T 2 ‐weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis‐based classification pipeline to symptomatic and asymptomatic cases

Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalen...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic research Vol. 39; no. 11; pp. 2428 - 2438
Main Authors Ketola, Juuso H. J., Inkinen, Satu I., Karppinen, Jaro, Niinimäki, Jaakko, Tervonen, Osmo, Nieminen, Miika T.
Format Journal Article
LanguageEnglish
Published United States 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population‐based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T 2 ‐weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow‐up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area‐under‐curve of 0.91. To conclude, textural features from T 2 ‐weighted magnetic resonance images can be applied in low back pain classification.
AbstractList Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population-based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T -weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin-echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow-up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4-L5 and L5-S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area-under-curve of 0.91. To conclude, textural features from T -weighted magnetic resonance images can be applied in low back pain classification.
Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population‐based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T 2 ‐weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow‐up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area‐under‐curve of 0.91. To conclude, textural features from T 2 ‐weighted magnetic resonance images can be applied in low back pain classification.
Author Tervonen, Osmo
Niinimäki, Jaakko
Inkinen, Satu I.
Karppinen, Jaro
Nieminen, Miika T.
Ketola, Juuso H. J.
Author_xml – sequence: 1
  givenname: Juuso H. J.
  orcidid: 0000-0002-7760-6241
  surname: Ketola
  fullname: Ketola, Juuso H. J.
  organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland
– sequence: 2
  givenname: Satu I.
  orcidid: 0000-0002-9774-8925
  surname: Inkinen
  fullname: Inkinen, Satu I.
  organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland
– sequence: 3
  givenname: Jaro
  orcidid: 0000-0002-2158-6042
  surname: Karppinen
  fullname: Karppinen, Jaro
  organization: Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Physical and Rehabilitation Medicine Rehabilitation Services of South Karelia Social and Health Care District Lappeenranta Finland, Department of Occupational Health Finnish Institute of Occupational Health Oulu Finland
– sequence: 4
  givenname: Jaakko
  orcidid: 0000-0002-5591-3726
  surname: Niinimäki
  fullname: Niinimäki, Jaakko
  organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland, Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Diagnostic Radiology Oulu University Hospital Oulu Finland
– sequence: 5
  givenname: Osmo
  surname: Tervonen
  fullname: Tervonen, Osmo
  organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland, Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Diagnostic Radiology Oulu University Hospital Oulu Finland
– sequence: 6
  givenname: Miika T.
  orcidid: 0000-0002-2300-2848
  surname: Nieminen
  fullname: Nieminen, Miika T.
  organization: Research Unit of Medical Imaging, Physics and Technology University of Oulu Oulu Finland, Medical Research Center Oulu Oulu University Hospital and University of Oulu Oulu Finland, Department of Diagnostic Radiology Oulu University Hospital Oulu Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33368707$$D View this record in MEDLINE/PubMed
BookMark eNptkU1O5DAQhS3ECBqGBRdA3rIIlJ1OnGaHEH8SEothMbuoYlcaQ9qObCPo3RxhzsGxOAnmf4RmVVLpq_f06m2wVecdMbYtYE8AyP0bH_bkdKbKFTYRVTUtKql-r7IJqLIuQNb1OtuI8QYAlJDNGlsvy7JuFKgJe7zikj_9-XtPdn6dyPAFzh0lq3mg6B06TdzmnXVznugh3QXiGPkYyFidfOC-54O_5x3qWz6idQf88At0OCyjjVm_w5jF9YAx2t5qTNY7PtqRBuuIJ8_jcjEmv8AXa3Qmm_yz0Pk6_mQ_ehwibb3PTfbr5Pjq6Ky4uDw9Pzq8KLRoZCqU6QiMrKVAqYUWHXZQYd0JNNOelDE1iNlUNzMiQglSq4aqWQ0l9BJ0ucl23lTHu25Bph1Djh-W7cfLMrD7BujgYwzUfyIC2pc62lxH-1pHZve_sdqm1-wpoB3-c_EMt0WTxA
CitedBy_id crossref_primary_10_1155_2022_2279018
crossref_primary_10_1002_jor_25970
crossref_primary_10_3389_fphys_2023_1176299
crossref_primary_10_3390_diagnostics11122311
crossref_primary_10_3390_jcm12093246
crossref_primary_10_1038_s41598_023_33343_4
crossref_primary_10_3233_BMR_240059
crossref_primary_10_3390_ijerph182010909
crossref_primary_10_1002_jsp2_1353
crossref_primary_10_3390_ijerph19105971
crossref_primary_10_12688_f1000research_154680_1
crossref_primary_10_1007_s00586_023_07936_6
crossref_primary_10_12688_f1000research_154680_2
crossref_primary_10_31616_asj_2023_0382
crossref_primary_10_1007_s00264_022_05517_8
Cites_doi 10.1007/s00198-019-04924-9
10.1097/BRS.0000000000003529
10.1111/j.1365-3016.1988.tb00180.x
10.1097/00007632-200105150-00014
10.1097/BRS.0b013e31822ef700
10.1056/NEJM199407143310201
10.1007/978-3-319-24574-4_28
10.1371/journal.pone.0048074
10.1371/journal.pone.0090800
10.1109/JTEHM.2017.2717982
10.1016/j.media.2017.07.002
10.1053/crad.1999.0340
10.1016/j.spinee.2016.04.020
10.1016/j.spinee.2015.09.060
10.1016/S0140-6736(09)60172-0
10.1097/01.BRS.0000049905.44466.73
10.3174/ajnr.A4012
10.1056/NEJMcp042054
10.1097/j.pain.0000000000001514
10.1016/S0140-6736(11)60610-7
10.1186/1741-7015-5-2
10.1097/MD.0000000000003495
10.1007/978-3-319-78759-6_19
10.1007/s00256-018-2919-3
10.1088/0031-9155/61/13/R150
10.36076/ppj.2003/6/449
10.1097/01.brs.0000146461.27105.2b
10.1109/PROC.1979.11328
10.2106/00004623-199072030-00013
10.1016/j.crad.2004.07.008
10.1136/ard.2009.110973
10.5535/arm.2012.36.1.47
10.1097/BRS.0b013e3181a01b3f
10.1097/00007632-200109010-00011
10.1148/radiology.166.1.3336678
10.1016/j.spinee.2007.10.005
10.1097/BRS.0b013e3182077122
10.1016/j.artmed.2010.02.006
10.1016/S0140-6736(18)30480-X
10.1097/BRS.0000000000000937
10.1111/j.1469-7580.2012.01551.x
10.1109/TMI.2016.2553401
10.1007/s11547-018-0935-y
10.1007/s00330-018-5552-6
10.1097/BRS.0b013e3182608ac4
10.1302/0301-620X.76B5.8083266
10.1038/s41598-018-20132-7
10.1097/00007632-200002150-00016
10.1097/00007632-200006150-00006
10.1097/BRS.0b013e3182443855
10.1109/TMI.2018.2833635
10.1016/j.mri.2019.02.013
ContentType Journal Article
Copyright 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
Copyright_xml – notice: 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/jor.24973
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 2438
ExternalDocumentID 33368707
10_1002_jor_24973
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
29L
31~
33P
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AALRI
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACRPL
ACSCC
ACVFH
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFPUW
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIGII
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWL
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
XV2
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
ID FETCH-LOGICAL-c182t-7dbe0d2621a2c1c1bab05a6b1ad4fe7dd60194c89eeea202c78e596030f20c3
ISSN 0736-0266
IngestDate Mon Jul 21 05:59:02 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Tue Jul 01 03:26:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords lumbar spine
magnetic resonance imaging
machine learning
low back pain
texture analysis
Language English
License 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-7dbe0d2621a2c1c1bab05a6b1ad4fe7dd60194c89eeea202c78e596030f20c3
ORCID 0000-0002-2158-6042
0000-0002-2300-2848
0000-0002-7760-6241
0000-0002-5591-3726
0000-0002-9774-8925
PMID 33368707
PageCount 11
ParticipantIDs pubmed_primary_33368707
crossref_primary_10_1002_jor_24973
crossref_citationtrail_10_1002_jor_24973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J Orthop Res
PublicationYear 2021
References e_1_2_8_28_1
e_1_2_8_24_1
Jamaludin A (e_1_2_8_36_1) 2015
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_38_1
  doi: 10.1007/s00198-019-04924-9
– ident: e_1_2_8_48_1
  doi: 10.1097/BRS.0000000000003529
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1365-3016.1988.tb00180.x
– ident: e_1_2_8_13_1
  doi: 10.1097/00007632-200105150-00014
– ident: e_1_2_8_16_1
  doi: 10.1097/BRS.0b013e31822ef700
– ident: e_1_2_8_17_1
  doi: 10.1056/NEJM199407143310201
– ident: e_1_2_8_44_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pone.0048074
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0090800
– ident: e_1_2_8_37_1
  doi: 10.1109/JTEHM.2017.2717982
– ident: e_1_2_8_52_1
  doi: 10.1016/j.media.2017.07.002
– ident: e_1_2_8_26_1
  doi: 10.1053/crad.1999.0340
– start-page: 14
  volume-title: International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging
  year: 2015
  ident: e_1_2_8_36_1
– ident: e_1_2_8_51_1
  doi: 10.1016/j.spinee.2016.04.020
– ident: e_1_2_8_29_1
  doi: 10.1016/j.spinee.2015.09.060
– ident: e_1_2_8_9_1
  doi: 10.1016/S0140-6736(09)60172-0
– ident: e_1_2_8_4_1
  doi: 10.1097/01.BRS.0000049905.44466.73
– ident: e_1_2_8_39_1
  doi: 10.3174/ajnr.A4012
– ident: e_1_2_8_11_1
  doi: 10.1056/NEJMcp042054
– ident: e_1_2_8_49_1
  doi: 10.1097/j.pain.0000000000001514
– ident: e_1_2_8_10_1
  doi: 10.1016/S0140-6736(11)60610-7
– ident: e_1_2_8_25_1
  doi: 10.1186/1741-7015-5-2
– ident: e_1_2_8_54_1
  doi: 10.1097/MD.0000000000003495
– ident: e_1_2_8_35_1
  doi: 10.1007/978-3-319-78759-6_19
– ident: e_1_2_8_31_1
  doi: 10.1007/s00256-018-2919-3
– ident: e_1_2_8_42_1
  doi: 10.1088/0031-9155/61/13/R150
– ident: e_1_2_8_6_1
  doi: 10.36076/ppj.2003/6/449
– ident: e_1_2_8_5_1
  doi: 10.1097/01.brs.0000146461.27105.2b
– ident: e_1_2_8_45_1
  doi: 10.1109/PROC.1979.11328
– ident: e_1_2_8_14_1
  doi: 10.2106/00004623-199072030-00013
– ident: e_1_2_8_46_1
  doi: 10.1016/j.crad.2004.07.008
– ident: e_1_2_8_8_1
  doi: 10.1136/ard.2009.110973
– ident: e_1_2_8_20_1
  doi: 10.5535/arm.2012.36.1.47
– ident: e_1_2_8_23_1
  doi: 10.1097/BRS.0b013e3181a01b3f
– ident: e_1_2_8_18_1
  doi: 10.1097/00007632-200109010-00011
– ident: e_1_2_8_27_1
  doi: 10.1148/radiology.166.1.3336678
– ident: e_1_2_8_3_1
  doi: 10.1016/j.spinee.2007.10.005
– ident: e_1_2_8_21_1
  doi: 10.1097/BRS.0b013e3182077122
– ident: e_1_2_8_47_1
  doi: 10.1016/j.artmed.2010.02.006
– ident: e_1_2_8_2_1
  doi: 10.1016/S0140-6736(18)30480-X
– ident: e_1_2_8_28_1
  doi: 10.1097/BRS.0000000000000937
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1469-7580.2012.01551.x
– ident: e_1_2_8_40_1
  doi: 10.1109/TMI.2016.2553401
– ident: e_1_2_8_34_1
  doi: 10.1007/s11547-018-0935-y
– ident: e_1_2_8_32_1
  doi: 10.1007/s00330-018-5552-6
– ident: e_1_2_8_7_1
  doi: 10.1097/BRS.0b013e3182608ac4
– ident: e_1_2_8_12_1
  doi: 10.1302/0301-620X.76B5.8083266
– ident: e_1_2_8_53_1
  doi: 10.1038/s41598-018-20132-7
– ident: e_1_2_8_19_1
  doi: 10.1097/00007632-200002150-00016
– ident: e_1_2_8_15_1
  doi: 10.1097/00007632-200006150-00006
– ident: e_1_2_8_22_1
  doi: 10.1097/BRS.0b013e3182443855
– ident: e_1_2_8_41_1
  doi: 10.1109/TMI.2018.2833635
– ident: e_1_2_8_33_1
  doi: 10.1016/j.mri.2019.02.013
SSID ssj0007128
Score 2.4342742
Snippet Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 2428
SubjectTerms Humans
Intervertebral Disc - pathology
Intervertebral Disc Displacement - pathology
Low Back Pain - etiology
Lumbar Vertebrae - diagnostic imaging
Lumbar Vertebrae - pathology
Magnetic Resonance Imaging - methods
Title T 2 ‐weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis‐based classification pipeline to symptomatic and asymptomatic cases
URI https://www.ncbi.nlm.nih.gov/pubmed/33368707
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcuGCQPwtf7IQB6QoJXHcpOW24kelCA5skXqrHNuB0G1TtalWcOIReA4ei3fgzoztOCm7SAuXqHXtpO18Hs_YM98Q8jhKdMZVwkOdMh1yoSXMuViGrNB6qGCKxQyTk9--S8cf-GQ2mPV6vzpRS7s678uv5-aV_I9UoQ3kilmy_yBZf1NogNcgX7iChOF6MRkHLPDRCqdmkxPsx6X4uNKWmhntbJy55dIWI8IwD3NisEVyAFXijj2aiyfVaZALuQjWuFFgktV9V8da4p-D654KJFrdGGZkAbQu19oYrGDKbr8s13XVoYLtNkgYvf2LRYxHSODD4_cKHAnRp3ZBqMEJt3kku20VjPvBpO9xjfUfrP48FvUueO0_eSM2SEDhMlDEpmrPYcpVuTRhAtxW7p4IsVhU3V0QFrt0wFZZZgkGU6eOVtsp8wEHRzubdbW9pU5qUB13dTd3aeravbW0M2fWGMtZ-7na9MF1tXVY9nm8_1hffdSjZYhmcxg6N0MvkcsMvBssvPHifct6lsWmJLD_SQ0hVsSe-qfumVF7DpExjKbXyFUnP3pk4Xmd9PTqBvkxpYz-_Pa9ASVtQEk9KKkDJXVIo2JLPShpVVAAJUVQUgTlM3rUdnSQhPsbMNJ9MNIGjLSuaAd7ME7RLhipAeNNcvzq5fT5OHRlQUIJznAdZirXkWIpiwWTsYxzkUcDkeaxULzQmVIpuC1cDkdaawFYkdlQD8BRT6KCRTK5RQ5W1UrfIbQYRmzEi5yPpOBCJkP0zXORChUnXKejQ_Kk-Y_n0jHmY-GWk_kZSR6SR77r2tLEnNfpthWU75IkSQoLZnb3IsPvkSst8u-Tg3qz0w_AIq7zhwY_vwHak8BG
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T+2+%E2%80%90weighted+magnetic+resonance+imaging+texture+as+predictor+of+low+back+pain%3A+A+texture+analysis%E2%80%90based+classification+pipeline+to+symptomatic+and+asymptomatic+cases&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Ketola%2C+Juuso+H.+J.&rft.au=Inkinen%2C+Satu+I.&rft.au=Karppinen%2C+Jaro&rft.au=Niinim%C3%A4ki%2C+Jaakko&rft.date=2021-11-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=39&rft.issue=11&rft.spage=2428&rft.epage=2438&rft_id=info:doi/10.1002%2Fjor.24973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jor_24973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon