Computation Offloading Strategy Optimization with Multiple Heterogeneous Servers in Mobile Edge Computing
Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption and to extend the battery lifetime of mobile user equipments. In...
Saved in:
Published in | IEEE transactions on sustainable computing p. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption and to extend the battery lifetime of mobile user equipments. In this paper, we consider computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. Queueing models are established for a UE and multiple heterogeneous servers from different MECs, and the average task response time of the UE and each MEC server and the average response time of all offloadable and non-offloadable tasks generated on the UE are rigorously analyzed. Three multi-variable optimization problems are formulated, i.e., minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio, so that computation offloading strategy optimization, power-performance tradeoff, as well as power-time product can all be studied in the context of load balancing. An efficient numerical method (which consists of a series of fast numerical algorithms) is developed to solve the problems of minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio. Numerical examples and data are also demonstrated to show the effectiveness of our method and to show the power-performance tradeoff, the power-time product, and the impact of various parameters. To the best of the author's knowledge, this is the first work in the literature that analytically addresses computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. |
---|---|
AbstractList | Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption and to extend the battery lifetime of mobile user equipments. In this paper, we consider computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. Queueing models are established for a UE and multiple heterogeneous servers from different MECs, and the average task response time of the UE and each MEC server and the average response time of all offloadable and non-offloadable tasks generated on the UE are rigorously analyzed. Three multi-variable optimization problems are formulated, i.e., minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio, so that computation offloading strategy optimization, power-performance tradeoff, as well as power-time product can all be studied in the context of load balancing. An efficient numerical method (which consists of a series of fast numerical algorithms) is developed to solve the problems of minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio. Numerical examples and data are also demonstrated to show the effectiveness of our method and to show the power-performance tradeoff, the power-time product, and the impact of various parameters. To the best of the author's knowledge, this is the first work in the literature that analytically addresses computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. |
Author | Li, Keqin |
Author_xml | – sequence: 1 givenname: Keqin surname: Li fullname: Li, Keqin email: lik@newpaltz.edu organization: Dept. of Computer Science, State University of New York, New Paltz, New York United States 12561 (e-mail: lik@newpaltz.edu) |
BookMark | eNp9kE1OwzAQRi0EEqX0ArDxBVL8kzjOEkWFIrXqIu06SpxxMErjyHFB5fSkpOqCBasZaeZ9o3l36Lq1LSD0QMmcUpI8bbNdls4ZocmcJSQUklyhCeNxHPA4IdeXXrJbNOv7D0IIjeMoYXSCTGr33cEX3tgWb7RubFGZtsaZd4WH-og3nTd78z0ufBn_jteHxpuuAbwED87W0II99DgD9wmux6bFa1uaYb6oasBj_hB5j2500fQwO9cp2r0stukyWG1e39LnVaCoZD7QVIlQEgirqqRFqHkoFS8jlVQ8jigIVXJN2PCCImEhWARKykqUKlKgGQXCp4iNucrZvneg886ZfeGOOSX5yVf-6ys_-crPvgZI_oGUGaUMHkzzP_o4ogYALrekEFEiQv4DI8N9tg |
CODEN | ITSCBE |
CitedBy_id | crossref_primary_10_1109_TSC_2021_3133547 crossref_primary_10_1109_TSUSC_2020_3014912 crossref_primary_10_1109_TVT_2022_3206137 crossref_primary_10_1109_ACCESS_2019_2919106 crossref_primary_10_3389_fagro_2024_1410829 crossref_primary_10_1109_JIOT_2020_2972041 crossref_primary_10_1016_j_rser_2020_110647 crossref_primary_10_1109_TSUSC_2022_3178661 crossref_primary_10_1109_TGCN_2021_3050414 crossref_primary_10_1016_j_jnca_2020_102781 crossref_primary_10_1109_JIOT_2023_3235360 crossref_primary_10_1109_ACCESS_2023_3302703 crossref_primary_10_1002_spe_2951 crossref_primary_10_1109_TVT_2022_3177432 crossref_primary_10_1016_j_comnet_2020_107334 crossref_primary_10_1007_s00607_021_00931_z crossref_primary_10_1007_s11276_022_03099_2 crossref_primary_10_1109_ACCESS_2021_3115157 crossref_primary_10_1145_3641106 crossref_primary_10_1016_j_yofte_2023_103543 crossref_primary_10_1109_JIOT_2021_3132080 crossref_primary_10_1109_JIOT_2020_3020542 crossref_primary_10_1109_TSUSC_2021_3049705 crossref_primary_10_1109_TGCN_2022_3146145 crossref_primary_10_1109_JIOT_2020_3033285 crossref_primary_10_1016_j_jpdc_2020_12_006 crossref_primary_10_1109_JIOT_2020_3023933 crossref_primary_10_1145_3398038 crossref_primary_10_2139_ssrn_4200537 crossref_primary_10_3390_electronics12112452 crossref_primary_10_1007_s11277_023_10669_w crossref_primary_10_1016_j_jcss_2023_103492 crossref_primary_10_1109_TPDS_2021_3135955 crossref_primary_10_1007_s11042_024_20408_3 crossref_primary_10_1109_TSUSC_2021_3103476 crossref_primary_10_1109_TII_2022_3207754 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TSUSC.2019.2904680 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2377-3790 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TSUSC_2019_2904680 8665964 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61432005; 61876061 – fundername: National Key Research and Development Program of China grantid: 2018YFB1003401 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF OCL RIA RIE AAYXX AGSQL CITATION RIG |
ID | FETCH-LOGICAL-c182t-f1c6480e4ddb1a4f348c3b5c9d3751e6cb3f02000c04a625ec88d6bc5cef21e03 |
IEDL.DBID | RIE |
ISSN | 2377-3782 |
IngestDate | Tue Jul 01 02:49:27 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Wed Aug 27 02:09:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c182t-f1c6480e4ddb1a4f348c3b5c9d3751e6cb3f02000c04a625ec88d6bc5cef21e03 |
PageCount | 1 |
ParticipantIDs | ieee_primary_8665964 crossref_primary_10_1109_TSUSC_2019_2904680 crossref_citationtrail_10_1109_TSUSC_2019_2904680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on sustainable computing |
PublicationTitleAbbrev | TSUSC |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001775921 |
Score | 2.4431202 |
Snippet | Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Average response time Cloud computing computation offloading strategy cost-performance ratio Minimization mobile edge cloud mobile edge computing Mobile handsets Optimization power consumption power-performance tradeoff queueing model Servers Task analysis Time factors |
Title | Computation Offloading Strategy Optimization with Multiple Heterogeneous Servers in Mobile Edge Computing |
URI | https://ieeexplore.ieee.org/document/8665964 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTl78YIrzixy8abumTZvmKGMyhLrDNtit5FOGsxVtD_rXm6TdHCLirZQ0hLzH--rv_R4A18YYypBo5jElTYISce0xJLDHaMRSEYdUuqaw7DGZLPDDMl52wO22F0Yp5cBnyreP7l--LEVtS2VDy81GE9wFXZO4Nb1a3_UUQmIaok1fTECH89liNrLgLeqH1KSBlvlxx_fsDFNxvuT-AGSbUzQQkme_rrgvPn8QNP73mIdgvw0q4V2jBUego4o-WDUDG9zNw6nW69LB5WHLR_sBp8ZavLRtmNDWY2HWogvhxIJkSqNbqqzfobUnJkqEqwJmJTdmBI7lk4LN_mbLY7C4H89HE68drOAJk05UnkYiwWmgsJQcMawjnIqIx4LKiMRIJYJHOrA9PCLAzCRISqSpTLiIhdIhUkF0AnpFWahTADkiQnKNESLGH2JNMdeEEWFZ5GWQ6AFAmyvPRcs6bodfrHOXfQQ0d2LKrZjyVkwDcLP95rXh3Phzdd-KYLuyvf2z31-fg73QhCVNEeUC9Kq3Wl2asKLiV06fvgDWcM2y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGWDhUEGU0wMbJI0T5_CIqlYFmnZoK3WL4gtVlARBMsCvx3bSUiGE2KLIsSy_p3flfd8D4FoZQ-6GMrVSwVWC4lFppYhhKyVeGjHfJdyAwuJRMJjhh7k_b4DbNRZGCGGaz4StH82_fJ6zUpfKOpqbjQR4C2wrv--jCq31XVEJQ5-4aIWMcUhnOplNurp9i9guUYmg5n7c8D4b41SMN-nvg3h1jqqJ5NkuC2qzzx8Ujf896AHYq8NKeFfpwSFoiKwFFtXIBnP3cCzlMjcN87BmpP2AY2UvXmogJtQVWRjX_YVwoNtkcqVdIi_fobYoKk6EiwzGOVWGBPb4k4DV_mrLIzDr96bdgVWPVrCYSigKSyIW4MgRmHOKUiw9HDGP-oxwL_SRCBj1pKNRPMzBqUqRBIsiHlDmMyFdJBzvGDSzPBMnAFIUMk4lRihUHhFLgqkM05BpHnnuBLIN0OrKE1bzjuvxF8vE5B8OSYyYEi2mpBZTG9ysv3mtWDf-XN3SIlivrG__9PfXV2BnMI2HyfB-9HgGdl0VpFQllXPQLN5KcaGCjIJeGt36Arll0Ps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+Offloading+Strategy+Optimization+with+Multiple+Heterogeneous+Servers+in+Mobile+Edge+Computing&rft.jtitle=IEEE+transactions+on+sustainable+computing&rft.au=Li%2C+Keqin&rft.date=2024&rft.pub=IEEE&rft.eissn=2377-3790&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTSUSC.2019.2904680&rft.externalDocID=8665964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3782&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3782&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3782&client=summon |