Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision
Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventio...
Saved in:
Published in | IEEE journal on flexible electronics Vol. 1; no. 2; pp. 76 - 87 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventional systems induce large power consumption and data latency. For mobile artificial vision applications, electronic eyes, including neuromorphic ones, have been developed inspired by biological eyes and neural networks. Here, we summarize the development of such bio-inspired electronic eyes and synaptic photodetectors (PDs). Bio-inspired electronic eyes, typically consisting of curved image sensor arrays, enable aberration-free imaging and module size miniaturization in addition to other advantageous optical features, such as wide field-of-view and deep depth-of-field. Furthermore, photodetecting devices with synaptic properties can efficiently enhance image contrast because of photon-triggered synaptic plasticity. Therefore, the signal-to-noise ratio of the acquired image can be enhanced, which facilitates efficient image recognition for machine vision. A brief summary of the remaining challenges and prospects concludes this review. |
---|---|
AbstractList | Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventional systems induce large power consumption and data latency. For mobile artificial vision applications, electronic eyes, including neuromorphic ones, have been developed inspired by biological eyes and neural networks. Here, we summarize the development of such bio-inspired electronic eyes and synaptic photodetectors (PDs). Bio-inspired electronic eyes, typically consisting of curved image sensor arrays, enable aberration-free imaging and module size miniaturization in addition to other advantageous optical features, such as wide field-of-view and deep depth-of-field. Furthermore, photodetecting devices with synaptic properties can efficiently enhance image contrast because of photon-triggered synaptic plasticity. Therefore, the signal-to-noise ratio of the acquired image can be enhanced, which facilitates efficient image recognition for machine vision. A brief summary of the remaining challenges and prospects concludes this review. |
Author | Kim, Dae-Hyeong Seung, Hyojin Choi, Changsoon |
Author_xml | – sequence: 1 givenname: Changsoon orcidid: 0000-0002-0428-5117 surname: Choi fullname: Choi, Changsoon email: cschoi91@kist.re.kr organization: Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea – sequence: 2 givenname: Hyojin orcidid: 0000-0001-5999-9646 surname: Seung fullname: Seung, Hyojin email: sjin5959@snu.ac.kr organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea – sequence: 3 givenname: Dae-Hyeong orcidid: 0000-0002-4722-1893 surname: Kim fullname: Kim, Dae-Hyeong email: dkim98@snu.ac.kr organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea |
BookMark | eNp9kM1KAzEURoNUsNa-gG7yAlPzM5PMLGsZtVJR0Ep3Qya5g5ExKUk2fXuntoi4cPVdLt-5XM45GjnvAKFLSmaUkur64XZVb2aMMDbjVDAqqhM0ZlKUGRVyM_o1n6FpjB-EEFYJyksyRusb67Oli1sbwOC6B52Cd1bjegcRK2fwy86pbRo2z-8-eQNpqPgQcecDfvSt7QHPQ7Kd1Vb1-M1G690FOu1UH2F6zAla39avi_ts9XS3XMxXmaYlS1kLUhdSURCy5KCLIle5Lpg0eUHKlmjNRcklZ0YSA22XCz0E7zSRpiCsyPkElYe7OvgYA3SNtkml4YMUlO0bSpq9oebbULM31BwNDSj7g26D_VRh9z90dYAsAPwAlcyJ4Dn_AumXdPA |
CODEN | IJFEBL |
CitedBy_id | crossref_primary_10_1002_advs_202417428 crossref_primary_10_1021_acsnano_3c10181 crossref_primary_10_56767_jfpe_2023_2_1_15 crossref_primary_10_1021_acsami_4c07231 crossref_primary_10_1038_s44328_024_00015_w crossref_primary_10_1039_D3TC01883K crossref_primary_10_1002_adma_202412252 crossref_primary_10_1016_j_mattod_2024_11_004 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1021_acsomega_3c00440 crossref_primary_10_1021_acsaelm_4c02332 crossref_primary_10_1109_JSTQE_2023_3308770 |
Cites_doi | 10.1021/acsnano.9b04829 10.1002/adfm.202009281 10.1002/adma.201700951 10.1002/adfm.201808668 10.1038/s41467-020-19806-6 10.1038/s41467-018-07572-5 10.1002/adma.202101093 10.1038/s41928-021-00643-4 10.1002/adma.202100475 10.1021/acsphotonics.8b01049 10.1038/s41565-020-0694-5 10.1002/smll.201803465 10.1038/nphoton.2015.280 10.1002/adma.202105485 10.1002/adfm.201804397 10.1063/1.3148245 10.1038/s41928-020-00466-9 10.1126/science.aat8126 10.1364/AOP.6.000340 10.1038/s41928-021-00600-1 10.1038/s41467-018-03388-5 10.1002/smll.200901350 10.1038/nature14417 10.1038/s41467-020-17850-w 10.1038/nature14441 10.1002/adma.201801256 10.1073/pnas.1517953113 10.1038/s41928-020-00501-9 10.1038/nature07113 10.1002/admt.202270005 10.1029/2006gl027916 10.1002/adfm.201870168 10.1038/s41586-020-2285-x 10.1038/s41467-021-23711-x 10.1126/sciadv.abe3996 10.1038/s41467-021-22047-w 10.1038/s41928-017-0006-8 10.1002/adma.202003542 10.1109/TED.2007.914828 10.1038/micronano.2016.19 10.1021/acs.chemrev.1c00531 10.1109/CICC.2018.8357046 10.1038/s41928-021-00646-1 10.1038/ncomms14734 10.1021/acsnano.7b01894 10.1002/adma.201803961 10.1038/nmat4237 10.1016/j.optlastec.2017.04.026 10.1126/science.1123053 10.1038/ncomms15199 10.1038/ncomms6678 10.1038/s41928-020-0429-5 10.1038/s41563-019-0291-x 10.1038/nature12314 10.1126/science.abh4357 10.1073/pnas.1015440108 10.1002/adma.202105017 10.1002/adma.202104960 10.1021/acs.nanolett.1c02991 10.1126/sciadv.abe3196 10.1002/adma.202002431 10.1002/cnma.201600191 10.1364/AO.58.006446 10.1002/advs.202102036 10.1002/adma.201900231 10.1038/s41467-020-16261-1 10.1002/smll.201804920 10.1126/sciadv.aax4961 10.1007/s12274-021-3447-3 10.1002/admt.201700053 10.1109/S3S.2016.7804406 10.1002/adfm.202006236 10.1038/nnano.2017.83 10.1038/nrn3708 10.1002/adma.201704729 10.1021/acsnano.1c06758 10.1002/adma.202103369 10.1002/adma.202004456 10.1038/s41467-017-01926-1 10.1038/s41565-021-01003-1 10.1109/LED.2019.2924259 10.1038/s41467-021-26606-z 10.1063/1.3553020 10.1021/acsnano.1c06234 10.1021/acs.accounts.8b00491 10.1038/nature12083 10.1039/C9CS90019E 10.1038/s41565-019-0501-3 10.1038/d41586-020-00592-6 10.1038/s41467-017-01824-6 10.1021/nn2024557 10.1038/s41928-022-00713-1 10.1038/s41928-019-0304-4 10.1038/s41928-020-00475-8 10.1021/acs.nanolett.0c02531 10.1109/JPROC.2019.2909666 10.1038/s41586-020-2038-x 10.1021/accountsmr.1c00020 10.1002/adma.202104690 10.1002/adma.201702902 10.1038/s41928-021-00538-4 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JFLEX.2022.3162169 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2768-167X |
EndPage | 87 |
ExternalDocumentID | 10_1109_JFLEX_2022_3162169 9740634 |
Genre | orig-research |
GrantInformation_xml | – fundername: Future Resource Research Program of the Korea Institute of Science and Technology (KIST) grantid: 2E31532 funderid: 10.13039/501100003693 – fundername: Institute for Basic Science grantid: IBS-R006-A1 funderid: 10.13039/501100010446 |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c182t-be7c57a1e6783ec554a4c527d4508b0cc3683732d70debf46cdeb3fc07d502543 |
IEDL.DBID | RIE |
ISSN | 2768-167X |
IngestDate | Tue Jul 01 03:01:02 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Wed Aug 27 02:25:44 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c182t-be7c57a1e6783ec554a4c527d4508b0cc3683732d70debf46cdeb3fc07d502543 |
ORCID | 0000-0002-4722-1893 0000-0001-5999-9646 0000-0002-0428-5117 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JFLEX_2022_3162169 ieee_primary_9740634 crossref_primary_10_1109_JFLEX_2022_3162169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-April 2022-4-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-April |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal on flexible electronics |
PublicationTitleAbbrev | JFLEX |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref75 ref74 ref77 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref74 doi: 10.1021/acsnano.9b04829 – ident: ref10 doi: 10.1002/adfm.202009281 – ident: ref57 doi: 10.1002/adma.201700951 – ident: ref96 doi: 10.1002/adfm.201808668 – ident: ref29 doi: 10.1038/s41467-020-19806-6 – ident: ref61 doi: 10.1038/s41467-018-07572-5 – ident: ref30 doi: 10.1002/adma.202101093 – ident: ref46 doi: 10.1038/s41928-021-00643-4 – ident: ref66 doi: 10.1002/adma.202100475 – ident: ref48 doi: 10.1021/acsphotonics.8b01049 – ident: ref67 doi: 10.1038/s41565-020-0694-5 – ident: ref87 doi: 10.1002/smll.201803465 – ident: ref91 doi: 10.1038/nphoton.2015.280 – ident: ref65 doi: 10.1002/adma.202105485 – ident: ref58 doi: 10.1002/adfm.201804397 – ident: ref40 doi: 10.1063/1.3148245 – ident: ref13 doi: 10.1038/s41928-020-00466-9 – ident: ref89 doi: 10.1126/science.aat8126 – ident: ref23 doi: 10.1364/AOP.6.000340 – ident: ref45 doi: 10.1038/s41928-021-00600-1 – ident: ref86 doi: 10.1038/s41467-018-03388-5 – ident: ref22 doi: 10.1002/smll.200901350 – ident: ref84 doi: 10.1038/nature14417 – ident: ref15 doi: 10.1038/s41467-020-17850-w – ident: ref28 doi: 10.1038/nature14441 – ident: ref52 doi: 10.1002/adma.201801256 – ident: ref56 doi: 10.1073/pnas.1517953113 – ident: ref18 doi: 10.1038/s41928-020-00501-9 – ident: ref39 doi: 10.1038/nature07113 – ident: ref12 doi: 10.1002/admt.202270005 – ident: ref99 doi: 10.1029/2006gl027916 – ident: ref8 doi: 10.1002/adfm.201870168 – ident: ref50 doi: 10.1038/s41586-020-2285-x – ident: ref82 doi: 10.1038/s41467-021-23711-x – ident: ref14 doi: 10.1126/sciadv.abe3996 – ident: ref63 doi: 10.1038/s41467-021-22047-w – ident: ref68 doi: 10.1038/s41928-017-0006-8 – ident: ref88 doi: 10.1002/adma.202003542 – ident: ref98 doi: 10.1109/TED.2007.914828 – ident: ref16 doi: 10.1038/micronano.2016.19 – ident: ref79 doi: 10.1021/acs.chemrev.1c00531 – ident: ref25 doi: 10.1109/CICC.2018.8357046 – ident: ref33 doi: 10.1038/s41928-021-00646-1 – ident: ref60 doi: 10.1038/ncomms14734 – ident: ref2 doi: 10.1021/acsnano.7b01894 – ident: ref59 doi: 10.1002/adma.201803961 – ident: ref71 doi: 10.1038/nmat4237 – ident: ref55 doi: 10.1016/j.optlastec.2017.04.026 – ident: ref17 doi: 10.1126/science.1123053 – ident: ref27 doi: 10.1038/ncomms15199 – ident: ref38 doi: 10.1038/ncomms6678 – ident: ref7 doi: 10.1038/s41928-020-0429-5 – ident: ref35 doi: 10.1038/s41563-019-0291-x – ident: ref49 doi: 10.1038/nature12314 – ident: ref3 doi: 10.1126/science.abh4357 – ident: ref42 doi: 10.1073/pnas.1015440108 – ident: ref32 doi: 10.1002/adma.202105017 – ident: ref75 doi: 10.1002/adma.202104960 – ident: ref80 doi: 10.1021/acs.nanolett.1c02991 – ident: ref97 doi: 10.1126/sciadv.abe3196 – ident: ref6 doi: 10.1002/adma.202002431 – ident: ref37 doi: 10.1002/cnma.201600191 – ident: ref51 doi: 10.1364/AO.58.006446 – ident: ref94 doi: 10.1002/advs.202102036 – ident: ref19 doi: 10.1002/adma.201900231 – ident: ref101 doi: 10.1038/s41467-020-16261-1 – ident: ref92 doi: 10.1002/smll.201804920 – ident: ref24 doi: 10.1126/sciadv.aax4961 – ident: ref1 doi: 10.1007/s12274-021-3447-3 – ident: ref76 doi: 10.1002/admt.201700053 – ident: ref21 doi: 10.1109/S3S.2016.7804406 – ident: ref95 doi: 10.1002/adfm.202006236 – ident: ref31 doi: 10.1038/nnano.2017.83 – ident: ref26 doi: 10.1038/nrn3708 – ident: ref34 doi: 10.1002/adma.201704729 – ident: ref83 doi: 10.1021/acsnano.1c06758 – ident: ref93 doi: 10.1002/adma.202103369 – ident: ref43 doi: 10.1002/adma.202004456 – ident: ref44 doi: 10.1038/s41467-017-01926-1 – ident: ref20 doi: 10.1038/s41565-021-01003-1 – ident: ref100 doi: 10.1109/LED.2019.2924259 – ident: ref53 doi: 10.1038/s41467-021-26606-z – ident: ref41 doi: 10.1063/1.3553020 – ident: ref90 doi: 10.1021/acsnano.1c06234 – ident: ref73 doi: 10.1021/acs.accounts.8b00491 – ident: ref54 doi: 10.1038/nature12083 – ident: ref78 doi: 10.1039/C9CS90019E – ident: ref62 doi: 10.1038/s41565-019-0501-3 – ident: ref70 doi: 10.1038/d41586-020-00592-6 – ident: ref11 doi: 10.1038/s41467-017-01824-6 – ident: ref47 doi: 10.1021/nn2024557 – ident: ref64 doi: 10.1038/s41928-022-00713-1 – ident: ref4 doi: 10.1038/s41928-019-0304-4 – ident: ref81 doi: 10.1038/s41928-020-00475-8 – ident: ref85 doi: 10.1021/acs.nanolett.0c02531 – ident: ref36 doi: 10.1109/JPROC.2019.2909666 – ident: ref69 doi: 10.1038/s41586-020-2038-x – ident: ref77 doi: 10.1021/accountsmr.1c00020 – ident: ref5 doi: 10.1002/adma.202104690 – ident: ref9 doi: 10.1002/adma.201702902 – ident: ref72 doi: 10.1038/s41928-021-00538-4 |
SSID | ssj0002961380 |
Score | 2.289383 |
Snippet | Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 76 |
SubjectTerms | Bio-inspired camera curved image sensor electronic eye Image recognition Image sensors in-sensor processing Lenses Machine vision Optical sensors Photodetectors Sensor arrays synaptic photodetector (PD) |
Title | Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision |
URI | https://ieeexplore.ieee.org/document/9740634 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bnvTBrynOL_Lgm3ZL26RdH1U25nAi6GRvpUmuKEorrnuYf72XtCtDRHxpS0louEvv7ne5D0LO-303dXXoOloI4XCOv1QiI7wYZZmi_NO27OLkPhhN-XgmZg1yWefCAIANPoOuebRn-TpXC-Mq66HtixqVN0kTgVuZq1X7U7wIFVOfrfJiWNQbD-8GM0SAnofANPBcE9O8pnvWmqlYXTLcJpPVKsoQkrfuopBd9fWjQON_l7lDtiqjkl6Vu2CXNCDbI5trpQbbZHr9mju3mTlXB00HdfMbOljCnCaZpo_LLEH5oejDS17kGgrrz59TtGrpJJcoPewHyooT9NnmpO-T6XDwdDNyqpYKjkIgUTgSQiXCxAXUUT4otCUSroQXao6GmmRK-QEiVt_TIdMgUx4ovPmpYqEWNm_-gLSyPINDQoVMXWRrBChOuZCuZBBKhnCKJUoizukQd0XsWFX1xk3bi_fY4g4WxZZBsWFQXDGoQy7qOR9ltY0_R7cN8euRFd2Pfn99TDbM5DLq5oS0is8FnKJBUcgzu5O-AWOpx_4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ7UelAPvo1v9-BNqbvAlnJU06bVYky0pjfCPohGA0bpof56ZxdKGmOMFyBkgc3OMt98u_MAOO10WMpUwBzFOXd8H3-pRIR4MGCZov5TNu1idNfuj_ybMR834LyOhdFaW-cz3TKXdi9f5XJilsou0PZFRPUXYBFxn7MyWqteUXFDhKYOnUXG0PDipjfsjpEDui5S07bLjFfzHPrMlVOxaNJbg2jWj9KJ5LU1KURLfv1I0fjfjq7DamVWkstyHmxAQ2ebsDKXbHALRlcvuTPIzM66VqRbl78h3an-JEmmyMM0S1CDSHL_nBe50oVd0f8kaNeSKBeoP-wHypwT5MlGpW_DqNd9vO47VVEFRyKVKByhA8mDhGlEKU9LtCYSX3I3UD6aaoJK6bWRs3quCqjSIvXbEk9eKmmguI2c34Fmlmd6FwgXKUPBhhoVqs8FE1QHgiKhookUyHT2gM0GO5ZVxnFT-OIttsyDhrEVUGwEFFcC2oOz-pn3Mt_Gn623zODXLatx3__99gks9R-jYTwc3N0ewLJ5UemDcwjN4mOij9C8KMSxnVXf_cvLRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Electronic+Eyes+and+Synaptic+Photodetectors+for+Mobile+Artificial+Vision&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Choi%2C+Changsoon&rft.au=Seung%2C+Hyojin&rft.au=Kim%2C+Dae-Hyeong&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=2768-167X&rft.volume=1&rft.issue=2&rft.spage=76&rft.epage=87&rft_id=info:doi/10.1109%2FJFLEX.2022.3162169&rft.externalDocID=9740634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon |