T 2 ‐weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis‐based classification pipeline to symptomatic and asymptomatic cases
Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalen...
Saved in:
Published in | Journal of orthopaedic research Vol. 39; no. 11; pp. 2428 - 2438 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population‐based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T
2
‐weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow‐up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area‐under‐curve of 0.91. To conclude, textural features from T
2
‐weighted magnetic resonance images can be applied in low back pain classification. |
---|---|
AbstractList | Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population-based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T
-weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin-echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow-up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4-L5 and L5-S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area-under-curve of 0.91. To conclude, textural features from T
-weighted magnetic resonance images can be applied in low back pain classification. Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population‐based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T 2 ‐weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow‐up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area‐under‐curve of 0.91. To conclude, textural features from T 2 ‐weighted magnetic resonance images can be applied in low back pain classification. |
Author | Tervonen, Osmo Niinimäki, Jaakko Inkinen, Satu I. Karppinen, Jaro Nieminen, Miika T. Ketola, Juuso H. J. |
Author_xml | – sequence: 1 givenname: Juuso H. J. orcidid: 0000-0002-7760-6241 surname: Ketola fullname: Ketola, Juuso H. J. organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland – sequence: 2 givenname: Satu I. orcidid: 0000-0002-9774-8925 surname: Inkinen fullname: Inkinen, Satu I. organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland – sequence: 3 givenname: Jaro orcidid: 0000-0002-2158-6042 surname: Karppinen fullname: Karppinen, Jaro organization: Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Physical and Rehabilitation Medicine Rehabilitation Services of South Karelia Social and Health Care District Lappeenranta Finland, Department of Occupational Health Finnish Institute of Occupational Health Oulu Finland – sequence: 4 givenname: Jaakko orcidid: 0000-0002-5591-3726 surname: Niinimäki fullname: Niinimäki, Jaakko organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland, Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Diagnostic Radiology Oulu University Hospital Oulu Finland – sequence: 5 givenname: Osmo surname: Tervonen fullname: Tervonen, Osmo organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland, Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Diagnostic Radiology Oulu University Hospital Oulu Finland – sequence: 6 givenname: Miika T. orcidid: 0000-0002-2300-2848 surname: Nieminen fullname: Nieminen, Miika T. organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland, Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Diagnostic Radiology Oulu University Hospital Oulu Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33368707$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1O5DAQhS3ECBqGBRdA3rIIlJ1OnGaHEH8SEothMbuoYlcaQ9qObCPo3RxhzsGxOAnmf4RmVVLpq_f06m2wVecdMbYtYE8AyP0bH_bkdKbKFTYRVTUtKql-r7IJqLIuQNb1OtuI8QYAlJDNGlsvy7JuFKgJe7zikj_9-XtPdn6dyPAFzh0lq3mg6B06TdzmnXVznugh3QXiGPkYyFidfOC-54O_5x3qWz6idQf88At0OCyjjVm_w5jF9YAx2t5qTNY7PtqRBuuIJ8_jcjEmv8AXa3Qmm_yz0Pk6_mQ_ehwibb3PTfbr5Pjq6Ky4uDw9Pzq8KLRoZCqU6QiMrKVAqYUWHXZQYd0JNNOelDE1iNlUNzMiQglSq4aqWQ0l9BJ0ucl23lTHu25Bph1Djh-W7cfLMrD7BujgYwzUfyIC2pc62lxH-1pHZve_sdqm1-wpoB3-c_EMt0WTxA |
CitedBy_id | crossref_primary_10_1155_2022_2279018 crossref_primary_10_1002_jor_25970 crossref_primary_10_3389_fphys_2023_1176299 crossref_primary_10_3390_diagnostics11122311 crossref_primary_10_3390_jcm12093246 crossref_primary_10_1038_s41598_023_33343_4 crossref_primary_10_3233_BMR_240059 crossref_primary_10_3390_ijerph182010909 crossref_primary_10_1002_jsp2_1353 crossref_primary_10_3390_ijerph19105971 crossref_primary_10_12688_f1000research_154680_1 crossref_primary_10_1007_s00586_023_07936_6 crossref_primary_10_12688_f1000research_154680_2 crossref_primary_10_31616_asj_2023_0382 crossref_primary_10_1007_s00264_022_05517_8 |
Cites_doi | 10.1007/s00198-019-04924-9 10.1097/BRS.0000000000003529 10.1111/j.1365-3016.1988.tb00180.x 10.1097/00007632-200105150-00014 10.1097/BRS.0b013e31822ef700 10.1056/NEJM199407143310201 10.1007/978-3-319-24574-4_28 10.1371/journal.pone.0048074 10.1371/journal.pone.0090800 10.1109/JTEHM.2017.2717982 10.1016/j.media.2017.07.002 10.1053/crad.1999.0340 10.1016/j.spinee.2016.04.020 10.1016/j.spinee.2015.09.060 10.1016/S0140-6736(09)60172-0 10.1097/01.BRS.0000049905.44466.73 10.3174/ajnr.A4012 10.1056/NEJMcp042054 10.1097/j.pain.0000000000001514 10.1016/S0140-6736(11)60610-7 10.1186/1741-7015-5-2 10.1097/MD.0000000000003495 10.1007/978-3-319-78759-6_19 10.1007/s00256-018-2919-3 10.1088/0031-9155/61/13/R150 10.36076/ppj.2003/6/449 10.1097/01.brs.0000146461.27105.2b 10.1109/PROC.1979.11328 10.2106/00004623-199072030-00013 10.1016/j.crad.2004.07.008 10.1136/ard.2009.110973 10.5535/arm.2012.36.1.47 10.1097/BRS.0b013e3181a01b3f 10.1097/00007632-200109010-00011 10.1148/radiology.166.1.3336678 10.1016/j.spinee.2007.10.005 10.1097/BRS.0b013e3182077122 10.1016/j.artmed.2010.02.006 10.1016/S0140-6736(18)30480-X 10.1097/BRS.0000000000000937 10.1111/j.1469-7580.2012.01551.x 10.1109/TMI.2016.2553401 10.1007/s11547-018-0935-y 10.1007/s00330-018-5552-6 10.1097/BRS.0b013e3182608ac4 10.1302/0301-620X.76B5.8083266 10.1038/s41598-018-20132-7 10.1097/00007632-200002150-00016 10.1097/00007632-200006150-00006 10.1097/BRS.0b013e3182443855 10.1109/TMI.2018.2833635 10.1016/j.mri.2019.02.013 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
Copyright_xml | – notice: 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1002/jor.24973 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 2438 |
ExternalDocumentID | 33368707 10_1002_jor_24973 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 29L 31~ 33P 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AAHQN AAIPD AALRI AAMNL AANHP AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACRPL ACSCC ACVFH ACXBN ACXQS ACYXJ ADBBV ADBTR ADCNI ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFPUW AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AHMBA AIACR AIAGR AIGII AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BVXVI BY8 C45 CCPQU CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PHGZM PHGZT PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWL RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WXI WXSBR WYISQ X7M XG1 XV2 YQT ZGI ZXP ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY |
ID | FETCH-LOGICAL-c182t-7dbe0d2621a2c1c1bab05a6b1ad4fe7dd60194c89eeea202c78e596030f20c3 |
ISSN | 0736-0266 |
IngestDate | Mon Jul 21 05:59:02 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Tue Jul 01 03:26:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | lumbar spine magnetic resonance imaging machine learning low back pain texture analysis |
Language | English |
License | 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c182t-7dbe0d2621a2c1c1bab05a6b1ad4fe7dd60194c89eeea202c78e596030f20c3 |
ORCID | 0000-0002-2158-6042 0000-0002-2300-2848 0000-0002-7760-6241 0000-0002-5591-3726 0000-0002-9774-8925 |
PMID | 33368707 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_33368707 crossref_primary_10_1002_jor_24973 crossref_citationtrail_10_1002_jor_24973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J Orthop Res |
PublicationYear | 2021 |
References | e_1_2_8_28_1 e_1_2_8_24_1 Jamaludin A (e_1_2_8_36_1) 2015 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_38_1 doi: 10.1007/s00198-019-04924-9 – ident: e_1_2_8_48_1 doi: 10.1097/BRS.0000000000003529 – ident: e_1_2_8_43_1 doi: 10.1111/j.1365-3016.1988.tb00180.x – ident: e_1_2_8_13_1 doi: 10.1097/00007632-200105150-00014 – ident: e_1_2_8_16_1 doi: 10.1097/BRS.0b013e31822ef700 – ident: e_1_2_8_17_1 doi: 10.1056/NEJM199407143310201 – ident: e_1_2_8_44_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_8_30_1 doi: 10.1371/journal.pone.0048074 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pone.0090800 – ident: e_1_2_8_37_1 doi: 10.1109/JTEHM.2017.2717982 – ident: e_1_2_8_52_1 doi: 10.1016/j.media.2017.07.002 – ident: e_1_2_8_26_1 doi: 10.1053/crad.1999.0340 – start-page: 14 volume-title: International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging year: 2015 ident: e_1_2_8_36_1 – ident: e_1_2_8_51_1 doi: 10.1016/j.spinee.2016.04.020 – ident: e_1_2_8_29_1 doi: 10.1016/j.spinee.2015.09.060 – ident: e_1_2_8_9_1 doi: 10.1016/S0140-6736(09)60172-0 – ident: e_1_2_8_4_1 doi: 10.1097/01.BRS.0000049905.44466.73 – ident: e_1_2_8_39_1 doi: 10.3174/ajnr.A4012 – ident: e_1_2_8_11_1 doi: 10.1056/NEJMcp042054 – ident: e_1_2_8_49_1 doi: 10.1097/j.pain.0000000000001514 – ident: e_1_2_8_10_1 doi: 10.1016/S0140-6736(11)60610-7 – ident: e_1_2_8_25_1 doi: 10.1186/1741-7015-5-2 – ident: e_1_2_8_54_1 doi: 10.1097/MD.0000000000003495 – ident: e_1_2_8_35_1 doi: 10.1007/978-3-319-78759-6_19 – ident: e_1_2_8_31_1 doi: 10.1007/s00256-018-2919-3 – ident: e_1_2_8_42_1 doi: 10.1088/0031-9155/61/13/R150 – ident: e_1_2_8_6_1 doi: 10.36076/ppj.2003/6/449 – ident: e_1_2_8_5_1 doi: 10.1097/01.brs.0000146461.27105.2b – ident: e_1_2_8_45_1 doi: 10.1109/PROC.1979.11328 – ident: e_1_2_8_14_1 doi: 10.2106/00004623-199072030-00013 – ident: e_1_2_8_46_1 doi: 10.1016/j.crad.2004.07.008 – ident: e_1_2_8_8_1 doi: 10.1136/ard.2009.110973 – ident: e_1_2_8_20_1 doi: 10.5535/arm.2012.36.1.47 – ident: e_1_2_8_23_1 doi: 10.1097/BRS.0b013e3181a01b3f – ident: e_1_2_8_18_1 doi: 10.1097/00007632-200109010-00011 – ident: e_1_2_8_27_1 doi: 10.1148/radiology.166.1.3336678 – ident: e_1_2_8_3_1 doi: 10.1016/j.spinee.2007.10.005 – ident: e_1_2_8_21_1 doi: 10.1097/BRS.0b013e3182077122 – ident: e_1_2_8_47_1 doi: 10.1016/j.artmed.2010.02.006 – ident: e_1_2_8_2_1 doi: 10.1016/S0140-6736(18)30480-X – ident: e_1_2_8_28_1 doi: 10.1097/BRS.0000000000000937 – ident: e_1_2_8_50_1 doi: 10.1111/j.1469-7580.2012.01551.x – ident: e_1_2_8_40_1 doi: 10.1109/TMI.2016.2553401 – ident: e_1_2_8_34_1 doi: 10.1007/s11547-018-0935-y – ident: e_1_2_8_32_1 doi: 10.1007/s00330-018-5552-6 – ident: e_1_2_8_7_1 doi: 10.1097/BRS.0b013e3182608ac4 – ident: e_1_2_8_12_1 doi: 10.1302/0301-620X.76B5.8083266 – ident: e_1_2_8_53_1 doi: 10.1038/s41598-018-20132-7 – ident: e_1_2_8_19_1 doi: 10.1097/00007632-200002150-00016 – ident: e_1_2_8_15_1 doi: 10.1097/00007632-200006150-00006 – ident: e_1_2_8_22_1 doi: 10.1097/BRS.0b013e3182443855 – ident: e_1_2_8_41_1 doi: 10.1109/TMI.2018.2833635 – ident: e_1_2_8_33_1 doi: 10.1016/j.mri.2019.02.013 |
SSID | ssj0007128 |
Score | 2.4342742 |
Snippet | Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 2428 |
SubjectTerms | Humans Intervertebral Disc - pathology Intervertebral Disc Displacement - pathology Low Back Pain - etiology Lumbar Vertebrae - diagnostic imaging Lumbar Vertebrae - pathology Magnetic Resonance Imaging - methods |
Title | T 2 ‐weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis‐based classification pipeline to symptomatic and asymptomatic cases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33368707 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcuGCQPwtf7IQB6QoJXHcpOW24kelCA5skXqrHNuB0G1TtalWcOIReA4ei3fgzoztOCm7SAuXqHXtpO18Hs_YM98Q8jhKdMZVwkOdMh1yoSXMuViGrNB6qGCKxQyTk9--S8cf-GQ2mPV6vzpRS7s678uv5-aV_I9UoQ3kilmy_yBZf1NogNcgX7iChOF6MRkHLPDRCqdmkxPsx6X4uNKWmhntbJy55dIWI8IwD3NisEVyAFXijj2aiyfVaZALuQjWuFFgktV9V8da4p-D654KJFrdGGZkAbQu19oYrGDKbr8s13XVoYLtNkgYvf2LRYxHSODD4_cKHAnRp3ZBqMEJt3kku20VjPvBpO9xjfUfrP48FvUueO0_eSM2SEDhMlDEpmrPYcpVuTRhAtxW7p4IsVhU3V0QFrt0wFZZZgkGU6eOVtsp8wEHRzubdbW9pU5qUB13dTd3aeravbW0M2fWGMtZ-7na9MF1tXVY9nm8_1hffdSjZYhmcxg6N0MvkcsMvBssvPHifct6lsWmJLD_SQ0hVsSe-qfumVF7DpExjKbXyFUnP3pk4Xmd9PTqBvkxpYz-_Pa9ASVtQEk9KKkDJXVIo2JLPShpVVAAJUVQUgTlM3rUdnSQhPsbMNJ9MNIGjLSuaAd7ME7RLhipAeNNcvzq5fT5OHRlQUIJznAdZirXkWIpiwWTsYxzkUcDkeaxULzQmVIpuC1cDkdaawFYkdlQD8BRT6KCRTK5RQ5W1UrfIbQYRmzEi5yPpOBCJkP0zXORChUnXKejQ_Kk-Y_n0jHmY-GWk_kZSR6SR77r2tLEnNfpthWU75IkSQoLZnb3IsPvkSst8u-Tg3qz0w_AIq7zhwY_vwHak8BG |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T+2+%E2%80%90weighted+magnetic+resonance+imaging+texture+as+predictor+of+low+back+pain%3A+A+texture+analysis%E2%80%90based+classification+pipeline+to+symptomatic+and+asymptomatic+cases&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Ketola%2C+Juuso+H.+J.&rft.au=Inkinen%2C+Satu+I.&rft.au=Karppinen%2C+Jaro&rft.au=Niinim%C3%A4ki%2C+Jaakko&rft.date=2021-11-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=39&rft.issue=11&rft.spage=2428&rft.epage=2438&rft_id=info:doi/10.1002%2Fjor.24973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jor_24973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |