Preliminary analysis of global column-averaged CO 2 concentration data from the spaceborne aerosol and carbon dioxide detection lidar onboard AEMS
In contrast to the passive remote sensing of global CO 2 column concentrations (XCO 2 ), active remote sensing with a lidar enables continuous XCO 2 measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atm...
Saved in:
Published in | Optics express Vol. 32; no. 12; p. 21870 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
03.06.2024
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.517736 |
Cover
Loading…
Abstract | In contrast to the passive remote sensing of global CO
2
column concentrations (XCO
2
), active remote sensing with a lidar enables continuous XCO
2
measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO
2
for the first time. In this study, special methods have been developed for ACDL data processing and XCO
2
retrieval. The CO
2
measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO
2
, are presented. The results of XCO
2
measurements over the period from 1
st
June 2022 to 30
th
June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system. |
---|---|
AbstractList | In contrast to the passive remote sensing of global CO
2
column concentrations (XCO
2
), active remote sensing with a lidar enables continuous XCO
2
measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO
2
for the first time. In this study, special methods have been developed for ACDL data processing and XCO
2
retrieval. The CO
2
measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO
2
, are presented. The results of XCO
2
measurements over the period from 1
st
June 2022 to 30
th
June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system. In contrast to the passive remote sensing of global CO column concentrations (XCO ), active remote sensing with a lidar enables continuous XCO measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO for the first time. In this study, special methods have been developed for ACDL data processing and XCO retrieval. The CO measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO , are presented. The results of XCO measurements over the period from 1 June 2022 to 30 June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system. |
Author | Huang, Yongjian Zhu, Xiaopeng Gu, Qianrong Zhang, Lu Fan, Chuncan Chen, Cheng Li, Ke Liu, Jiqiao Xie, Yuan Cao, Xifeng Chen, Weibiao Han, Ge |
Author_xml | – sequence: 1 givenname: Chuncan orcidid: 0009-0002-2065-8232 surname: Fan fullname: Fan, Chuncan – sequence: 2 givenname: Cheng surname: Chen fullname: Chen, Cheng – sequence: 3 givenname: Jiqiao surname: Liu fullname: Liu, Jiqiao – sequence: 4 givenname: Yuan surname: Xie fullname: Xie, Yuan – sequence: 5 givenname: Ke surname: Li fullname: Li, Ke – sequence: 6 givenname: Xiaopeng surname: Zhu fullname: Zhu, Xiaopeng – sequence: 7 givenname: Lu surname: Zhang fullname: Zhang, Lu – sequence: 8 givenname: Xifeng surname: Cao fullname: Cao, Xifeng – sequence: 9 givenname: Ge orcidid: 0000-0003-2561-3244 surname: Han fullname: Han, Ge – sequence: 10 givenname: Yongjian orcidid: 0000-0003-3383-7328 surname: Huang fullname: Huang, Yongjian – sequence: 11 givenname: Qianrong surname: Gu fullname: Gu, Qianrong – sequence: 12 givenname: Weibiao surname: Chen fullname: Chen, Weibiao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38859531$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoMoVqsH_4Dk6mE12eznsZT6AUoF9bxMkolGsknJbsX-DX-x21ZFxNMMw_O-MM8h2fXBIyEnnJ1zUWQX89l5zstSFDvkgLM6SzJWlbu_9hE57LpXxnhW1uU-GYmqyutc8APycR_R2dZ6iCsKHtyqsx0Nhj67IMFRFdyy9Qm8YYRn1HQ6p-lw9Ap9H6G3wVMNPVATQ0v7F6TdAhTKED1SwBi64IZaTRVEuWZteLcaqcYe1SbtrIZIg5cBoqaT2d3DEdkz4Do8_ppj8nQ5e5xeJ7fzq5vp5DZRvEr7JE-VEsLUWGiOuZG8lrLi3AAzRjAlWZpmaVkhFKBrVcgMi1xyWZYpEzgMMSan297FUraom0W07WCh-ZYzAGdbQA1_dBHND8JZsxbfzGfNVvzAXvxhle03fgZN1v2T-ASYgIcT |
CitedBy_id | crossref_primary_10_1029_2024GL113309 crossref_primary_10_1016_j_optcom_2024_131281 crossref_primary_10_1109_JSTARS_2025_3538897 crossref_primary_10_1364_OE_546903 crossref_primary_10_1109_TGRS_2024_3508035 crossref_primary_10_1016_j_rse_2024_114368 crossref_primary_10_1016_j_optlaseng_2024_108808 |
Cites_doi | 10.3390/rs9101052 10.3788/COL201715.031401 10.3788/COL201513.111402 10.1002/qj.3803 10.1016/j.scib.2018.08.004 10.1029/2021GL093805 10.1117/1.2898457 10.1029/2018JD028907 10.1029/2020GL091160 10.1073/pnas.1305332110 10.3390/atmos12030412 10.1364/AO.54.001387 10.3390/rs13102007 10.5194/essd-14-325-2022 10.1021/jp208800s 10.5194/amt-14-6601-2021 10.1364/AO.55.004232 10.1364/OE.27.032679 10.1016/j.jqsrt.2021.107949 10.1364/AO.48.006716 10.1364/AO.56.005182 10.1364/AO.58.000616 10.1007/s00340-007-2892-3 10.1088/0256-307X/35/2/024201 10.5194/amt-12-2341-2019 10.1038/nclimate1864 10.3390/rs12121999 10.1038/s43017-023-00406-z 10.1111/j.1600-0889.2010.00502.x 10.5194/amt-12-2241-2019 10.1186/s40645-023-00562-2 10.1175/JTECH-D-13-00128.1 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM |
DOI | 10.1364/OE.517736 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 38859531 10_1364_OE_517736 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP |
ID | FETCH-LOGICAL-c182t-52cc33f9e6d1e5fb19bb811fa0ff30cb0224278ea6ad9c6b4e65b1b77203eb773 |
ISSN | 1094-4087 |
IngestDate | Wed Feb 19 02:09:53 EST 2025 Thu Apr 24 22:59:37 EDT 2025 Tue Jul 01 04:02:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c182t-52cc33f9e6d1e5fb19bb811fa0ff30cb0224278ea6ad9c6b4e65b1b77203eb773 |
ORCID | 0000-0003-3383-7328 0000-0003-2561-3244 0009-0002-2065-8232 |
PMID | 38859531 |
ParticipantIDs | pubmed_primary_38859531 crossref_primary_10_1364_OE_517736 crossref_citationtrail_10_1364_OE_517736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-03 2024-Jun-03 |
PublicationDateYYYYMMDD | 2024-06-03 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2024 |
References | Bousquet (oe-32-12-21870-R21) 2018; 123 Liu (oe-32-12-21870-R10) 2018; 63 Eldering (oe-32-12-21870-R7) 2019; 12 Liu (oe-32-12-21870-R2) 2023; 4 Hu (oe-32-12-21870-R29) 2019; 58 Amediek (oe-32-12-21870-R17) 2017; 56 Refaat (oe-32-12-21870-R18) 2016; 55 Santer (oe-32-12-21870-R3) 2013; 110 Menzies (oe-32-12-21870-R16) 2014; 31 Stocker (oe-32-12-21870-R4) 2013; 3 McCarthy (oe-32-12-21870-R38) 2004 Huanhuan Li (oe-32-12-21870-R28) 2015; 13 Zhu (oe-32-12-21870-R33) 2021; 13 Refaat (oe-32-12-21870-R32) 2015; 54 Mao (oe-32-12-21870-R19) 2021; 48 ArnoldSullivan (oe-32-12-21870-R22) 2023 Ehret (oe-32-12-21870-R20) 2017; 9 Shi (oe-32-12-21870-R23) 2021; 48 Taylor (oe-32-12-21870-R12) 2022; 14 Wang (oe-32-12-21870-R25) 2021; 14 Wallace (oe-32-12-21870-R35) 2011; 115 Kuze (oe-32-12-21870-R8) 2009; 48 Gordon (oe-32-12-21870-R34) 2022; 277 Liu (oe-32-12-21870-R37) 2018; 45 Crisp (oe-32-12-21870-R9) 2008; 2 Refaat (oe-32-12-21870-R6) 2021; 12 Zhu (oe-32-12-21870-R24) 2020; 12 Hersbach (oe-32-12-21870-R36) 2020; 146 Imasu (oe-32-12-21870-R11) 2023; 10 Abshire (oe-32-12-21870-R15) 2010; 62 Zhu (oe-32-12-21870-R30) 2019; 27 Du (oe-32-12-21870-R26) 2017; 15 Kiel (oe-32-12-21870-R41) 2019; 12 Chen (oe-32-12-21870-R27) 2018; 35 Ehret (oe-32-12-21870-R31) 2008; 90 |
References_xml | – volume: 9 start-page: 1052 year: 2017 ident: oe-32-12-21870-R20 publication-title: Remote Sens. doi: 10.3390/rs9101052 – volume: 15 start-page: 031401 year: 2017 ident: oe-32-12-21870-R26 publication-title: Chin. Opt. Lett. doi: 10.3788/COL201715.031401 – volume: 13 start-page: 111402 year: 2015 ident: oe-32-12-21870-R28 publication-title: Chin. Opt. Lett. doi: 10.3788/COL201513.111402 – volume: 146 start-page: 1999 year: 2020 ident: oe-32-12-21870-R36 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 63 start-page: 1200 year: 2018 ident: oe-32-12-21870-R10 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.08.004 – volume: 48 start-page: e2021 year: 2021 ident: oe-32-12-21870-R19 publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL093805 – volume: 2 start-page: 023508 year: 2008 ident: oe-32-12-21870-R9 publication-title: J. Appl. Remote Sens doi: 10.1117/1.2898457 – volume: 123 start-page: 11,766 year: 2018 ident: oe-32-12-21870-R21 publication-title: JGR Atmospheres doi: 10.1029/2018JD028907 – volume: 48 start-page: e2020 year: 2021 ident: oe-32-12-21870-R23 publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL091160 – volume: 110 start-page: 17235 year: 2013 ident: oe-32-12-21870-R3 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1305332110 – volume: 12 start-page: 412 year: 2021 ident: oe-32-12-21870-R6 publication-title: Atmosphere doi: 10.3390/atmos12030412 – volume: 54 start-page: 1387 year: 2015 ident: oe-32-12-21870-R32 publication-title: Appl. Opt. doi: 10.1364/AO.54.001387 – volume: 13 start-page: 2007 year: 2021 ident: oe-32-12-21870-R33 publication-title: Remote Sens. doi: 10.3390/rs13102007 – volume: 14 start-page: 325 year: 2022 ident: oe-32-12-21870-R12 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-14-325-2022 – volume: 115 start-page: 13804 year: 2011 ident: oe-32-12-21870-R35 publication-title: J. Phys. Chem. A doi: 10.1021/jp208800s – start-page: 667 year: 2023 ident: oe-32-12-21870-R22 article-title: Overview and status of the methane remote sensing lidar mission: MERLIN – volume: 14 start-page: 6601 year: 2021 ident: oe-32-12-21870-R25 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-6601-2021 – volume: 55 start-page: 4232 year: 2016 ident: oe-32-12-21870-R18 publication-title: Appl. Opt. doi: 10.1364/AO.55.004232 – volume: 27 start-page: 32679 year: 2019 ident: oe-32-12-21870-R30 publication-title: Opt. Express doi: 10.1364/OE.27.032679 – volume: 277 start-page: 107949 year: 2022 ident: oe-32-12-21870-R34 publication-title: J. Quant. Spectrosc. Rad. Trans. doi: 10.1016/j.jqsrt.2021.107949 – volume: 48 start-page: 6716 year: 2009 ident: oe-32-12-21870-R8 publication-title: Appl. Opt. doi: 10.1364/AO.48.006716 – volume: 56 start-page: 5182 year: 2017 ident: oe-32-12-21870-R17 publication-title: Appl. Opt. doi: 10.1364/AO.56.005182 – volume: 58 start-page: 616 year: 2019 ident: oe-32-12-21870-R29 publication-title: Appl. Opt. doi: 10.1364/AO.58.000616 – volume: 90 start-page: 593 year: 2008 ident: oe-32-12-21870-R31 publication-title: Appl. Phys. B doi: 10.1007/s00340-007-2892-3 – volume: 35 start-page: 024201 year: 2018 ident: oe-32-12-21870-R27 publication-title: Chinese Phys. Lett. doi: 10.1088/0256-307X/35/2/024201 – volume: 45 start-page: 277 year: 2018 ident: oe-32-12-21870-R37 publication-title: Chin. J. Lasers – volume: 12 start-page: 2341 year: 2019 ident: oe-32-12-21870-R7 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-2341-2019 – year: 2004 ident: oe-32-12-21870-R38 – volume: 3 start-page: 666 year: 2013 ident: oe-32-12-21870-R4 publication-title: Nature Clim Change doi: 10.1038/nclimate1864 – volume: 12 start-page: 1999 year: 2020 ident: oe-32-12-21870-R24 publication-title: Remote Sens. doi: 10.3390/rs12121999 – volume: 4 start-page: 205 year: 2023 ident: oe-32-12-21870-R2 publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-023-00406-z – volume: 62 start-page: 770 year: 2010 ident: oe-32-12-21870-R15 publication-title: Tellus B doi: 10.1111/j.1600-0889.2010.00502.x – volume: 12 start-page: 2241 year: 2019 ident: oe-32-12-21870-R41 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-2241-2019 – volume: 10 start-page: 33 year: 2023 ident: oe-32-12-21870-R11 publication-title: Prog Earth Planet Sci doi: 10.1186/s40645-023-00562-2 – volume: 31 start-page: 404 year: 2014 ident: oe-32-12-21870-R16 publication-title: Journal of Atmospheric and Oceanic Technology doi: 10.1175/JTECH-D-13-00128.1 |
SSID | ssj0014797 |
Score | 2.515249 |
Snippet | In contrast to the passive remote sensing of global CO
2
column concentrations (XCO
2
), active remote sensing with a lidar enables continuous XCO
2... In contrast to the passive remote sensing of global CO column concentrations (XCO ), active remote sensing with a lidar enables continuous XCO measurements... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 21870 |
Title | Preliminary analysis of global column-averaged CO 2 concentration data from the spaceborne aerosol and carbon dioxide detection lidar onboard AEMS |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38859531 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIlAviDflUY0QB6TIpfbaa_tYRUEVUjGHVgqnaF9GllI7GEeqOPRH8IuZfdhOoEjAxY7s9VrJ9-Xbmd2ZWULexIyWPJdRkKMtEJhqIAHP8I-nFcplmelS2Qzvs4_s9CL-sEgWk8n1dnZJJ47k9xvzSv4HVbyGuJos2X9AdugUL-BnxBePiDAe_wrjT61e2V25WlNFaawu4qt8SKM8dcDxe6FqqOmsmEYmzNwFZFrgTYDomGKC6iKN_qDhyTUOn42rIyB5K0zbqrmqlMmz6rTbYHxVKd5Om1o0ZjLiZO4nuL2tW6xtCWh9tR7CPGzVR7_MjwPqyMyZTxIx5y9DkFC1sSSrvla86S8u3ILK541_2M9YRLGNrHIqpp3Kok-Jjqsfab0Mj9OcmyG0uhfVzG0u8pvcUxYjRsX8KAlTl8LQbcG-vrS408zUcPNjzW5t7f7WLXI7QjfDCPvZ9XxYhYrTPPXVqPBN74b37JO7_ZM75syOY2INlPP75J73LODE0eQBmej6IbljI3zlt0fkxxZZoCcLNCU4ssAvZIFZARHskAUMWcCQBZAsMJIFPFmwWwWOLODJAgNZwJIFPFnAkOUxuXg_P5-dBn5DjkCiG9oFSSQlpWWumQp1UoowFyILw5IflyU9lsLYg1Gaac64yiUTsWaJCEVqlvo1nugTslc3tX5GIGWSJlrRVKgwTnSSoZmOaoL9pZpKlhyQt_3vupS-Wr3ZNGW1tEuwLF4W86VD44C8HpquXYmWmxo9deAMTXoEn__xzguyP9L3Jdnr2o1-hSZoJw7t1M2hZctP8vuMIw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+analysis+of+global+column-averaged+CO+2+concentration+data+from+the+spaceborne+aerosol+and+carbon+dioxide+detection+lidar+onboard+AEMS&rft.jtitle=Optics+express&rft.au=Fan%2C+Chuncan&rft.au=Chen%2C+Cheng&rft.au=Liu%2C+Jiqiao&rft.au=Xie%2C+Yuan&rft.date=2024-06-03&rft.eissn=1094-4087&rft.volume=32&rft.issue=12&rft.spage=21870&rft_id=info:doi/10.1364%2FOE.517736&rft_id=info%3Apmid%2F38859531&rft.externalDocID=38859531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |