wolf (ref116) 2018; 29 Pant (ref106) 2021; 21 Kobayashi (ref96) 2011; 1 Wu (ref108) 2018 Sep 16–19 Oh (ref40) 2013; 139 Entrop (ref110) 2017; 132 Hiasa (ref36) 2016; 3 Pozzer (ref41) 2021; 11 Titman (ref86) 2001; 34 Coleman (ref32) 2022; 36 Grinzato (ref84) 1998; 29 Pedram (ref94) 2022; 12 Rocha (ref45) 2017; 7 Sandak (ref79) 2013; 778 Ou (ref73) 1986; 1053 Dias (ref101) 2020 Sakagami (ref58) 2017; 183 Baek (ref37) 2012; 31 Bauer (ref100) 2018; 8 Wiggenhauser (ref90) 2002; 43 Frodella (ref115) 2020; 12 Mac (ref39) 2019; 12 Ranjit (ref53) 2015; 16 ref12 He (ref28) 2020; 20 Hiasa (ref49) 2017; 22 Szymanik (ref91) 2016; 16 Tomita (ref21) 2022; 22 Kee (ref42) 2012; 17 Nuzzo (ref20) 2010; 24 Khedmatgozar Dolati (ref27) 2021; 11 Halabe (ref68) 2010; 68 Riggio (ref83) 2015; 101 Grinzato (ref105) 2012 Apr 16–20 Moyseychik (ref55) 2018; 37 Antolis (ref24) 2017; 188 Carnahan (ref1) 2022; 39 Yumnam (ref63) 2021; 310 Mohan (ref92) 2018; 57 Hing (ref69) 2010; 15 Kavi (ref71) 2018; 5 Watase (ref17) 2015; 101 Al Qurishee (ref5) 2019; 6 Gonen (ref14) 2016 Sep 21–23 Martínez (ref80) 2022; 16 Grinzato (ref19) 2002; 3 Kandemir-Yucel (ref74) 2007; 49 Huh (ref44) 2016; 2016 Sham (ref93) 2008; 50 ref78 Pedram (ref88) 2022; 360 Al Qurishee (ref114) 2020; 10 ref2 Mavromatidis (ref109) 2014 Jul 7–11 Solovyov (ref51) 2022; 61 Zalewski (ref89) 2010; 51 Wacker (ref81) 2016 Aug 22–25 Pazhoohesh (ref29) 2021; 1 Starman (ref62) 2011 Dec 2–3 Huh (ref46) 2018; 8 Chulkov (ref54) 2015; 81 Hiasa (ref35) 2017; 190 Ciampa (ref13) 2018; 18 Alampalli (ref31) 2009; 67 Omar (ref6) 2016 Maser (ref47) 2009 Jun 30–Jul 3 ref113 Halabe (ref65) 2003; 615 Hart (ref87) 1991 Zenzinger (ref61) 2005; 760 Pitarma (ref72) 2019; 155 Halabe (ref70) 2021 Zhang (ref111) 2020; 12 Sandak (ref75) 2017; 5 Crisóstomo (ref76) 2019 Sirca (ref34) 2018; 24 Hiasa (ref95) 2016; 6 Broberg (ref52) 2013; 57 Shardakov (ref66) 2016; 10 Noszczyk (ref25) 2019; 12 |
References_xml | – volume: 304 start-page: 124614 year: 2021 ident: ref82 article-title: Assessing the density and mechanical properties of ancient timber members based on the active infrared thermography publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124614 – volume: 8 start-page: 1986 year: 2018 ident: ref46 article-title: Detectability of delamination in concrete structure using active infrared thermography in terms of signal-to-noise ratio publication-title: Appl Sci doi: 10.3390/app8101986 – volume: 6 start-page: 2092 year: 2019 ident: ref5 article-title: Non-destructive test application in civil infrastructure publication-title: Int Res J Eng Technol – volume: 27 start-page: 3 year: 2019 ident: ref104 article-title: The feasibility of identifying defects illustrated on building facades by applying thermal infrared images with shadow publication-title: Proceedings – volume: 3 start-page: 21 year: 2002 ident: ref19 article-title: Monitoring of ancient buildings by the thermal method publication-title: J Cult Herit doi: 10.1016/S1296-2074(02)01159-7 – start-page: 64 year: 2010 Jun 7–11 ident: ref64 article-title: Quantitative characterization of debond size in FRP wrapped concrete cylindrical columns using infrared thermography – volume: 2016 start-page: 1053856 year: 2016 ident: ref44 article-title: Experimental study on detection of deterioration in concrete using infrared thermography technique publication-title: Adv Mater Sci Eng doi: 10.1155/2016/1053856 – volume: 67 start-page: 1236 year: 2009 ident: ref31 article-title: Use of NDT technologies in US bridge inspection practice publication-title: Mater Eval – volume: 31 start-page: 181 year: 2012 ident: ref37 article-title: Nondestructive corrosion detection in RC through integrated heat induction and IR thermography publication-title: J Nondestr Eval doi: 10.1007/s10921-012-0133-0 – volume: 10 start-page: 331 year: 2016 ident: ref66 article-title: Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography) publication-title: Frattura Ed Integrita Strutturale doi: 10.3221/IGF-ESIS.38.43 – volume: 15 start-page: 384 year: 2010 ident: ref43 article-title: Effects of solar loading on infrared imaging of subsurface features in concrete publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000117 – volume: 29 start-page: 1 year: 1998 ident: ref84 article-title: Quantitative infrared thermography in buildings publication-title: Energy Build doi: 10.1016/S0378-7788(97)00039-X – volume: 5 start-page: 239 year: 2003 ident: ref98 article-title: Nondestructive testing and damage assessment of masonry structures publication-title: Prog Struct Eng Mater doi: 10.1002/pse.160 – start-page: 1 year: 2011 Oct ident: ref33 article-title: Application of thermal IR imagery for concrete bridge inspection – volume: 12 start-page: 243 year: 2021 ident: ref22 article-title: Condition assessment of the historical building of Bhopal, (India) using passive infrared thermography publication-title: Int J Adv Res Eng Technol – volume: 57 start-page: 69 year: 2013 ident: ref52 article-title: Surface crack detection in welds using thermography publication-title: NDT&E Int doi: 10.1016/j.ndteint.2013.03.008 – volume: 11 start-page: 9757 year: 2021 ident: ref27 article-title: Non-destructive testing applications for steel bridges publication-title: Appl Sci doi: 10.3390/app11209757 – volume: 16 start-page: 234 year: 2016 ident: ref91 article-title: Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors publication-title: Sensors doi: 10.3390/s16020234 – volume: 13 start-page: 170 year: 2016 ident: ref59 article-title: Induction thermography: principle, applications and first steps towards standardization publication-title: Quant InfraRed Thermogr J doi: 10.1080/17686733.2016.1145842 – start-page: 3 year: 2022 ident: ref11 publication-title: Lecture notes in civil engineering doi: 10.1007/978-981-19-1894-0_1 – volume: 12 start-page: 3996 year: 2019 ident: ref39 article-title: Detection of delamination with various width-to-depth ratios in concrete bridge deck using passive IRT: limits and applicability publication-title: Materials doi: 10.3390/ma12233996 – volume: 155 start-page: 480 year: 2019 ident: ref72 article-title: Detection of wood damages using infrared thermography publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2019.08.067 – volume: 49 start-page: 228 year: 2007 ident: ref97 article-title: Infrared thermography of masonry structures publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2006.06.010 – volume: 40 start-page: 371 year: 2017 ident: ref10 article-title: Crack detection in pillars using infrared thermographic imaging publication-title: Geotech Test J doi: 10.1520/GTJ20150245 – volume: 8 start-page: 257 year: 2018 ident: ref60 article-title: Induction thermography for surface crack detection and depth determination publication-title: Appl Sci doi: 10.3390/app8020257 – ident: ref113 – year: 2016 Sep 21–23 ident: ref14 article-title: Rapid non-contact visual scanning of structures using infrared thermography – year: 2018 Sep 16–19 ident: ref108 article-title: Coupling deep learning and UAV for infrastructure condition assessment automation – volume: 12 start-page: 2621 year: 2020 ident: ref111 article-title: Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging publication-title: Remote Sens doi: 10.3390/rs12162621 – volume: 24 start-page: 508 year: 2018 ident: ref34 article-title: Infrared thermography for detecting defects in concrete structures publication-title: J Civ Eng Manag doi: 10.3846/jcem.2018.6186 – volume: 6 start-page: 303 year: 2016 ident: ref8 article-title: Damage assessment of steel-plate concrete composite walls by using infrared thermography: a preliminary study publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-016-0169-4 – volume: 1 start-page: 25 year: 2011 ident: ref96 article-title: Corrosion detection in reinforced concrete using induction heating and infrared thermography publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-010-0002-4 – volume: 17 start-page: 928 year: 2012 ident: ref42 article-title: Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0000350 – volume: 1 start-page: 91 year: 2021 ident: ref29 article-title: Infrared thermography for a quick construction progress monitoring approach in concrete structures publication-title: Archit Struct Constr doi: 10.1007/s44150-021-00008-7 – volume: 51 start-page: 2869 year: 2010 ident: ref89 article-title: Experimental and numerical characterization of thermal bridges in prefabricated building walls publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.026 – volume: 20 start-page: 7067 year: 2020 ident: ref28 article-title: Infrared thermography measurement for vibration-based structural health monitoring in low-visibility harsh environments publication-title: Sensors doi: 10.3390/s20247067 – volume: 6 start-page: 619 year: 2016 ident: ref95 article-title: Infrared thermography for civil structural assessment: demonstrations with laboratory and field studies publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-016-0180-9 – volume: 57 start-page: 787 year: 2018 ident: ref92 article-title: Crack detection using image processing: a critical review and analysis publication-title: Alex Eng J doi: 10.1016/j.aej.2017.01.020 – year: 2013 Sep 4–6 ident: ref103 article-title: GPR and IR thermography for near-surface defect detection in building structures – ident: ref3 – volume: 12 start-page: 892 year: 2020 ident: ref115 article-title: Combining infrared thermography and UAV digital photogrammetry for the protection and conservation of rupestrian cultural heritage sites in Georgia: a methodological application publication-title: Remote Sens doi: 10.3390/rs12050892 – volume: 2022 start-page: 5229911 year: 2022 ident: ref102 article-title: Review of infrared thermography and ground-penetrating radar applications for building assessment publication-title: Adv Civil Eng doi: 10.1155/2022/5229911 – volume: 168 start-page: 313 year: 2018 ident: ref9 article-title: Infrared thermography model for automated detection of delamination in RC bridge decks publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.02.126 – volume: 190 start-page: 205 year: 2017 ident: ref35 article-title: A data processing methodology for infrared thermography images of concrete bridges publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.05.011 – volume: 16 start-page: e00789 year: 2022 ident: ref80 article-title: Qualitative timber structure assessment with passive IR thermography. Case study of sources of common errors publication-title: Case Stud Constr Mater – start-page: 22 year: 2016 Aug 22–25 ident: ref81 article-title: Effectiveness of several NDE technologies in detecting moisture pockets and artificial defects in sawn timber and glulam – start-page: 22 year: 2016 ident: ref6 article-title: Application of passive infrared thermography for the detection of defects in concrete bridge elements – volume: 46 start-page: 161 year: 2004 ident: ref77 article-title: Moisture detection in wood and plaster by IR thermography publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2004.03.020 – volume: 310 start-page: 125265 year: 2021 ident: ref63 article-title: Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: a review publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.125265 – volume: 8 start-page: 517 year: 2018 ident: ref100 article-title: Evaluating the damage degree of cracking in facades using infrared thermography publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-018-0289-0 – volume: 101 start-page: 1016 year: 2015 ident: ref17 article-title: Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.10.156 – volume: 21 start-page: 1604 year: 2021 ident: ref106 article-title: Evaluation and selection of video stabilization techniques for uav-based active infrared thermography application publication-title: Sensors doi: 10.3390/s21051604 – ident: ref12 doi: 10.1088/1757-899X/586/1/012041 – volume: 188 start-page: 471 year: 2017 ident: ref24 article-title: Optical lock-in thermography for structural health monitoring—a study into infrared detector performance publication-title: Procedia Eng doi: 10.1016/j.proeng.2017.04.510 – volume: 132 start-page: 63 year: 2017 ident: ref110 article-title: Infrared drones in the construction industry: designing a protocol for building thermography procedures publication-title: Energy Proc doi: 10.1016/j.egypro.2017.09.636 – year: 2019 ident: ref7 publication-title: Advances in structural health monitoring – volume: 36 start-page: 265 year: 2003 ident: ref16 article-title: Application of infrared thermography to the non-destructive testing of concrete and masonry bridges publication-title: NDT&E Int doi: 10.1016/S0963-8695(02)00060-9 – volume: 3 start-page: 277 year: 2016 ident: ref36 article-title: Monitoring concrete bridge decks using infrared thermography with high speed vehicles publication-title: Struct Monit Maint – volume: 36 start-page: 65 year: 2022 ident: ref32 article-title: Investigation of ground-penetrating radar, impact echo, and infrared thermography methods to detect defects in concrete bridge decks publication-title: Transport Res Rec: J Transport Res Board – year: 2009 Jun 30–Jul 3 ident: ref47 article-title: Integration of ground penetrating radar and infrared thermography for bridge deck condition evaluation – year: 2012 Apr 16–20 ident: ref105 article-title: IR thermography applied to the cultural heritage conservation – volume: 29 start-page: 183 year: 2018 ident: ref116 article-title: Unmanned aerial vehicle (UAV)-based assessment of concrete bridge deck delamination using thermal and visible camera sensors: a preliminary analysis publication-title: Res Nondestruct Eval doi: 10.1080/09349847.2017.1304597 – volume: 16 start-page: 2255 year: 2015 ident: ref53 article-title: Investigation of lock-in infrared thermography for evaluation of subsurface defects size and depth publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-015-0290-z – year: 1991 ident: ref87 publication-title: A practical guide to infra-red thermography for building surveys – volume: 110 start-page: 251 year: 2016 ident: ref18 article-title: Infrared thermography for assessing moisture related phenomena in building components publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.02.026 – start-page: 1567 year: 2014 ident: ref67 article-title: Application of active microwave thermography to delamination detection – year: 2021 ident: ref70 publication-title: Nondestructive evaluation of fiber reinforced polymer composite structures using infrared thermography and digital tap testing – volume: 26 start-page: 2835 year: 2021 ident: ref48 article-title: Development of a concrete floating and delamination detection system using infrared thermography publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2021.3106867 – volume: 183 start-page: 1 year: 2017 ident: ref58 article-title: Verification of the repair effect for fatigue cracks in members of steel bridges based on thermoelastic stress measurement publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.05.024 – volume: 5 start-page: 858 year: 2017 ident: ref75 article-title: Using various infrared techniques for assessing timber structures publication-title: Int J Comput Methods Exp Meas – volume: 81 start-page: 012100 year: 2015 ident: ref54 article-title: Comparing thermal stimulation techniques in infrared thermographic inspection of corrosion in steel publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/81/1/012100 – volume: 49 start-page: 243 year: 2007 ident: ref74 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2006.06.012 – volume: 68 start-page: 447 year: 2010 ident: ref68 article-title: Infrared thermographic and radar testing of polymer-wrapped composites publication-title: Mater Eval – volume: 110 start-page: 29 year: 2013 ident: ref99 article-title: Effects of individual climatic parameters on the infrared thermography of buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.03.066 – volume: 12 start-page: 835 year: 2019 ident: ref25 article-title: Inverse contrast in non-destructive materials research by using active thermography publication-title: Materials doi: 10.3390/ma12050835 – start-page: 7 year: 2014 Jul 7–11 ident: ref15 article-title: The use of infrared thermography for defects detection on reinforced concrete bridges – volume: 11 start-page: 4323 year: 2021 ident: ref41 article-title: Long-term numerical analysis of subsurface delamination detection in concrete slabs via infrared thermography publication-title: Appl Sci doi: 10.3390/app11104323 – year: 2020 ident: ref101 article-title: Masonry walls of buildings with reinforced concrete structure-detection of cracking due to the effect of temperature variations through NDT techniques – volume: 7 start-page: 200 year: 2017 ident: ref45 article-title: Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: a review of the state of the art publication-title: Rev ALCONPAT – year: 2014 Jul 7–11 ident: ref109 article-title: First experiments for the diagnosis and thermophysical sampling using pulsed IR thermography from unmanned aerial vehicle (UAV) – volume: 39 start-page: 6 year: 2022 ident: ref1 article-title: Pittsburgh bridge collapse emphasizes need for bridge repairs publication-title: J Protective Coat Linings – volume: 22 start-page: 04017101 year: 2017 ident: ref49 article-title: Considerations and issues in the utilization of infrared thermography for concrete bridge inspection at normal driving speeds publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001124 – ident: ref2 – volume: 61 start-page: 588 year: 2022 ident: ref51 article-title: Thermal method for detecting fatigue cracks in welded steel bridges under random loads publication-title: Transp Res Procedia doi: 10.1016/j.trpro.2022.01.095 – volume: 101 start-page: 1241 year: 2015 ident: ref83 article-title: Application of imaging techniques for detection of defects, damage and decay in timber structures on-site publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.06.065 – volume: 34 start-page: 149 year: 2001 ident: ref86 article-title: Applications of thermography in non-destructive testing of structures publication-title: NDT&E Int doi: 10.1016/S0963-8695(00)00039-6 – volume: 41 start-page: 395 year: 2008 ident: ref50 article-title: Segmentation of thermal images for non-destructive evaluation of bridge decks publication-title: NDT&E Int doi: 10.1016/j.ndteint.2007.12.003 – volume: 190 start-page: 62 year: 2017 ident: ref38 article-title: Use of infrared thermography to detect defects on concrete bridges publication-title: Procedia Eng doi: 10.1016/j.proeng.2017.05.308 – volume: 20 start-page: 6015 year: 2020 ident: ref23 article-title: Thermographic inspection of internal defects in steel structures: analysis of signal processing techniques in pulsed thermography publication-title: Sensors doi: 10.3390/s20216015 – volume: 15 start-page: 391 year: 2010 ident: ref69 article-title: Nondestructive testing of GFRP bridge decks using ground penetrating radar and infrared thermography publication-title: J Bridge Eng, ASCE doi: 10.1061/(ASCE)BE.1943-5592.0000066 – volume: 8 start-page: 1 year: 2022 ident: ref4 article-title: Condition monitoring of reinforced concrete bridge decks: current practices and future perspectives publication-title: Curr Trends Civil Struct Eng doi: 10.33552/CTCSE.2022.08.000695 – year: 2019 ident: ref76 publication-title: Advances in structural health monitoring – volume: 360 start-page: 129531 year: 2022 ident: ref88 article-title: Experimental evaluation of heat transition mechanism in concrete with subsurface defects using infrared thermography publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.129531 – volume: 14 start-page: 12305 year: 2014 ident: ref26 article-title: Infrared thermography for temperature measurement and non-destructive testing publication-title: Sensors doi: 10.3390/s140712305 – volume: 615 start-page: 1303 year: 2003 ident: ref65 article-title: Nondestructive evaluation of FRP composite bridge components using infrared thermography publication-title: AIP Conf Proc doi: 10.1063/1.1472946 – volume: 1053 start-page: 1 year: 1986 ident: ref73 article-title: An overview of timber bridges publication-title: Transp Res Rec – volume: 12 start-page: 1355 year: 2022 ident: ref94 article-title: Experimental investigation of subsurface defect detection in concretes by infrared thermography and convection heat exchange publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-022-00550-y – volume: 18 start-page: 609 year: 2018 ident: ref13 article-title: Recent advances in active infrared thermography for non-destructive testing of aerospace components publication-title: Sensors doi: 10.3390/s18020609 – volume: 13 start-page: 1809 year: 2021 ident: ref112 article-title: UAV-based remote sensing applications for bridge condition assessment publication-title: Remote Sens doi: 10.3390/rs13091809 – volume: 10 start-page: 110 year: 2020 ident: ref114 article-title: Bridge girder crack assessment using faster RCNN inception V2 and infrared thermography publication-title: J Transp Technol – ident: ref78 – volume: 5 start-page: 9060 year: 2018 ident: ref71 article-title: Detection of buried pipelines transporting hot fluids using infrared thermography publication-title: J Multidiscip Eng Sci Technol – volume: 43 start-page: 233 year: 2002 ident: ref90 article-title: Active IR-applications in civil engineering publication-title: Infrared Phys Technol doi: 10.1016/S1350-4495(02)00145-7 – volume: 134 start-page: 531 year: 2014 ident: ref85 article-title: Infrared thermography (IRT) applications for building diagnostics: a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.005 – volume: 24 start-page: 69 year: 2010 ident: ref20 article-title: Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window publication-title: Adv Geosci doi: 10.5194/adgeo-24-69-2010 – volume: 139 start-page: 305 year: 2013 ident: ref40 article-title: Comparison of NDT methods for assessment of a concrete bridge deck publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0000441 – volume: 778 start-page: 328 year: 2013 ident: ref79 article-title: Non destructive characterization of wooden members using near infrared spectroscopy publication-title: Adv Mat Res – volume: 2 start-page: 2132 year: 2016 ident: ref57 article-title: Nondestructive evaluation of fatigue cracks in steel bridges based on thermoelastic stress measurement publication-title: Procedia Struct Integr doi: 10.1016/j.prostr.2016.06.267 – volume: 50 start-page: 240 year: 2008 ident: ref93 article-title: Surface crack detection by flash thermography on concrete surface publication-title: Insight: Non-Destruct Test Cond Monit doi: 10.1784/insi.2008.50.5.240 – year: 2011 Dec 2–3 ident: ref62 article-title: Automated system for crack detection using infrared thermographic testing – volume: 29 start-page: 528 year: 2021 ident: ref30 article-title: Nondestructive health monitoring techniques for composite materials: a review publication-title: Polym Polym Compos – volume: 14 start-page: 27 year: 2019 ident: ref107 article-title: Utilizing drone technology in the civil engineering publication-title: J Civil Eng – ident: ref56 – volume: 760 start-page: 1646 year: 2005 ident: ref61 article-title: Crack detection using eddy Therm publication-title: AIP Conf Proc doi: 10.1063/1.1916868 – volume: 37 start-page: 28 year: 2018 ident: ref55 article-title: Infrared thermographic testing of steel structures by using the phenomenon of heat release caused by deformation publication-title: J Nondestr Eval doi: 10.1007/s10921-018-0482-4 – volume: 22 start-page: 423 year: 2022 ident: ref21 article-title: A review of infrared thermography for delamination detection on infrastructures and buildings publication-title: Sensors doi: 10.3390/s22020423 |
SSID | ssj0046235 |
Score | 2.312752 |
SecondaryResourceType | review_article |
Snippet | Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 193 |
SubjectTerms | Damage accumulation Damage assessment Data processing Downtime Hazard assessment Hazard mitigation Infrared imaging Infrastructure Maintenance Nondestructive testing Public safety R&D Real time Rehabilitation Research & development Thermography |
Title | A Review of Infrared Thermography Applications for Civil Infrastructure |
URI | https://www.proquest.com/docview/3200125559 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFA3abnQhPrFaSxauhNhpXjNZSS19KFhELHQ3zOQmWNC2tur3m8xksN24njCLc8l9ntyD0LWNJAUKnIDnVnDOgLggDKTjpa21jYVS_u3w01iOJvxxKqah4bYOtMrKJxaOGhba98jbzJN_XP4r1N3yk3jVKD9dDRIau6juXHDiiq_6fX_8_FL5Yu6CuyjnyhGhKmHlXNOlLBFvr-HNP0Wn_DbyJMtoOzJtO-Yi2gwO0UFIE3G3tOsR2jHzY7S_sTzwBA27uGzs44XFD3O78lRy7My--ghrqHF3YzqNXXaKe7Of2Xt5uFwc-70yp2gy6L_2RiTIIhDt7l9ENFOdPLMZpYlD1II1VsUmk0wnABkwJuLcxIYmRiqlQQqmda7yDs_irEihzlBtvpibc4S1dOUWBYjBaG4ymwgLQnLlfiTdYdNANxUk6bLcfpG6qqHAL_X4pR6_tMSvgZoVaGm4COv0z2wX_3--RHvUS-sW3Y0mqjkQzJWL9195C-0mg2ErmPYXjMOq2Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCrK6gNckAKp7Sw-IFQBXehyAqm3kHgRlSCFlkX8FN_IOG4EXLj1HMuKnsczbzwbwJHxQ6qo4p6yuRWcM-WhEVZezY62liYKhLC1w71-2LrjN4NgUIGvshbGplWWOrFQ1Gok7Rv5GbPJP8h_A3Hx_OLZqVE2ulqO0HBi0dGfH-iyTc7bV3i-x5Q2rm8vW950qoAnUXx9TzJRy1KTUhrjDxlltBGRTkMmY6VSxVgQZTrSNNahEFKFAZMyE1mNp1FaMBDcdw4WOGPC3qi40Sw1P0cqEbgotu9RETMXRUWC5POziXqwhe-Un_o2pdP_awf_moHCtjVWYWVKSkndSdEaVHS-Dsu_WhVuQLNOXBiBjAxp52ZsE9cJCtn4adr0mtR_xcIJcmFyOXwfPrrFrk3t21hvwt1M4NqC-XyU620gMkTnjioVKS25Tk0cGBWEXOBGIS7WVTgpIUmeXa-NBH2UAr_E4pdY_BKHXxX2StCS6bWbJD9CsvP_50NYbN32ukm33e_swhK1Q32Ld5U9mEdA9D4yjdfsoDheAvezlqdvQFPmhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Infrared+Thermography+Applications+for+Civil+Infrastructure&rft.jtitle=Structural+durability+%26+health+monitoring&rft.au=Shrestha%2C+Prabal&rft.au=Rifai%2C+Sahabeddin&rft.au=Abla%2C+Feras&rft.au=Barth%2C+Karl&rft.date=2025&rft.issn=1930-2991&rft.eissn=1930-2991&rft.volume=19&rft.issue=2&rft.spage=193&rft.epage=231&rft_id=info:doi/10.32604%2Fsdhm.2024.049530&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_sdhm_2024_049530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-2991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-2991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-2991&client=summon |