A Review of Infrared Thermography Applications for Civil Infrastructure

Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural health. Accumulated damage on structures increases operational costs and poses significant risks to public safety. Effective maintenance, repa...

Full description

Saved in:
Bibliographic Details
Published inStructural durability & health monitoring Vol. 19; no. 2; pp. 193 - 231
Main Authors Shrestha, Prabal, Rifai, Sahabeddin, Abla, Feras, Barth, Karl, Avci, Onur, Seek, Michael, Halabe, Udaya
Format Journal Article
LanguageEnglish
Published Forsyth Tech Science Press 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural health. Accumulated damage on structures increases operational costs and poses significant risks to public safety. Effective maintenance, repair, and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability. Non-Destructive Evaluation (NDE) methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards. Within the last decade, there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment. This paper aims to review one of those methods, namely, Infrared Thermography (IRT), and its applications in civil infrastructure. A comprehensive review is presented by investigating numerous journal articles, research papers, and technical reports describing numerous IRT applications for bridges, buildings, and general civil structures made from different materials. The capability of IRT to identify and pinpoint anomalies, typically in the early stages of degradation, has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation. Furthermore, the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures. It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment. With further advancement and fine-tuning of the available techniques, it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure.
AbstractList Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural health. Accumulated damage on structures increases operational costs and poses significant risks to public safety. Effective maintenance, repair, and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability. Non-Destructive Evaluation (NDE) methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards. Within the last decade, there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment. This paper aims to review one of those methods, namely, Infrared Thermography (IRT), and its applications in civil infrastructure. A comprehensive review is presented by investigating numerous journal articles, research papers, and technical reports describing numerous IRT applications for bridges, buildings, and general civil structures made from different materials. The capability of IRT to identify and pinpoint anomalies, typically in the early stages of degradation, has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation. Furthermore, the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures. It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment. With further advancement and fine-tuning of the available techniques, it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure.
Author Barth, Karl
Rifai, Sahabeddin
Avci, Onur
Shrestha, Prabal
Seek, Michael
Abla, Feras
Halabe, Udaya
Author_xml – sequence: 1
  givenname: Prabal
  surname: Shrestha
  fullname: Shrestha, Prabal
– sequence: 2
  givenname: Sahabeddin
  surname: Rifai
  fullname: Rifai, Sahabeddin
– sequence: 3
  givenname: Feras
  surname: Abla
  fullname: Abla, Feras
– sequence: 4
  givenname: Karl
  surname: Barth
  fullname: Barth, Karl
– sequence: 5
  givenname: Onur
  surname: Avci
  fullname: Avci, Onur
– sequence: 6
  givenname: Michael
  surname: Seek
  fullname: Seek, Michael
– sequence: 7
  givenname: Udaya
  surname: Halabe
  fullname: Halabe, Udaya
BookMark eNpNkMtqwzAQRUVJoUnaD-hO0HVSPSzbWobQRyBQKOlayNKocUgsd2Sn5O-b1F10NXdxuHc4EzJqYgOE3HM2lyJn2WPy28NcMJHNWaaVZFdkzLVkM6E1H_3LN2SS0o6xLBdSjcnLgr7DsYZvGgNdNQEtgqebLeAhfqJttye6aNt97WxXxybREJEu62O9H-DUYe-6HuGWXAe7T3D3d6fk4_lps3ydrd9eVsvFeuZ4ef7ASc0rG6wQJec8-ABBF2Bz6UrvrZdSFRUUIErItXY-V9K5Slc8s4VljAs5JQ9Db4vxq4fUmV3ssTlPGikuhFJKnyk-UA5jSgjBtFgfLJ4MZ-bXl7n4MhdfZvAlfwCTqmDL
Cites_doi 10.1016/j.conbuildmat.2021.124614
10.3390/app8101986
10.1016/S1296-2074(02)01159-7
10.1155/2016/1053856
10.1007/s10921-012-0133-0
10.3221/IGF-ESIS.38.43
10.1061/(ASCE)BE.1943-5592.0000117
10.1016/S0378-7788(97)00039-X
10.1002/pse.160
10.1016/j.ndteint.2013.03.008
10.3390/app11209757
10.3390/s16020234
10.1080/17686733.2016.1145842
10.1007/978-981-19-1894-0_1
10.3390/ma12233996
10.1016/j.procs.2019.08.067
10.1016/j.infrared.2006.06.010
10.1520/GTJ20150245
10.3390/app8020257
10.3390/rs12162621
10.3846/jcem.2018.6186
10.1007/s13349-016-0169-4
10.1007/s13349-010-0002-4
10.1061/(ASCE)BE.1943-5592.0000350
10.1007/s44150-021-00008-7
10.1016/j.enconman.2010.06.026
10.3390/s20247067
10.1007/s13349-016-0180-9
10.1016/j.aej.2017.01.020
10.3390/rs12050892
10.1155/2022/5229911
10.1016/j.conbuildmat.2018.02.126
10.1016/j.compstruc.2017.05.011
10.1016/j.infrared.2004.03.020
10.1016/j.conbuildmat.2021.125265
10.1007/s13349-018-0289-0
10.1016/j.conbuildmat.2015.10.156
10.3390/s21051604
10.1088/1757-899X/586/1/012041
10.1016/j.proeng.2017.04.510
10.1016/j.egypro.2017.09.636
10.1016/S0963-8695(02)00060-9
10.1080/09349847.2017.1304597
10.1007/s12541-015-0290-z
10.1016/j.conbuildmat.2016.02.026
10.1109/TMECH.2021.3106867
10.1016/j.engfracmech.2017.05.024
10.1088/1757-899X/81/1/012100
10.1016/j.infrared.2006.06.012
10.1016/j.apenergy.2013.03.066
10.3390/ma12050835
10.3390/app11104323
10.1061/(ASCE)BE.1943-5592.0001124
10.1016/j.trpro.2022.01.095
10.1016/j.conbuildmat.2015.06.065
10.1016/S0963-8695(00)00039-6
10.1016/j.ndteint.2007.12.003
10.1016/j.proeng.2017.05.308
10.3390/s20216015
10.1061/(ASCE)BE.1943-5592.0000066
10.33552/CTCSE.2022.08.000695
10.1016/j.conbuildmat.2022.129531
10.3390/s140712305
10.1063/1.1472946
10.1007/s13349-022-00550-y
10.3390/s18020609
10.3390/rs13091809
10.1016/S1350-4495(02)00145-7
10.1016/j.apenergy.2014.08.005
10.5194/adgeo-24-69-2010
10.1061/(ASCE)EM.1943-7889.0000441
10.1016/j.prostr.2016.06.267
10.1784/insi.2008.50.5.240
10.1063/1.1916868
10.1007/s10921-018-0482-4
10.3390/s22020423
ContentType Journal Article
Copyright 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.32604/sdhm.2024.049530
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1930-2991
EndPage 231
ExternalDocumentID 10_32604_sdhm_2024_049530
GroupedDBID AAFWJ
AAYXX
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
HCIFZ
KB.
M7S
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PTHSS
RTS
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1830-c391bafa228111fdfef97ea63c8ddad3357be7e28e699cd653ccb9b14a7a00123
IEDL.DBID BENPR
ISSN 1930-2991
1930-2983
IngestDate Fri Jul 25 11:14:14 EDT 2025
Sun Jul 06 05:08:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1830-c391bafa228111fdfef97ea63c8ddad3357be7e28e699cd653ccb9b14a7a00123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200125559?pq-origsite=%requestingapplication%
PQID 3200125559
PQPubID 4577404
PageCount 39
ParticipantIDs proquest_journals_3200125559
crossref_primary_10_32604_sdhm_2024_049530
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Forsyth
PublicationPlace_xml – name: Forsyth
PublicationTitle Structural durability & health monitoring
PublicationYear 2025
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References ref56
Senthilkumar (ref30) 2021; 29
Omar (ref4) 2022; 8
Schuller (ref98) 2003; 5
Sakagami (ref57) 2016; 2
Mulaveesala (ref7) 2019
Chung (ref23) 2020; 20
Ludwig (ref77) 2004; 46
Usamentiaga (ref26) 2014; 14
Feroz (ref112) 2021; 13
Halabe (ref64) 2010 Jun 7–11
Foudazi (ref67) 2014
Garrido (ref102) 2022; 2022
Cotič (ref103) 2013 Sep 4–6
Kylili (ref85) 2014; 134
Meola (ref97) 2007; 49
Xin (ref82) 2021; 304
Washer (ref43) 2010; 15
Tejedor (ref11) 2022
Seo (ref10) 2017; 40
Barreira (ref18) 2016; 110
Clark (ref16) 2003; 36
ref3
Chun (ref48) 2021; 26
Tsai (ref104) 2019; 27
Lehmann (ref99) 2013; 110
Omar (ref9) 2018; 168
Abdel-Qader (ref50) 2008; 41
Sakalle (ref22) 2021; 12
Oswald-Tranta (ref60) 2018; 8
Matovu (ref8) 2016; 6
Netzelmann (ref59) 2016; 13
Cannard (ref15) 2014 Jul 7–11
Tkáč (ref107) 2019; 14
Janků (ref38) 2017; 190
Vaghefi (ref33) 2011 Oct
Escobar-Wolf (ref116) 2018; 29
Pant (ref106) 2021; 21
Kobayashi (ref96) 2011; 1
Wu (ref108) 2018 Sep 16–19
Oh (ref40) 2013; 139
Entrop (ref110) 2017; 132
Hiasa (ref36) 2016; 3
Pozzer (ref41) 2021; 11
Titman (ref86) 2001; 34
Coleman (ref32) 2022; 36
Grinzato (ref84) 1998; 29
Pedram (ref94) 2022; 12
Rocha (ref45) 2017; 7
Sandak (ref79) 2013; 778
Ou (ref73) 1986; 1053
Dias (ref101) 2020
Sakagami (ref58) 2017; 183
Baek (ref37) 2012; 31
Bauer (ref100) 2018; 8
Wiggenhauser (ref90) 2002; 43
Frodella (ref115) 2020; 12
Mac (ref39) 2019; 12
Ranjit (ref53) 2015; 16
ref12
He (ref28) 2020; 20
Hiasa (ref49) 2017; 22
Szymanik (ref91) 2016; 16
Tomita (ref21) 2022; 22
Kee (ref42) 2012; 17
Nuzzo (ref20) 2010; 24
Khedmatgozar Dolati (ref27) 2021; 11
Halabe (ref68) 2010; 68
Riggio (ref83) 2015; 101
Grinzato (ref105) 2012 Apr 16–20
Moyseychik (ref55) 2018; 37
Antolis (ref24) 2017; 188
Carnahan (ref1) 2022; 39
Yumnam (ref63) 2021; 310
Mohan (ref92) 2018; 57
Hing (ref69) 2010; 15
Kavi (ref71) 2018; 5
Watase (ref17) 2015; 101
Al Qurishee (ref5) 2019; 6
Gonen (ref14) 2016 Sep 21–23
Martínez (ref80) 2022; 16
Grinzato (ref19) 2002; 3
Kandemir-Yucel (ref74) 2007; 49
Huh (ref44) 2016; 2016
Sham (ref93) 2008; 50
ref78
Pedram (ref88) 2022; 360
Al Qurishee (ref114) 2020; 10
ref2
Mavromatidis (ref109) 2014 Jul 7–11
Solovyov (ref51) 2022; 61
Zalewski (ref89) 2010; 51
Wacker (ref81) 2016 Aug 22–25
Pazhoohesh (ref29) 2021; 1
Starman (ref62) 2011 Dec 2–3
Huh (ref46) 2018; 8
Chulkov (ref54) 2015; 81
Hiasa (ref35) 2017; 190
Ciampa (ref13) 2018; 18
Alampalli (ref31) 2009; 67
Omar (ref6) 2016
Maser (ref47) 2009 Jun 30–Jul 3
ref113
Halabe (ref65) 2003; 615
Hart (ref87) 1991
Zenzinger (ref61) 2005; 760
Pitarma (ref72) 2019; 155
Halabe (ref70) 2021
Zhang (ref111) 2020; 12
Sandak (ref75) 2017; 5
Crisóstomo (ref76) 2019
Sirca (ref34) 2018; 24
Hiasa (ref95) 2016; 6
Broberg (ref52) 2013; 57
Shardakov (ref66) 2016; 10
Noszczyk (ref25) 2019; 12
References_xml – volume: 304
  start-page: 124614
  year: 2021
  ident: ref82
  article-title: Assessing the density and mechanical properties of ancient timber members based on the active infrared thermography
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.124614
– volume: 8
  start-page: 1986
  year: 2018
  ident: ref46
  article-title: Detectability of delamination in concrete structure using active infrared thermography in terms of signal-to-noise ratio
  publication-title: Appl Sci
  doi: 10.3390/app8101986
– volume: 6
  start-page: 2092
  year: 2019
  ident: ref5
  article-title: Non-destructive test application in civil infrastructure
  publication-title: Int Res J Eng Technol
– volume: 27
  start-page: 3
  year: 2019
  ident: ref104
  article-title: The feasibility of identifying defects illustrated on building facades by applying thermal infrared images with shadow
  publication-title: Proceedings
– volume: 3
  start-page: 21
  year: 2002
  ident: ref19
  article-title: Monitoring of ancient buildings by the thermal method
  publication-title: J Cult Herit
  doi: 10.1016/S1296-2074(02)01159-7
– start-page: 64
  year: 2010 Jun 7–11
  ident: ref64
  article-title: Quantitative characterization of debond size in FRP wrapped concrete cylindrical columns using infrared thermography
– volume: 2016
  start-page: 1053856
  year: 2016
  ident: ref44
  article-title: Experimental study on detection of deterioration in concrete using infrared thermography technique
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2016/1053856
– volume: 67
  start-page: 1236
  year: 2009
  ident: ref31
  article-title: Use of NDT technologies in US bridge inspection practice
  publication-title: Mater Eval
– volume: 31
  start-page: 181
  year: 2012
  ident: ref37
  article-title: Nondestructive corrosion detection in RC through integrated heat induction and IR thermography
  publication-title: J Nondestr Eval
  doi: 10.1007/s10921-012-0133-0
– volume: 10
  start-page: 331
  year: 2016
  ident: ref66
  article-title: Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography)
  publication-title: Frattura Ed Integrita Strutturale
  doi: 10.3221/IGF-ESIS.38.43
– volume: 15
  start-page: 384
  year: 2010
  ident: ref43
  article-title: Effects of solar loading on infrared imaging of subsurface features in concrete
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000117
– volume: 29
  start-page: 1
  year: 1998
  ident: ref84
  article-title: Quantitative infrared thermography in buildings
  publication-title: Energy Build
  doi: 10.1016/S0378-7788(97)00039-X
– volume: 5
  start-page: 239
  year: 2003
  ident: ref98
  article-title: Nondestructive testing and damage assessment of masonry structures
  publication-title: Prog Struct Eng Mater
  doi: 10.1002/pse.160
– start-page: 1
  year: 2011 Oct
  ident: ref33
  article-title: Application of thermal IR imagery for concrete bridge inspection
– volume: 12
  start-page: 243
  year: 2021
  ident: ref22
  article-title: Condition assessment of the historical building of Bhopal, (India) using passive infrared thermography
  publication-title: Int J Adv Res Eng Technol
– volume: 57
  start-page: 69
  year: 2013
  ident: ref52
  article-title: Surface crack detection in welds using thermography
  publication-title: NDT&E Int
  doi: 10.1016/j.ndteint.2013.03.008
– volume: 11
  start-page: 9757
  year: 2021
  ident: ref27
  article-title: Non-destructive testing applications for steel bridges
  publication-title: Appl Sci
  doi: 10.3390/app11209757
– volume: 16
  start-page: 234
  year: 2016
  ident: ref91
  article-title: Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors
  publication-title: Sensors
  doi: 10.3390/s16020234
– volume: 13
  start-page: 170
  year: 2016
  ident: ref59
  article-title: Induction thermography: principle, applications and first steps towards standardization
  publication-title: Quant InfraRed Thermogr J
  doi: 10.1080/17686733.2016.1145842
– start-page: 3
  year: 2022
  ident: ref11
  publication-title: Lecture notes in civil engineering
  doi: 10.1007/978-981-19-1894-0_1
– volume: 12
  start-page: 3996
  year: 2019
  ident: ref39
  article-title: Detection of delamination with various width-to-depth ratios in concrete bridge deck using passive IRT: limits and applicability
  publication-title: Materials
  doi: 10.3390/ma12233996
– volume: 155
  start-page: 480
  year: 2019
  ident: ref72
  article-title: Detection of wood damages using infrared thermography
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2019.08.067
– volume: 49
  start-page: 228
  year: 2007
  ident: ref97
  article-title: Infrared thermography of masonry structures
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2006.06.010
– volume: 40
  start-page: 371
  year: 2017
  ident: ref10
  article-title: Crack detection in pillars using infrared thermographic imaging
  publication-title: Geotech Test J
  doi: 10.1520/GTJ20150245
– volume: 8
  start-page: 257
  year: 2018
  ident: ref60
  article-title: Induction thermography for surface crack detection and depth determination
  publication-title: Appl Sci
  doi: 10.3390/app8020257
– ident: ref113
– year: 2016 Sep 21–23
  ident: ref14
  article-title: Rapid non-contact visual scanning of structures using infrared thermography
– year: 2018 Sep 16–19
  ident: ref108
  article-title: Coupling deep learning and UAV for infrastructure condition assessment automation
– volume: 12
  start-page: 2621
  year: 2020
  ident: ref111
  article-title: Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging
  publication-title: Remote Sens
  doi: 10.3390/rs12162621
– volume: 24
  start-page: 508
  year: 2018
  ident: ref34
  article-title: Infrared thermography for detecting defects in concrete structures
  publication-title: J Civ Eng Manag
  doi: 10.3846/jcem.2018.6186
– volume: 6
  start-page: 303
  year: 2016
  ident: ref8
  article-title: Damage assessment of steel-plate concrete composite walls by using infrared thermography: a preliminary study
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-016-0169-4
– volume: 1
  start-page: 25
  year: 2011
  ident: ref96
  article-title: Corrosion detection in reinforced concrete using induction heating and infrared thermography
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-010-0002-4
– volume: 17
  start-page: 928
  year: 2012
  ident: ref42
  article-title: Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000350
– volume: 1
  start-page: 91
  year: 2021
  ident: ref29
  article-title: Infrared thermography for a quick construction progress monitoring approach in concrete structures
  publication-title: Archit Struct Constr
  doi: 10.1007/s44150-021-00008-7
– volume: 51
  start-page: 2869
  year: 2010
  ident: ref89
  article-title: Experimental and numerical characterization of thermal bridges in prefabricated building walls
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.06.026
– volume: 20
  start-page: 7067
  year: 2020
  ident: ref28
  article-title: Infrared thermography measurement for vibration-based structural health monitoring in low-visibility harsh environments
  publication-title: Sensors
  doi: 10.3390/s20247067
– volume: 6
  start-page: 619
  year: 2016
  ident: ref95
  article-title: Infrared thermography for civil structural assessment: demonstrations with laboratory and field studies
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-016-0180-9
– volume: 57
  start-page: 787
  year: 2018
  ident: ref92
  article-title: Crack detection using image processing: a critical review and analysis
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2017.01.020
– year: 2013 Sep 4–6
  ident: ref103
  article-title: GPR and IR thermography for near-surface defect detection in building structures
– ident: ref3
– volume: 12
  start-page: 892
  year: 2020
  ident: ref115
  article-title: Combining infrared thermography and UAV digital photogrammetry for the protection and conservation of rupestrian cultural heritage sites in Georgia: a methodological application
  publication-title: Remote Sens
  doi: 10.3390/rs12050892
– volume: 2022
  start-page: 5229911
  year: 2022
  ident: ref102
  article-title: Review of infrared thermography and ground-penetrating radar applications for building assessment
  publication-title: Adv Civil Eng
  doi: 10.1155/2022/5229911
– volume: 168
  start-page: 313
  year: 2018
  ident: ref9
  article-title: Infrared thermography model for automated detection of delamination in RC bridge decks
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.02.126
– volume: 190
  start-page: 205
  year: 2017
  ident: ref35
  article-title: A data processing methodology for infrared thermography images of concrete bridges
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.05.011
– volume: 16
  start-page: e00789
  year: 2022
  ident: ref80
  article-title: Qualitative timber structure assessment with passive IR thermography. Case study of sources of common errors
  publication-title: Case Stud Constr Mater
– start-page: 22
  year: 2016 Aug 22–25
  ident: ref81
  article-title: Effectiveness of several NDE technologies in detecting moisture pockets and artificial defects in sawn timber and glulam
– start-page: 22
  year: 2016
  ident: ref6
  article-title: Application of passive infrared thermography for the detection of defects in concrete bridge elements
– volume: 46
  start-page: 161
  year: 2004
  ident: ref77
  article-title: Moisture detection in wood and plaster by IR thermography
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2004.03.020
– volume: 310
  start-page: 125265
  year: 2021
  ident: ref63
  article-title: Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: a review
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.125265
– volume: 8
  start-page: 517
  year: 2018
  ident: ref100
  article-title: Evaluating the damage degree of cracking in facades using infrared thermography
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-018-0289-0
– volume: 101
  start-page: 1016
  year: 2015
  ident: ref17
  article-title: Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.10.156
– volume: 21
  start-page: 1604
  year: 2021
  ident: ref106
  article-title: Evaluation and selection of video stabilization techniques for uav-based active infrared thermography application
  publication-title: Sensors
  doi: 10.3390/s21051604
– ident: ref12
  doi: 10.1088/1757-899X/586/1/012041
– volume: 188
  start-page: 471
  year: 2017
  ident: ref24
  article-title: Optical lock-in thermography for structural health monitoring—a study into infrared detector performance
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2017.04.510
– volume: 132
  start-page: 63
  year: 2017
  ident: ref110
  article-title: Infrared drones in the construction industry: designing a protocol for building thermography procedures
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.09.636
– year: 2019
  ident: ref7
  publication-title: Advances in structural health monitoring
– volume: 36
  start-page: 265
  year: 2003
  ident: ref16
  article-title: Application of infrared thermography to the non-destructive testing of concrete and masonry bridges
  publication-title: NDT&E Int
  doi: 10.1016/S0963-8695(02)00060-9
– volume: 3
  start-page: 277
  year: 2016
  ident: ref36
  article-title: Monitoring concrete bridge decks using infrared thermography with high speed vehicles
  publication-title: Struct Monit Maint
– volume: 36
  start-page: 65
  year: 2022
  ident: ref32
  article-title: Investigation of ground-penetrating radar, impact echo, and infrared thermography methods to detect defects in concrete bridge decks
  publication-title: Transport Res Rec: J Transport Res Board
– year: 2009 Jun 30–Jul 3
  ident: ref47
  article-title: Integration of ground penetrating radar and infrared thermography for bridge deck condition evaluation
– year: 2012 Apr 16–20
  ident: ref105
  article-title: IR thermography applied to the cultural heritage conservation
– volume: 29
  start-page: 183
  year: 2018
  ident: ref116
  article-title: Unmanned aerial vehicle (UAV)-based assessment of concrete bridge deck delamination using thermal and visible camera sensors: a preliminary analysis
  publication-title: Res Nondestruct Eval
  doi: 10.1080/09349847.2017.1304597
– volume: 16
  start-page: 2255
  year: 2015
  ident: ref53
  article-title: Investigation of lock-in infrared thermography for evaluation of subsurface defects size and depth
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-015-0290-z
– year: 1991
  ident: ref87
  publication-title: A practical guide to infra-red thermography for building surveys
– volume: 110
  start-page: 251
  year: 2016
  ident: ref18
  article-title: Infrared thermography for assessing moisture related phenomena in building components
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.02.026
– start-page: 1567
  year: 2014
  ident: ref67
  article-title: Application of active microwave thermography to delamination detection
– year: 2021
  ident: ref70
  publication-title: Nondestructive evaluation of fiber reinforced polymer composite structures using infrared thermography and digital tap testing
– volume: 26
  start-page: 2835
  year: 2021
  ident: ref48
  article-title: Development of a concrete floating and delamination detection system using infrared thermography
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3106867
– volume: 183
  start-page: 1
  year: 2017
  ident: ref58
  article-title: Verification of the repair effect for fatigue cracks in members of steel bridges based on thermoelastic stress measurement
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.05.024
– volume: 5
  start-page: 858
  year: 2017
  ident: ref75
  article-title: Using various infrared techniques for assessing timber structures
  publication-title: Int J Comput Methods Exp Meas
– volume: 81
  start-page: 012100
  year: 2015
  ident: ref54
  article-title: Comparing thermal stimulation techniques in infrared thermographic inspection of corrosion in steel
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/81/1/012100
– volume: 49
  start-page: 243
  year: 2007
  ident: ref74
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2006.06.012
– volume: 68
  start-page: 447
  year: 2010
  ident: ref68
  article-title: Infrared thermographic and radar testing of polymer-wrapped composites
  publication-title: Mater Eval
– volume: 110
  start-page: 29
  year: 2013
  ident: ref99
  article-title: Effects of individual climatic parameters on the infrared thermography of buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.03.066
– volume: 12
  start-page: 835
  year: 2019
  ident: ref25
  article-title: Inverse contrast in non-destructive materials research by using active thermography
  publication-title: Materials
  doi: 10.3390/ma12050835
– start-page: 7
  year: 2014 Jul 7–11
  ident: ref15
  article-title: The use of infrared thermography for defects detection on reinforced concrete bridges
– volume: 11
  start-page: 4323
  year: 2021
  ident: ref41
  article-title: Long-term numerical analysis of subsurface delamination detection in concrete slabs via infrared thermography
  publication-title: Appl Sci
  doi: 10.3390/app11104323
– year: 2020
  ident: ref101
  article-title: Masonry walls of buildings with reinforced concrete structure-detection of cracking due to the effect of temperature variations through NDT techniques
– volume: 7
  start-page: 200
  year: 2017
  ident: ref45
  article-title: Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: a review of the state of the art
  publication-title: Rev ALCONPAT
– year: 2014 Jul 7–11
  ident: ref109
  article-title: First experiments for the diagnosis and thermophysical sampling using pulsed IR thermography from unmanned aerial vehicle (UAV)
– volume: 39
  start-page: 6
  year: 2022
  ident: ref1
  article-title: Pittsburgh bridge collapse emphasizes need for bridge repairs
  publication-title: J Protective Coat Linings
– volume: 22
  start-page: 04017101
  year: 2017
  ident: ref49
  article-title: Considerations and issues in the utilization of infrared thermography for concrete bridge inspection at normal driving speeds
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001124
– ident: ref2
– volume: 61
  start-page: 588
  year: 2022
  ident: ref51
  article-title: Thermal method for detecting fatigue cracks in welded steel bridges under random loads
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2022.01.095
– volume: 101
  start-page: 1241
  year: 2015
  ident: ref83
  article-title: Application of imaging techniques for detection of defects, damage and decay in timber structures on-site
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.06.065
– volume: 34
  start-page: 149
  year: 2001
  ident: ref86
  article-title: Applications of thermography in non-destructive testing of structures
  publication-title: NDT&E Int
  doi: 10.1016/S0963-8695(00)00039-6
– volume: 41
  start-page: 395
  year: 2008
  ident: ref50
  article-title: Segmentation of thermal images for non-destructive evaluation of bridge decks
  publication-title: NDT&E Int
  doi: 10.1016/j.ndteint.2007.12.003
– volume: 190
  start-page: 62
  year: 2017
  ident: ref38
  article-title: Use of infrared thermography to detect defects on concrete bridges
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2017.05.308
– volume: 20
  start-page: 6015
  year: 2020
  ident: ref23
  article-title: Thermographic inspection of internal defects in steel structures: analysis of signal processing techniques in pulsed thermography
  publication-title: Sensors
  doi: 10.3390/s20216015
– volume: 15
  start-page: 391
  year: 2010
  ident: ref69
  article-title: Nondestructive testing of GFRP bridge decks using ground penetrating radar and infrared thermography
  publication-title: J Bridge Eng, ASCE
  doi: 10.1061/(ASCE)BE.1943-5592.0000066
– volume: 8
  start-page: 1
  year: 2022
  ident: ref4
  article-title: Condition monitoring of reinforced concrete bridge decks: current practices and future perspectives
  publication-title: Curr Trends Civil Struct Eng
  doi: 10.33552/CTCSE.2022.08.000695
– year: 2019
  ident: ref76
  publication-title: Advances in structural health monitoring
– volume: 360
  start-page: 129531
  year: 2022
  ident: ref88
  article-title: Experimental evaluation of heat transition mechanism in concrete with subsurface defects using infrared thermography
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.129531
– volume: 14
  start-page: 12305
  year: 2014
  ident: ref26
  article-title: Infrared thermography for temperature measurement and non-destructive testing
  publication-title: Sensors
  doi: 10.3390/s140712305
– volume: 615
  start-page: 1303
  year: 2003
  ident: ref65
  article-title: Nondestructive evaluation of FRP composite bridge components using infrared thermography
  publication-title: AIP Conf Proc
  doi: 10.1063/1.1472946
– volume: 1053
  start-page: 1
  year: 1986
  ident: ref73
  article-title: An overview of timber bridges
  publication-title: Transp Res Rec
– volume: 12
  start-page: 1355
  year: 2022
  ident: ref94
  article-title: Experimental investigation of subsurface defect detection in concretes by infrared thermography and convection heat exchange
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-022-00550-y
– volume: 18
  start-page: 609
  year: 2018
  ident: ref13
  article-title: Recent advances in active infrared thermography for non-destructive testing of aerospace components
  publication-title: Sensors
  doi: 10.3390/s18020609
– volume: 13
  start-page: 1809
  year: 2021
  ident: ref112
  article-title: UAV-based remote sensing applications for bridge condition assessment
  publication-title: Remote Sens
  doi: 10.3390/rs13091809
– volume: 10
  start-page: 110
  year: 2020
  ident: ref114
  article-title: Bridge girder crack assessment using faster RCNN inception V2 and infrared thermography
  publication-title: J Transp Technol
– ident: ref78
– volume: 5
  start-page: 9060
  year: 2018
  ident: ref71
  article-title: Detection of buried pipelines transporting hot fluids using infrared thermography
  publication-title: J Multidiscip Eng Sci Technol
– volume: 43
  start-page: 233
  year: 2002
  ident: ref90
  article-title: Active IR-applications in civil engineering
  publication-title: Infrared Phys Technol
  doi: 10.1016/S1350-4495(02)00145-7
– volume: 134
  start-page: 531
  year: 2014
  ident: ref85
  article-title: Infrared thermography (IRT) applications for building diagnostics: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.005
– volume: 24
  start-page: 69
  year: 2010
  ident: ref20
  article-title: Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-24-69-2010
– volume: 139
  start-page: 305
  year: 2013
  ident: ref40
  article-title: Comparison of NDT methods for assessment of a concrete bridge deck
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0000441
– volume: 778
  start-page: 328
  year: 2013
  ident: ref79
  article-title: Non destructive characterization of wooden members using near infrared spectroscopy
  publication-title: Adv Mat Res
– volume: 2
  start-page: 2132
  year: 2016
  ident: ref57
  article-title: Nondestructive evaluation of fatigue cracks in steel bridges based on thermoelastic stress measurement
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2016.06.267
– volume: 50
  start-page: 240
  year: 2008
  ident: ref93
  article-title: Surface crack detection by flash thermography on concrete surface
  publication-title: Insight: Non-Destruct Test Cond Monit
  doi: 10.1784/insi.2008.50.5.240
– year: 2011 Dec 2–3
  ident: ref62
  article-title: Automated system for crack detection using infrared thermographic testing
– volume: 29
  start-page: 528
  year: 2021
  ident: ref30
  article-title: Nondestructive health monitoring techniques for composite materials: a review
  publication-title: Polym Polym Compos
– volume: 14
  start-page: 27
  year: 2019
  ident: ref107
  article-title: Utilizing drone technology in the civil engineering
  publication-title: J Civil Eng
– ident: ref56
– volume: 760
  start-page: 1646
  year: 2005
  ident: ref61
  article-title: Crack detection using eddy Therm
  publication-title: AIP Conf Proc
  doi: 10.1063/1.1916868
– volume: 37
  start-page: 28
  year: 2018
  ident: ref55
  article-title: Infrared thermographic testing of steel structures by using the phenomenon of heat release caused by deformation
  publication-title: J Nondestr Eval
  doi: 10.1007/s10921-018-0482-4
– volume: 22
  start-page: 423
  year: 2022
  ident: ref21
  article-title: A review of infrared thermography for delamination detection on infrastructures and buildings
  publication-title: Sensors
  doi: 10.3390/s22020423
SSID ssj0046235
Score 2.312752
SecondaryResourceType review_article
Snippet Civil infrastructure is continuously subject to aging and deterioration due to multiple factors, which lead to a decline in performance and impact structural...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 193
SubjectTerms Damage accumulation
Damage assessment
Data processing
Downtime
Hazard assessment
Hazard mitigation
Infrared imaging
Infrastructure
Maintenance
Nondestructive testing
Public safety
R&D
Real time
Rehabilitation
Research & development
Thermography
Title A Review of Infrared Thermography Applications for Civil Infrastructure
URI https://www.proquest.com/docview/3200125559
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFA3abnQhPrFaSxauhNhpXjNZSS19KFhELHQ3zOQmWNC2tur3m8xksN24njCLc8l9ntyD0LWNJAUKnIDnVnDOgLggDKTjpa21jYVS_u3w01iOJvxxKqah4bYOtMrKJxaOGhba98jbzJN_XP4r1N3yk3jVKD9dDRIau6juXHDiiq_6fX_8_FL5Yu6CuyjnyhGhKmHlXNOlLBFvr-HNP0Wn_DbyJMtoOzJtO-Yi2gwO0UFIE3G3tOsR2jHzY7S_sTzwBA27uGzs44XFD3O78lRy7My--ghrqHF3YzqNXXaKe7Of2Xt5uFwc-70yp2gy6L_2RiTIIhDt7l9ENFOdPLMZpYlD1II1VsUmk0wnABkwJuLcxIYmRiqlQQqmda7yDs_irEihzlBtvpibc4S1dOUWBYjBaG4ymwgLQnLlfiTdYdNANxUk6bLcfpG6qqHAL_X4pR6_tMSvgZoVaGm4COv0z2wX_3--RHvUS-sW3Y0mqjkQzJWL9195C-0mg2ErmPYXjMOq2Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCrK6gNckAKp7Sw-IFQBXehyAqm3kHgRlSCFlkX8FN_IOG4EXLj1HMuKnsczbzwbwJHxQ6qo4p6yuRWcM-WhEVZezY62liYKhLC1w71-2LrjN4NgUIGvshbGplWWOrFQ1Gok7Rv5GbPJP8h_A3Hx_OLZqVE2ulqO0HBi0dGfH-iyTc7bV3i-x5Q2rm8vW950qoAnUXx9TzJRy1KTUhrjDxlltBGRTkMmY6VSxVgQZTrSNNahEFKFAZMyE1mNp1FaMBDcdw4WOGPC3qi40Sw1P0cqEbgotu9RETMXRUWC5POziXqwhe-Un_o2pdP_awf_moHCtjVWYWVKSkndSdEaVHS-Dsu_WhVuQLNOXBiBjAxp52ZsE9cJCtn4adr0mtR_xcIJcmFyOXwfPrrFrk3t21hvwt1M4NqC-XyU620gMkTnjioVKS25Tk0cGBWEXOBGIS7WVTgpIUmeXa-NBH2UAr_E4pdY_BKHXxX2StCS6bWbJD9CsvP_50NYbN32ukm33e_swhK1Q32Ld5U9mEdA9D4yjdfsoDheAvezlqdvQFPmhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Infrared+Thermography+Applications+for+Civil+Infrastructure&rft.jtitle=Structural+durability+%26+health+monitoring&rft.au=Shrestha%2C+Prabal&rft.au=Rifai%2C+Sahabeddin&rft.au=Abla%2C+Feras&rft.au=Barth%2C+Karl&rft.date=2025&rft.issn=1930-2991&rft.eissn=1930-2991&rft.volume=19&rft.issue=2&rft.spage=193&rft.epage=231&rft_id=info:doi/10.32604%2Fsdhm.2024.049530&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_sdhm_2024_049530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-2991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-2991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-2991&client=summon