Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision

Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventio...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 1; no. 2; pp. 76 - 87
Main Authors Choi, Changsoon, Seung, Hyojin, Kim, Dae-Hyeong
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventional systems induce large power consumption and data latency. For mobile artificial vision applications, electronic eyes, including neuromorphic ones, have been developed inspired by biological eyes and neural networks. Here, we summarize the development of such bio-inspired electronic eyes and synaptic photodetectors (PDs). Bio-inspired electronic eyes, typically consisting of curved image sensor arrays, enable aberration-free imaging and module size miniaturization in addition to other advantageous optical features, such as wide field-of-view and deep depth-of-field. Furthermore, photodetecting devices with synaptic properties can efficiently enhance image contrast because of photon-triggered synaptic plasticity. Therefore, the signal-to-noise ratio of the acquired image can be enhanced, which facilitates efficient image recognition for machine vision. A brief summary of the remaining challenges and prospects concludes this review.
AbstractList Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventional systems induce large power consumption and data latency. For mobile artificial vision applications, electronic eyes, including neuromorphic ones, have been developed inspired by biological eyes and neural networks. Here, we summarize the development of such bio-inspired electronic eyes and synaptic photodetectors (PDs). Bio-inspired electronic eyes, typically consisting of curved image sensor arrays, enable aberration-free imaging and module size miniaturization in addition to other advantageous optical features, such as wide field-of-view and deep depth-of-field. Furthermore, photodetecting devices with synaptic properties can efficiently enhance image contrast because of photon-triggered synaptic plasticity. Therefore, the signal-to-noise ratio of the acquired image can be enhanced, which facilitates efficient image recognition for machine vision. A brief summary of the remaining challenges and prospects concludes this review.
Author Kim, Dae-Hyeong
Seung, Hyojin
Choi, Changsoon
Author_xml – sequence: 1
  givenname: Changsoon
  orcidid: 0000-0002-0428-5117
  surname: Choi
  fullname: Choi, Changsoon
  email: cschoi91@kist.re.kr
  organization: Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
– sequence: 2
  givenname: Hyojin
  orcidid: 0000-0001-5999-9646
  surname: Seung
  fullname: Seung, Hyojin
  email: sjin5959@snu.ac.kr
  organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
– sequence: 3
  givenname: Dae-Hyeong
  orcidid: 0000-0002-4722-1893
  surname: Kim
  fullname: Kim, Dae-Hyeong
  email: dkim98@snu.ac.kr
  organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
BookMark eNp9kM1KAzEURoNUsNa-gG7yAlPzM5PMLGsZtVJR0Ep3Qya5g5ExKUk2fXuntoi4cPVdLt-5XM45GjnvAKFLSmaUkur64XZVb2aMMDbjVDAqqhM0ZlKUGRVyM_o1n6FpjB-EEFYJyksyRusb67Oli1sbwOC6B52Cd1bjegcRK2fwy86pbRo2z-8-eQNpqPgQcecDfvSt7QHPQ7Kd1Vb1-M1G690FOu1UH2F6zAla39avi_ts9XS3XMxXmaYlS1kLUhdSURCy5KCLIle5Lpg0eUHKlmjNRcklZ0YSA22XCz0E7zSRpiCsyPkElYe7OvgYA3SNtkml4YMUlO0bSpq9oebbULM31BwNDSj7g26D_VRh9z90dYAsAPwAlcyJ4Dn_AumXdPA
CODEN IJFEBL
CitedBy_id crossref_primary_10_1002_advs_202417428
crossref_primary_10_1021_acsnano_3c10181
crossref_primary_10_56767_jfpe_2023_2_1_15
crossref_primary_10_1021_acsami_4c07231
crossref_primary_10_1038_s44328_024_00015_w
crossref_primary_10_1039_D3TC01883K
crossref_primary_10_1002_adma_202412252
crossref_primary_10_1016_j_mattod_2024_11_004
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1021_acsomega_3c00440
crossref_primary_10_1021_acsaelm_4c02332
crossref_primary_10_1109_JSTQE_2023_3308770
Cites_doi 10.1021/acsnano.9b04829
10.1002/adfm.202009281
10.1002/adma.201700951
10.1002/adfm.201808668
10.1038/s41467-020-19806-6
10.1038/s41467-018-07572-5
10.1002/adma.202101093
10.1038/s41928-021-00643-4
10.1002/adma.202100475
10.1021/acsphotonics.8b01049
10.1038/s41565-020-0694-5
10.1002/smll.201803465
10.1038/nphoton.2015.280
10.1002/adma.202105485
10.1002/adfm.201804397
10.1063/1.3148245
10.1038/s41928-020-00466-9
10.1126/science.aat8126
10.1364/AOP.6.000340
10.1038/s41928-021-00600-1
10.1038/s41467-018-03388-5
10.1002/smll.200901350
10.1038/nature14417
10.1038/s41467-020-17850-w
10.1038/nature14441
10.1002/adma.201801256
10.1073/pnas.1517953113
10.1038/s41928-020-00501-9
10.1038/nature07113
10.1002/admt.202270005
10.1029/2006gl027916
10.1002/adfm.201870168
10.1038/s41586-020-2285-x
10.1038/s41467-021-23711-x
10.1126/sciadv.abe3996
10.1038/s41467-021-22047-w
10.1038/s41928-017-0006-8
10.1002/adma.202003542
10.1109/TED.2007.914828
10.1038/micronano.2016.19
10.1021/acs.chemrev.1c00531
10.1109/CICC.2018.8357046
10.1038/s41928-021-00646-1
10.1038/ncomms14734
10.1021/acsnano.7b01894
10.1002/adma.201803961
10.1038/nmat4237
10.1016/j.optlastec.2017.04.026
10.1126/science.1123053
10.1038/ncomms15199
10.1038/ncomms6678
10.1038/s41928-020-0429-5
10.1038/s41563-019-0291-x
10.1038/nature12314
10.1126/science.abh4357
10.1073/pnas.1015440108
10.1002/adma.202105017
10.1002/adma.202104960
10.1021/acs.nanolett.1c02991
10.1126/sciadv.abe3196
10.1002/adma.202002431
10.1002/cnma.201600191
10.1364/AO.58.006446
10.1002/advs.202102036
10.1002/adma.201900231
10.1038/s41467-020-16261-1
10.1002/smll.201804920
10.1126/sciadv.aax4961
10.1007/s12274-021-3447-3
10.1002/admt.201700053
10.1109/S3S.2016.7804406
10.1002/adfm.202006236
10.1038/nnano.2017.83
10.1038/nrn3708
10.1002/adma.201704729
10.1021/acsnano.1c06758
10.1002/adma.202103369
10.1002/adma.202004456
10.1038/s41467-017-01926-1
10.1038/s41565-021-01003-1
10.1109/LED.2019.2924259
10.1038/s41467-021-26606-z
10.1063/1.3553020
10.1021/acsnano.1c06234
10.1021/acs.accounts.8b00491
10.1038/nature12083
10.1039/C9CS90019E
10.1038/s41565-019-0501-3
10.1038/d41586-020-00592-6
10.1038/s41467-017-01824-6
10.1021/nn2024557
10.1038/s41928-022-00713-1
10.1038/s41928-019-0304-4
10.1038/s41928-020-00475-8
10.1021/acs.nanolett.0c02531
10.1109/JPROC.2019.2909666
10.1038/s41586-020-2038-x
10.1021/accountsmr.1c00020
10.1002/adma.202104690
10.1002/adma.201702902
10.1038/s41928-021-00538-4
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JFLEX.2022.3162169
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2768-167X
EndPage 87
ExternalDocumentID 10_1109_JFLEX_2022_3162169
9740634
Genre orig-research
GrantInformation_xml – fundername: Future Resource Research Program of the Korea Institute of Science and Technology (KIST)
  grantid: 2E31532
  funderid: 10.13039/501100003693
– fundername: Institute for Basic Science
  grantid: IBS-R006-A1
  funderid: 10.13039/501100010446
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c182t-be7c57a1e6783ec554a4c527d4508b0cc3683732d70debf46cdeb3fc07d502543
IEDL.DBID RIE
ISSN 2768-167X
IngestDate Tue Jul 01 03:01:02 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Aug 27 02:25:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c182t-be7c57a1e6783ec554a4c527d4508b0cc3683732d70debf46cdeb3fc07d502543
ORCID 0000-0002-4722-1893
0000-0001-5999-9646
0000-0002-0428-5117
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JFLEX_2022_3162169
ieee_primary_9740634
crossref_primary_10_1109_JFLEX_2022_3162169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-April
2022-4-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April
PublicationDecade 2020
PublicationTitle IEEE journal on flexible electronics
PublicationTitleAbbrev JFLEX
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref74
  doi: 10.1021/acsnano.9b04829
– ident: ref10
  doi: 10.1002/adfm.202009281
– ident: ref57
  doi: 10.1002/adma.201700951
– ident: ref96
  doi: 10.1002/adfm.201808668
– ident: ref29
  doi: 10.1038/s41467-020-19806-6
– ident: ref61
  doi: 10.1038/s41467-018-07572-5
– ident: ref30
  doi: 10.1002/adma.202101093
– ident: ref46
  doi: 10.1038/s41928-021-00643-4
– ident: ref66
  doi: 10.1002/adma.202100475
– ident: ref48
  doi: 10.1021/acsphotonics.8b01049
– ident: ref67
  doi: 10.1038/s41565-020-0694-5
– ident: ref87
  doi: 10.1002/smll.201803465
– ident: ref91
  doi: 10.1038/nphoton.2015.280
– ident: ref65
  doi: 10.1002/adma.202105485
– ident: ref58
  doi: 10.1002/adfm.201804397
– ident: ref40
  doi: 10.1063/1.3148245
– ident: ref13
  doi: 10.1038/s41928-020-00466-9
– ident: ref89
  doi: 10.1126/science.aat8126
– ident: ref23
  doi: 10.1364/AOP.6.000340
– ident: ref45
  doi: 10.1038/s41928-021-00600-1
– ident: ref86
  doi: 10.1038/s41467-018-03388-5
– ident: ref22
  doi: 10.1002/smll.200901350
– ident: ref84
  doi: 10.1038/nature14417
– ident: ref15
  doi: 10.1038/s41467-020-17850-w
– ident: ref28
  doi: 10.1038/nature14441
– ident: ref52
  doi: 10.1002/adma.201801256
– ident: ref56
  doi: 10.1073/pnas.1517953113
– ident: ref18
  doi: 10.1038/s41928-020-00501-9
– ident: ref39
  doi: 10.1038/nature07113
– ident: ref12
  doi: 10.1002/admt.202270005
– ident: ref99
  doi: 10.1029/2006gl027916
– ident: ref8
  doi: 10.1002/adfm.201870168
– ident: ref50
  doi: 10.1038/s41586-020-2285-x
– ident: ref82
  doi: 10.1038/s41467-021-23711-x
– ident: ref14
  doi: 10.1126/sciadv.abe3996
– ident: ref63
  doi: 10.1038/s41467-021-22047-w
– ident: ref68
  doi: 10.1038/s41928-017-0006-8
– ident: ref88
  doi: 10.1002/adma.202003542
– ident: ref98
  doi: 10.1109/TED.2007.914828
– ident: ref16
  doi: 10.1038/micronano.2016.19
– ident: ref79
  doi: 10.1021/acs.chemrev.1c00531
– ident: ref25
  doi: 10.1109/CICC.2018.8357046
– ident: ref33
  doi: 10.1038/s41928-021-00646-1
– ident: ref60
  doi: 10.1038/ncomms14734
– ident: ref2
  doi: 10.1021/acsnano.7b01894
– ident: ref59
  doi: 10.1002/adma.201803961
– ident: ref71
  doi: 10.1038/nmat4237
– ident: ref55
  doi: 10.1016/j.optlastec.2017.04.026
– ident: ref17
  doi: 10.1126/science.1123053
– ident: ref27
  doi: 10.1038/ncomms15199
– ident: ref38
  doi: 10.1038/ncomms6678
– ident: ref7
  doi: 10.1038/s41928-020-0429-5
– ident: ref35
  doi: 10.1038/s41563-019-0291-x
– ident: ref49
  doi: 10.1038/nature12314
– ident: ref3
  doi: 10.1126/science.abh4357
– ident: ref42
  doi: 10.1073/pnas.1015440108
– ident: ref32
  doi: 10.1002/adma.202105017
– ident: ref75
  doi: 10.1002/adma.202104960
– ident: ref80
  doi: 10.1021/acs.nanolett.1c02991
– ident: ref97
  doi: 10.1126/sciadv.abe3196
– ident: ref6
  doi: 10.1002/adma.202002431
– ident: ref37
  doi: 10.1002/cnma.201600191
– ident: ref51
  doi: 10.1364/AO.58.006446
– ident: ref94
  doi: 10.1002/advs.202102036
– ident: ref19
  doi: 10.1002/adma.201900231
– ident: ref101
  doi: 10.1038/s41467-020-16261-1
– ident: ref92
  doi: 10.1002/smll.201804920
– ident: ref24
  doi: 10.1126/sciadv.aax4961
– ident: ref1
  doi: 10.1007/s12274-021-3447-3
– ident: ref76
  doi: 10.1002/admt.201700053
– ident: ref21
  doi: 10.1109/S3S.2016.7804406
– ident: ref95
  doi: 10.1002/adfm.202006236
– ident: ref31
  doi: 10.1038/nnano.2017.83
– ident: ref26
  doi: 10.1038/nrn3708
– ident: ref34
  doi: 10.1002/adma.201704729
– ident: ref83
  doi: 10.1021/acsnano.1c06758
– ident: ref93
  doi: 10.1002/adma.202103369
– ident: ref43
  doi: 10.1002/adma.202004456
– ident: ref44
  doi: 10.1038/s41467-017-01926-1
– ident: ref20
  doi: 10.1038/s41565-021-01003-1
– ident: ref100
  doi: 10.1109/LED.2019.2924259
– ident: ref53
  doi: 10.1038/s41467-021-26606-z
– ident: ref41
  doi: 10.1063/1.3553020
– ident: ref90
  doi: 10.1021/acsnano.1c06234
– ident: ref73
  doi: 10.1021/acs.accounts.8b00491
– ident: ref54
  doi: 10.1038/nature12083
– ident: ref78
  doi: 10.1039/C9CS90019E
– ident: ref62
  doi: 10.1038/s41565-019-0501-3
– ident: ref70
  doi: 10.1038/d41586-020-00592-6
– ident: ref11
  doi: 10.1038/s41467-017-01824-6
– ident: ref47
  doi: 10.1021/nn2024557
– ident: ref64
  doi: 10.1038/s41928-022-00713-1
– ident: ref4
  doi: 10.1038/s41928-019-0304-4
– ident: ref81
  doi: 10.1038/s41928-020-00475-8
– ident: ref85
  doi: 10.1021/acs.nanolett.0c02531
– ident: ref36
  doi: 10.1109/JPROC.2019.2909666
– ident: ref69
  doi: 10.1038/s41586-020-2038-x
– ident: ref77
  doi: 10.1021/accountsmr.1c00020
– ident: ref5
  doi: 10.1002/adma.202104690
– ident: ref9
  doi: 10.1002/adma.201702902
– ident: ref72
  doi: 10.1038/s41928-021-00538-4
SSID ssj0002961380
Score 2.289383
Snippet Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Bio-inspired camera
curved image sensor
electronic eye
Image recognition
Image sensors
in-sensor processing
Lenses
Machine vision
Optical sensors
Photodetectors
Sensor arrays
synaptic photodetector (PD)
Title Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision
URI https://ieeexplore.ieee.org/document/9740634
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bnvTBrynOL_Lgm3ZL26RdH1U25nAi6GRvpUmuKEorrnuYf72XtCtDRHxpS0louEvv7ne5D0LO-303dXXoOloI4XCOv1QiI7wYZZmi_NO27OLkPhhN-XgmZg1yWefCAIANPoOuebRn-TpXC-Mq66HtixqVN0kTgVuZq1X7U7wIFVOfrfJiWNQbD-8GM0SAnofANPBcE9O8pnvWmqlYXTLcJpPVKsoQkrfuopBd9fWjQON_l7lDtiqjkl6Vu2CXNCDbI5trpQbbZHr9mju3mTlXB00HdfMbOljCnCaZpo_LLEH5oejDS17kGgrrz59TtGrpJJcoPewHyooT9NnmpO-T6XDwdDNyqpYKjkIgUTgSQiXCxAXUUT4otCUSroQXao6GmmRK-QEiVt_TIdMgUx4ovPmpYqEWNm_-gLSyPINDQoVMXWRrBChOuZCuZBBKhnCKJUoizukQd0XsWFX1xk3bi_fY4g4WxZZBsWFQXDGoQy7qOR9ltY0_R7cN8euRFd2Pfn99TDbM5DLq5oS0is8FnKJBUcgzu5O-AWOpx_4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ7UelAPvo1v9-BNqbvAlnJU06bVYky0pjfCPohGA0bpof56ZxdKGmOMFyBkgc3OMt98u_MAOO10WMpUwBzFOXd8H3-pRIR4MGCZov5TNu1idNfuj_ybMR834LyOhdFaW-cz3TKXdi9f5XJilsou0PZFRPUXYBFxn7MyWqteUXFDhKYOnUXG0PDipjfsjpEDui5S07bLjFfzHPrMlVOxaNJbg2jWj9KJ5LU1KURLfv1I0fjfjq7DamVWkstyHmxAQ2ebsDKXbHALRlcvuTPIzM66VqRbl78h3an-JEmmyMM0S1CDSHL_nBe50oVd0f8kaNeSKBeoP-wHypwT5MlGpW_DqNd9vO47VVEFRyKVKByhA8mDhGlEKU9LtCYSX3I3UD6aaoJK6bWRs3quCqjSIvXbEk9eKmmguI2c34Fmlmd6FwgXKUPBhhoVqs8FE1QHgiKhookUyHT2gM0GO5ZVxnFT-OIttsyDhrEVUGwEFFcC2oOz-pn3Mt_Gn623zODXLatx3__99gks9R-jYTwc3N0ewLJ5UemDcwjN4mOij9C8KMSxnVXf_cvLRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Electronic+Eyes+and+Synaptic+Photodetectors+for+Mobile+Artificial+Vision&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Choi%2C+Changsoon&rft.au=Seung%2C+Hyojin&rft.au=Kim%2C+Dae-Hyeong&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=2768-167X&rft.volume=1&rft.issue=2&rft.spage=76&rft.epage=87&rft_id=info:doi/10.1109%2FJFLEX.2022.3162169&rft.externalDocID=9740634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon