Computation Offloading Strategy Optimization with Multiple Heterogeneous Servers in Mobile Edge Computing

Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption and to extend the battery lifetime of mobile user equipments. In...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on sustainable computing p. 1
Main Author Li, Keqin
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption and to extend the battery lifetime of mobile user equipments. In this paper, we consider computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. Queueing models are established for a UE and multiple heterogeneous servers from different MECs, and the average task response time of the UE and each MEC server and the average response time of all offloadable and non-offloadable tasks generated on the UE are rigorously analyzed. Three multi-variable optimization problems are formulated, i.e., minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio, so that computation offloading strategy optimization, power-performance tradeoff, as well as power-time product can all be studied in the context of load balancing. An efficient numerical method (which consists of a series of fast numerical algorithms) is developed to solve the problems of minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio. Numerical examples and data are also demonstrated to show the effectiveness of our method and to show the power-performance tradeoff, the power-time product, and the impact of various parameters. To the best of the author's knowledge, this is the first work in the literature that analytically addresses computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing.
AbstractList Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption and to extend the battery lifetime of mobile user equipments. In this paper, we consider computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. Queueing models are established for a UE and multiple heterogeneous servers from different MECs, and the average task response time of the UE and each MEC server and the average response time of all offloadable and non-offloadable tasks generated on the UE are rigorously analyzed. Three multi-variable optimization problems are formulated, i.e., minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio, so that computation offloading strategy optimization, power-performance tradeoff, as well as power-time product can all be studied in the context of load balancing. An efficient numerical method (which consists of a series of fast numerical algorithms) is developed to solve the problems of minimization of average response time with average power consumption constraint, minimization of average power consumption with average response time constraint, and minimization of cost-performance ratio. Numerical examples and data are also demonstrated to show the effectiveness of our method and to show the power-performance tradeoff, the power-time product, and the impact of various parameters. To the best of the author's knowledge, this is the first work in the literature that analytically addresses computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing.
Author Li, Keqin
Author_xml – sequence: 1
  givenname: Keqin
  surname: Li
  fullname: Li, Keqin
  email: lik@newpaltz.edu
  organization: Dept. of Computer Science, State University of New York, New Paltz, New York United States 12561 (e-mail: lik@newpaltz.edu)
BookMark eNp9kE1OwzAQRi0EEqX0ArDxBVL8kzjOEkWFIrXqIu06SpxxMErjyHFB5fSkpOqCBasZaeZ9o3l36Lq1LSD0QMmcUpI8bbNdls4ZocmcJSQUklyhCeNxHPA4IdeXXrJbNOv7D0IIjeMoYXSCTGr33cEX3tgWb7RubFGZtsaZd4WH-og3nTd78z0ufBn_jteHxpuuAbwED87W0II99DgD9wmux6bFa1uaYb6oasBj_hB5j2500fQwO9cp2r0stukyWG1e39LnVaCoZD7QVIlQEgirqqRFqHkoFS8jlVQ8jigIVXJN2PCCImEhWARKykqUKlKgGQXCp4iNucrZvneg886ZfeGOOSX5yVf-6ys_-crPvgZI_oGUGaUMHkzzP_o4ogYALrekEFEiQv4DI8N9tg
CODEN ITSCBE
CitedBy_id crossref_primary_10_1109_TSC_2021_3133547
crossref_primary_10_1109_TSUSC_2020_3014912
crossref_primary_10_1109_TVT_2022_3206137
crossref_primary_10_1109_ACCESS_2019_2919106
crossref_primary_10_3389_fagro_2024_1410829
crossref_primary_10_1109_JIOT_2020_2972041
crossref_primary_10_1016_j_rser_2020_110647
crossref_primary_10_1109_TSUSC_2022_3178661
crossref_primary_10_1109_TGCN_2021_3050414
crossref_primary_10_1016_j_jnca_2020_102781
crossref_primary_10_1109_JIOT_2023_3235360
crossref_primary_10_1109_ACCESS_2023_3302703
crossref_primary_10_1002_spe_2951
crossref_primary_10_1109_TVT_2022_3177432
crossref_primary_10_1016_j_comnet_2020_107334
crossref_primary_10_1007_s00607_021_00931_z
crossref_primary_10_1007_s11276_022_03099_2
crossref_primary_10_1109_ACCESS_2021_3115157
crossref_primary_10_1145_3641106
crossref_primary_10_1016_j_yofte_2023_103543
crossref_primary_10_1109_JIOT_2021_3132080
crossref_primary_10_1109_JIOT_2020_3020542
crossref_primary_10_1109_TSUSC_2021_3049705
crossref_primary_10_1109_TGCN_2022_3146145
crossref_primary_10_1109_JIOT_2020_3033285
crossref_primary_10_1016_j_jpdc_2020_12_006
crossref_primary_10_1109_JIOT_2020_3023933
crossref_primary_10_1145_3398038
crossref_primary_10_2139_ssrn_4200537
crossref_primary_10_3390_electronics12112452
crossref_primary_10_1007_s11277_023_10669_w
crossref_primary_10_1016_j_jcss_2023_103492
crossref_primary_10_1109_TPDS_2021_3135955
crossref_primary_10_1007_s11042_024_20408_3
crossref_primary_10_1109_TSUSC_2021_3103476
crossref_primary_10_1109_TII_2022_3207754
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSUSC.2019.2904680
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2377-3790
EndPage 1
ExternalDocumentID 10_1109_TSUSC_2019_2904680
8665964
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61432005; 61876061
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1003401
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
RIG
ID FETCH-LOGICAL-c182t-f1c6480e4ddb1a4f348c3b5c9d3751e6cb3f02000c04a625ec88d6bc5cef21e03
IEDL.DBID RIE
ISSN 2377-3782
IngestDate Tue Jul 01 02:49:27 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Wed Aug 27 02:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c182t-f1c6480e4ddb1a4f348c3b5c9d3751e6cb3f02000c04a625ec88d6bc5cef21e03
PageCount 1
ParticipantIDs ieee_primary_8665964
crossref_primary_10_1109_TSUSC_2019_2904680
crossref_citationtrail_10_1109_TSUSC_2019_2904680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on sustainable computing
PublicationTitleAbbrev TSUSC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001775921
Score 2.4431202
Snippet Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the computational burden of mobile devices, to...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Average response time
Cloud computing
computation offloading strategy
cost-performance ratio
Minimization
mobile edge cloud
mobile edge computing
Mobile handsets
Optimization
power consumption
power-performance tradeoff
queueing model
Servers
Task analysis
Time factors
Title Computation Offloading Strategy Optimization with Multiple Heterogeneous Servers in Mobile Edge Computing
URI https://ieeexplore.ieee.org/document/8665964
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTl78YIrzixy8abumTZvmKGMyhLrDNtit5FOGsxVtD_rXm6TdHCLirZQ0hLzH--rv_R4A18YYypBo5jElTYISce0xJLDHaMRSEYdUuqaw7DGZLPDDMl52wO22F0Yp5cBnyreP7l--LEVtS2VDy81GE9wFXZO4Nb1a3_UUQmIaok1fTECH89liNrLgLeqH1KSBlvlxx_fsDFNxvuT-AGSbUzQQkme_rrgvPn8QNP73mIdgvw0q4V2jBUego4o-WDUDG9zNw6nW69LB5WHLR_sBp8ZavLRtmNDWY2HWogvhxIJkSqNbqqzfobUnJkqEqwJmJTdmBI7lk4LN_mbLY7C4H89HE68drOAJk05UnkYiwWmgsJQcMawjnIqIx4LKiMRIJYJHOrA9PCLAzCRISqSpTLiIhdIhUkF0AnpFWahTADkiQnKNESLGH2JNMdeEEWFZ5GWQ6AFAmyvPRcs6bodfrHOXfQQ0d2LKrZjyVkwDcLP95rXh3Phzdd-KYLuyvf2z31-fg73QhCVNEeUC9Kq3Wl2asKLiV06fvgDWcM2y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGWDhUEGU0wMbJI0T5_CIqlYFmnZoK3WL4gtVlARBMsCvx3bSUiGE2KLIsSy_p3flfd8D4FoZQ-6GMrVSwVWC4lFppYhhKyVeGjHfJdyAwuJRMJjhh7k_b4DbNRZGCGGaz4StH82_fJ6zUpfKOpqbjQR4C2wrv--jCq31XVEJQ5-4aIWMcUhnOplNurp9i9guUYmg5n7c8D4b41SMN-nvg3h1jqqJ5NkuC2qzzx8Ujf896AHYq8NKeFfpwSFoiKwFFtXIBnP3cCzlMjcN87BmpP2AY2UvXmogJtQVWRjX_YVwoNtkcqVdIi_fobYoKk6EiwzGOVWGBPb4k4DV_mrLIzDr96bdgVWPVrCYSigKSyIW4MgRmHOKUiw9HDGP-oxwL_SRCBj1pKNRPMzBqUqRBIsiHlDmMyFdJBzvGDSzPBMnAFIUMk4lRihUHhFLgqkM05BpHnnuBLIN0OrKE1bzjuvxF8vE5B8OSYyYEi2mpBZTG9ysv3mtWDf-XN3SIlivrG__9PfXV2BnMI2HyfB-9HgGdl0VpFQllXPQLN5KcaGCjIJeGt36Arll0Ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+Offloading+Strategy+Optimization+with+Multiple+Heterogeneous+Servers+in+Mobile+Edge+Computing&rft.jtitle=IEEE+transactions+on+sustainable+computing&rft.au=Li%2C+Keqin&rft.date=2024&rft.pub=IEEE&rft.eissn=2377-3790&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTSUSC.2019.2904680&rft.externalDocID=8665964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3782&client=summon