Analysis of hydrodynamic performance and acoustic characteristics of loop propellers

To improve the efficiency and stealthiness of marine operations of autonomous underwater vehicles (AUVs), 12 loop propellers with different structural parameters are selected as research subjects. The Reynolds-averaged Navier–Stokes equations method is used to simulate the flow field result around t...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 36; no. 12
Main Authors Cao, Xiaojian, Xu, Shengyuan, Li, Zhenqi, Liu, Xun, Yin, Chunsheng, Qin, Hongde
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the efficiency and stealthiness of marine operations of autonomous underwater vehicles (AUVs), 12 loop propellers with different structural parameters are selected as research subjects. The Reynolds-averaged Navier–Stokes equations method is used to simulate the flow field result around the loop propellers and is combined with detached eddy simulation and the acoustic analogy method for hydrodynamic analysis and noise prediction. The influence of three structural parameters, namely the number of propeller blades, the thickness of propeller blades, and the pitch of propeller blades, on the hydrodynamic and noise performance of the propeller is investigated, and the loop propeller structure with the optimal hydrodynamic and noise performance is selected. The research results indicate that increasing the number of propeller blades and increasing the pitch of the loop propeller can significantly improve the thrust and torque of the propeller and effectively reduce the noise. However, increasing the thickness of the propeller blades can also increase the thrust and torque of the propeller, but it will sacrifice the noise performance of the loop propeller to a certain extent. The sensitivity of the noise performance with respect to the blade thickness is significantly higher than that of the two parameters of blade number and pitch. To verify the accuracy of the hydrodynamic and noise performance simulation results, this study conducted hydrodynamic and noise performance tests on the preferred loop propeller structure in the towing pool and anechoic pool and successfully verifies the reliability of the numerical simulation method used in this study for the prediction of the propeller performance by comparing the test data with the simulation results. This study provides theoretical support for the design optimization of loop propellers and helps to promote the design of high-efficiency and low-noise propellers in complex marine environments.
AbstractList To improve the efficiency and stealthiness of marine operations of autonomous underwater vehicles (AUVs), 12 loop propellers with different structural parameters are selected as research subjects. The Reynolds-averaged Navier–Stokes equations method is used to simulate the flow field result around the loop propellers and is combined with detached eddy simulation and the acoustic analogy method for hydrodynamic analysis and noise prediction. The influence of three structural parameters, namely the number of propeller blades, the thickness of propeller blades, and the pitch of propeller blades, on the hydrodynamic and noise performance of the propeller is investigated, and the loop propeller structure with the optimal hydrodynamic and noise performance is selected. The research results indicate that increasing the number of propeller blades and increasing the pitch of the loop propeller can significantly improve the thrust and torque of the propeller and effectively reduce the noise. However, increasing the thickness of the propeller blades can also increase the thrust and torque of the propeller, but it will sacrifice the noise performance of the loop propeller to a certain extent. The sensitivity of the noise performance with respect to the blade thickness is significantly higher than that of the two parameters of blade number and pitch. To verify the accuracy of the hydrodynamic and noise performance simulation results, this study conducted hydrodynamic and noise performance tests on the preferred loop propeller structure in the towing pool and anechoic pool and successfully verifies the reliability of the numerical simulation method used in this study for the prediction of the propeller performance by comparing the test data with the simulation results. This study provides theoretical support for the design optimization of loop propellers and helps to promote the design of high-efficiency and low-noise propellers in complex marine environments.
Author Qin, Hongde
Yin, Chunsheng
Xu, Shengyuan
Cao, Xiaojian
Li, Zhenqi
Liu, Xun
Author_xml – sequence: 1
  givenname: Xiaojian
  orcidid: 0000-0001-8751-9275
  surname: Cao
  fullname: Cao, Xiaojian
– sequence: 2
  givenname: Shengyuan
  surname: Xu
  fullname: Xu, Shengyuan
– sequence: 3
  givenname: Zhenqi
  surname: Li
  fullname: Li, Zhenqi
– sequence: 4
  givenname: Xun
  surname: Liu
  fullname: Liu, Xun
– sequence: 5
  givenname: Chunsheng
  surname: Yin
  fullname: Yin, Chunsheng
– sequence: 6
  givenname: Hongde
  surname: Qin
  fullname: Qin, Hongde
BookMark eNp9kMtqwzAQRUVJoWnaRf_A0FULTvWwJGsZQl8Q6CZdi7EexMGRXMlZ-O_rNFl3NTPMuXOZe4tmIQaH0APBS4IFe-FLTCsmKL1Cc4JrVUohxOzUS1wKwcgNus15jzFmioo52q4CdGNucxF9sRttinYMcGhN0bvkYzpAMK6AYAsw8ZiHaWF2kMAMLrWn8U_YxdgXfYq96zqX8h269tBld3-pC_T99rpdf5Sbr_fP9WpTGlLToQRg3hluJSjaQAWecCeE4pg3xEpisfIeZO0bYYnwpBaSKukNGKYaQgVhC_R4vjtZ_xxdHvQ-HtP0UNaMsEpxKXk1UU9nyqSYc3Je96k9QBo1wfoUmub6EtrEPp_ZbNoBhjaGf-BfaXtu3w
CODEN PHFLE6
Cites_doi 10.1016/j.jsv.2005.01.015
10.1016/j.jsv.2023.118176
10.1016/j.ijheatfluidflow.2008.07.001
10.1098/rspa.1952.0060
10.1016/j.oceaneng.2022.111409
10.1017/jfm.2022.692
10.1016/j.oceaneng.2023.116270
10.1063/5.0219887
10.1063/5.0153620
10.1063/5.0220691
10.1016/j.oceaneng.2020.107549
10.1063/5.0178692
10.1006/jsvi.2002.5035
10.1016/j.jsv.2024.118422
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0243622
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0243622
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  sequence: 0
  grantid: ZR2023QA037
  funderid: 10.13039/501100007129
– fundername: National Natural Science Foundation of China
  sequence: 0
  grantid: 52301371
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Qingdao Municipality
  sequence: 0
  grantid: 23-2-1-2-zyyd-jch
  funderid: 10.13039/501100014761
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c182t-aa3fec5d7a92ba4af15e669505b1d71d09ffa78fb6d16f1867297fcac39b12613
ISSN 1070-6631
IngestDate Mon Jun 30 13:58:10 EDT 2025
Tue Jul 01 01:53:29 EDT 2025
Thu Dec 05 09:33:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-aa3fec5d7a92ba4af15e669505b1d71d09ffa78fb6d16f1867297fcac39b12613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8751-9275
PQID 3134957754
PQPubID 2050667
PageCount 15
ParticipantIDs scitation_primary_10_1063_5_0243622
crossref_primary_10_1063_5_0243622
proquest_journals_3134957754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-01
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Han, Wang, Wang (c9) 2023
Seol, Jung, Suh (c8) 2002
Shur, Spalart, Strelets (c14) 2008
Lighthill (c15) 1962
Mohammad, Duncan, Peter (c11) 2024
Sezen, Atlar, Fitzsimmons (c7) 2020
McIntyre, Rahimpour, Dong (c6) 2022
Köksal, Aktas, Atlar (c13) 2024
Baskaran, Jamaluddin, Celik (c10) 2024
Yijing, Qin, Housheng (c12) 2023
Posa, Broglia, Balaras (c17) 2023
Posa, Broglia, Felli (c5) 2022
Seol, Suh, Lee (c4) 2005
Zheng, Huang, Zhou (c3) 2024
(2024120211234000800_c8) 2002; 257
(2024120211234000800_c13) 2024; 582
(2024120211234000800_c11) 2024; 36
(2024120211234000800_c15) 1962; 267
(2024120211234000800_c16) 1998
(2024120211234000800_c6) 2022; 255
(2024120211234000800_c17) 2023; 35
(2024120211234000800_c10) 2024; 572
(2024120211234000800_c5) 2022; 947
(2024120211234000800_c14) 2008; 29
(2024120211234000800_c1) 2019
(2024120211234000800_c3) 2024; 36
(2024120211234000800_c7) 2020; 211
(2024120211234000800_c12) 2023; 35
(2024120211234000800_c9) 2023; 289
2024120211234000800_c2
(2024120211234000800_c4) 2005; 288
References_xml – start-page: 125128
  year: 2023
  ident: c12
  article-title: Verification and validation for large eddy simulation of the turbulent flow around an underwater entity
  publication-title: Phys. Fluids
– start-page: 073331
  year: 2024
  ident: c11
  article-title: Hydroacoustic analysis of a full-scale marine vessel: Prediction of the cavitation-induced underwater radiated noise using large eddy simulations
  publication-title: Phys. Fluids
– start-page: A46
  year: 2022
  ident: c5
  article-title: Hydroacoustic analysis of a marine propeller using large-eddy simulation and acoustic analogy
  publication-title: J. Fluid Mech.
– start-page: 131
  year: 2002
  ident: c8
  article-title: Prediction of non-cavitating underwater propeller noise
  publication-title: J. Sound Vib.
– start-page: 111409
  year: 2022
  ident: c6
  article-title: Experimental measurements and numerical simulations of underwater radiated noise from a model-scale propeller in uniform inflow
  publication-title: Ocean Eng.
– start-page: 116270
  year: 2023
  ident: c9
  article-title: Effects of blade tip thicknesses on hydrodynamic and noise performance of ducted propellers
  publication-title: Ocean Eng.
– start-page: 1
  year: 1962
  ident: c15
  article-title: On sound generated aerodynamically: I
  publication-title: Proc. Roy. Soc. A Math. Phys. Eng. Sci.
– start-page: 345
  year: 2005
  ident: c4
  article-title: Development of hybrid method for the prediction of underwater propeller noise
  publication-title: J. Sound Vib.
– start-page: 118176
  year: 2024
  ident: c10
  article-title: Effects of number of blades on propeller noise
  publication-title: J. Sound Vib.
– start-page: 095104
  year: 2024
  ident: c3
  article-title: Effects of propeller boss cap fins on hydrodynamics and flow noise of a pump-jet propulsor
  publication-title: Phys. Fluids
– start-page: 118422
  year: 2024
  ident: c13
  article-title: A study on the hydroacoustic characterization of a cavitating propeller by dynamic adaptive mesh refinement technique
  publication-title: J. Sound Vib.
– start-page: 075101
  year: 2023
  ident: c17
  article-title: The acoustic signature of a propeller-hydrofoil system in the far field
  publication-title: Phys. Fluids
– start-page: 107549
  year: 2020
  ident: c7
  article-title: Numerical cavitation noise prediction of a benchmark research vessel propeller
  publication-title: Ocean Eng.
– start-page: 1638
  year: 2008
  ident: c14
  article-title: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
  publication-title: Int. J. Heat Fluid Flow
– volume: 288
  start-page: 345
  issue: 1
  year: 2005
  ident: 2024120211234000800_c4
  article-title: Development of hybrid method for the prediction of underwater propeller noise
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.01.015
– start-page: 30
  year: 2019
  ident: 2024120211234000800_c1
  article-title: Preliminary study on innovative loop propellers for quiet eVTOL
– volume: 572
  start-page: 118176
  year: 2024
  ident: 2024120211234000800_c10
  article-title: Effects of number of blades on propeller noise
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2023.118176
– volume: 29
  start-page: 1638
  issue: 6
  year: 2008
  ident: 2024120211234000800_c14
  article-title: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.07.001
– volume: 267
  start-page: 1
  issue: 1329
  year: 1962
  ident: 2024120211234000800_c15
  article-title: On sound generated aerodynamically: I
  publication-title: Proc. Roy. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1952.0060
– volume: 255
  start-page: 111409
  year: 2022
  ident: 2024120211234000800_c6
  article-title: Experimental measurements and numerical simulations of underwater radiated noise from a model-scale propeller in uniform inflow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111409
– volume: 947
  start-page: A46
  year: 2022
  ident: 2024120211234000800_c5
  article-title: Hydroacoustic analysis of a marine propeller using large-eddy simulation and acoustic analogy
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.692
– volume: 289
  start-page: 116270
  year: 2023
  ident: 2024120211234000800_c9
  article-title: Effects of blade tip thicknesses on hydrodynamic and noise performance of ducted propellers
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.116270
– volume: 36
  start-page: 095104
  issue: 9
  year: 2024
  ident: 2024120211234000800_c3
  article-title: Effects of propeller boss cap fins on hydrodynamics and flow noise of a pump-jet propulsor
  publication-title: Phys. Fluids
  doi: 10.1063/5.0219887
– volume: 35
  start-page: 075101
  issue: 7
  year: 2023
  ident: 2024120211234000800_c17
  article-title: The acoustic signature of a propeller-hydrofoil system in the far field
  publication-title: Phys. Fluids
  doi: 10.1063/5.0153620
– year: 1998
  ident: 2024120211234000800_c16
  article-title: DTRC propeller 4119 calculations at VTT
– volume: 36
  start-page: 073331
  issue: 7
  year: 2024
  ident: 2024120211234000800_c11
  article-title: Hydroacoustic analysis of a full-scale marine vessel: Prediction of the cavitation-induced underwater radiated noise using large eddy simulations
  publication-title: Phys. Fluids
  doi: 10.1063/5.0220691
– start-page: 245
  ident: 2024120211234000800_c2
  article-title: An integrated study on the aeroacoustic and psychoacoustic characteristics of a loop-type propeller
– volume: 211
  start-page: 107549
  year: 2020
  ident: 2024120211234000800_c7
  article-title: Numerical cavitation noise prediction of a benchmark research vessel propeller
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107549
– volume: 35
  start-page: 125128
  issue: 12
  year: 2023
  ident: 2024120211234000800_c12
  article-title: Verification and validation for large eddy simulation of the turbulent flow around an underwater entity
  publication-title: Phys. Fluids
  doi: 10.1063/5.0178692
– volume: 257
  start-page: 131
  issue: 1
  year: 2002
  ident: 2024120211234000800_c8
  article-title: Prediction of non-cavitating underwater propeller noise
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2002.5035
– volume: 582
  start-page: 118422
  year: 2024
  ident: 2024120211234000800_c13
  article-title: A study on the hydroacoustic characterization of a cavitating propeller by dynamic adaptive mesh refinement technique
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2024.118422
SSID ssj0003926
Score 2.4492095
Snippet To improve the efficiency and stealthiness of marine operations of autonomous underwater vehicles (AUVs), 12 loop propellers with different structural...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Autonomous underwater vehicles
Design optimization
Detached eddy simulation
Flow simulation
Marine environment
Noise prediction
Noise sensitivity
Offshore structures
Parameter sensitivity
Performance tests
Propeller blades
Reynolds averaged Navier-Stokes method
Simulation
Structural reliability
Thickness
Thrust
Torque
Title Analysis of hydrodynamic performance and acoustic characteristics of loop propellers
URI http://dx.doi.org/10.1063/5.0243622
https://www.proquest.com/docview/3134957754
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCMGlQKFiS0EWcE1ZO7azPqIKVCHBaStFXCI7tumiKil0cyi_nvFHNt5SpMIlWo3yJc_L7Iz95hmht4xQK1oli5Y4XjDVskKrcl5o7Zd9KHEL7QvFz1_EySn7VPN6alcM3SVrfdT-urGv5H-8Cjbwq--S_QfPbm4KBvgN_oUjeBiOt_JxrihydmUgFsb95b0Y8VY7AIS9sGuX7_Pd0meGC8_7_sLTtPwyTKLDj9lqoIfGs9z5sDJR1klKls0fHKsw2VqvVP89g1o9hHnVM9t9uxoy3k8gD3wF84_VZAvn1kOXT0FQltE5YtSEuFFA6hJNNtkWsqhE3FJlDLVR62SEFL0xhEPOBOPOj7xUoog9y9sy2df-vjakwrCcLsqGN-nSu-geheKBBkLnRPyBjFBEJmp86VFvSpTvNk_dzlKm0uMB5CWRIpFlIcvHaDeVD_h9xMITdMd2e-hRKiVwCtSXe-h-ct1TtBxBgnuHc5DgDCQYQIJHkOBrIPEXepDgCSTP0OnHD8vjkyJtpQHf4IKuC6VKZ1tuKiWpVkw5wq0QEtJfTUxFzFw6p6qF08IQ4bzIIZWVa1VbSk2gyC730U7Xd_Y5wkwKZ6iruGaWGaUUkZrNTdnyOQWDnaHX49A1F1ExpfnDNTN0OA5qkz6oy6b0UpncSzLO0JvNQP_9Jge3edIL9HCC7CHaWf8c7EvII9f6VYDFb3tGcgk
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+hydrodynamic+performance+and+acoustic+characteristics+of+loop+propellers&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Cao%2C+Xiaojian&rft.au=Xu%2C+Shengyuan&rft.au=Li%2C+Zhenqi&rft.au=Liu%2C+Xun&rft.date=2024-12-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=36&rft.issue=12&rft_id=info:doi/10.1063%2F5.0243622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0243622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon