Preliminary analysis of global column-averaged CO 2 concentration data from the spaceborne aerosol and carbon dioxide detection lidar onboard AEMS

In contrast to the passive remote sensing of global CO 2 column concentrations (XCO 2 ), active remote sensing with a lidar enables continuous XCO 2 measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atm...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 32; no. 12; p. 21870
Main Authors Fan, Chuncan, Chen, Cheng, Liu, Jiqiao, Xie, Yuan, Li, Ke, Zhu, Xiaopeng, Zhang, Lu, Cao, Xifeng, Han, Ge, Huang, Yongjian, Gu, Qianrong, Chen, Weibiao
Format Journal Article
LanguageEnglish
Published United States 03.06.2024
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.517736

Cover

Loading…
Abstract In contrast to the passive remote sensing of global CO 2 column concentrations (XCO 2 ), active remote sensing with a lidar enables continuous XCO 2 measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO 2 for the first time. In this study, special methods have been developed for ACDL data processing and XCO 2 retrieval. The CO 2 measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO 2 , are presented. The results of XCO 2 measurements over the period from 1 st June 2022 to 30 th June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system.
AbstractList In contrast to the passive remote sensing of global CO 2 column concentrations (XCO 2 ), active remote sensing with a lidar enables continuous XCO 2 measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO 2 for the first time. In this study, special methods have been developed for ACDL data processing and XCO 2 retrieval. The CO 2 measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO 2 , are presented. The results of XCO 2 measurements over the period from 1 st June 2022 to 30 th June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system.
In contrast to the passive remote sensing of global CO column concentrations (XCO ), active remote sensing with a lidar enables continuous XCO measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO for the first time. In this study, special methods have been developed for ACDL data processing and XCO retrieval. The CO measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO , are presented. The results of XCO measurements over the period from 1 June 2022 to 30 June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system.
Author Huang, Yongjian
Zhu, Xiaopeng
Gu, Qianrong
Zhang, Lu
Fan, Chuncan
Chen, Cheng
Li, Ke
Liu, Jiqiao
Xie, Yuan
Cao, Xifeng
Chen, Weibiao
Han, Ge
Author_xml – sequence: 1
  givenname: Chuncan
  orcidid: 0009-0002-2065-8232
  surname: Fan
  fullname: Fan, Chuncan
– sequence: 2
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
– sequence: 3
  givenname: Jiqiao
  surname: Liu
  fullname: Liu, Jiqiao
– sequence: 4
  givenname: Yuan
  surname: Xie
  fullname: Xie, Yuan
– sequence: 5
  givenname: Ke
  surname: Li
  fullname: Li, Ke
– sequence: 6
  givenname: Xiaopeng
  surname: Zhu
  fullname: Zhu, Xiaopeng
– sequence: 7
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
– sequence: 8
  givenname: Xifeng
  surname: Cao
  fullname: Cao, Xifeng
– sequence: 9
  givenname: Ge
  orcidid: 0000-0003-2561-3244
  surname: Han
  fullname: Han, Ge
– sequence: 10
  givenname: Yongjian
  orcidid: 0000-0003-3383-7328
  surname: Huang
  fullname: Huang, Yongjian
– sequence: 11
  givenname: Qianrong
  surname: Gu
  fullname: Gu, Qianrong
– sequence: 12
  givenname: Weibiao
  surname: Chen
  fullname: Chen, Weibiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38859531$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LAzEQhoMoVqsH_4Dk6mE12eznsZT6AUoF9bxMkolGsknJbsX-DX-x21ZFxNMMw_O-MM8h2fXBIyEnnJ1zUWQX89l5zstSFDvkgLM6SzJWlbu_9hE57LpXxnhW1uU-GYmqyutc8APycR_R2dZ6iCsKHtyqsx0Nhj67IMFRFdyy9Qm8YYRn1HQ6p-lw9Ap9H6G3wVMNPVATQ0v7F6TdAhTKED1SwBi64IZaTRVEuWZteLcaqcYe1SbtrIZIg5cBoqaT2d3DEdkz4Do8_ppj8nQ5e5xeJ7fzq5vp5DZRvEr7JE-VEsLUWGiOuZG8lrLi3AAzRjAlWZpmaVkhFKBrVcgMi1xyWZYpEzgMMSan297FUraom0W07WCh-ZYzAGdbQA1_dBHND8JZsxbfzGfNVvzAXvxhle03fgZN1v2T-ASYgIcT
CitedBy_id crossref_primary_10_1029_2024GL113309
crossref_primary_10_1016_j_optcom_2024_131281
crossref_primary_10_1109_JSTARS_2025_3538897
crossref_primary_10_1364_OE_546903
crossref_primary_10_1109_TGRS_2024_3508035
crossref_primary_10_1016_j_rse_2024_114368
crossref_primary_10_1016_j_optlaseng_2024_108808
Cites_doi 10.3390/rs9101052
10.3788/COL201715.031401
10.3788/COL201513.111402
10.1002/qj.3803
10.1016/j.scib.2018.08.004
10.1029/2021GL093805
10.1117/1.2898457
10.1029/2018JD028907
10.1029/2020GL091160
10.1073/pnas.1305332110
10.3390/atmos12030412
10.1364/AO.54.001387
10.3390/rs13102007
10.5194/essd-14-325-2022
10.1021/jp208800s
10.5194/amt-14-6601-2021
10.1364/AO.55.004232
10.1364/OE.27.032679
10.1016/j.jqsrt.2021.107949
10.1364/AO.48.006716
10.1364/AO.56.005182
10.1364/AO.58.000616
10.1007/s00340-007-2892-3
10.1088/0256-307X/35/2/024201
10.5194/amt-12-2341-2019
10.1038/nclimate1864
10.3390/rs12121999
10.1038/s43017-023-00406-z
10.1111/j.1600-0889.2010.00502.x
10.5194/amt-12-2241-2019
10.1186/s40645-023-00562-2
10.1175/JTECH-D-13-00128.1
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1364/OE.517736
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 38859531
10_1364_OE_517736
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
ID FETCH-LOGICAL-c182t-52cc33f9e6d1e5fb19bb811fa0ff30cb0224278ea6ad9c6b4e65b1b77203eb773
ISSN 1094-4087
IngestDate Wed Feb 19 02:09:53 EST 2025
Thu Apr 24 22:59:37 EDT 2025
Tue Jul 01 04:02:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-52cc33f9e6d1e5fb19bb811fa0ff30cb0224278ea6ad9c6b4e65b1b77203eb773
ORCID 0000-0003-3383-7328
0000-0003-2561-3244
0009-0002-2065-8232
PMID 38859531
ParticipantIDs pubmed_primary_38859531
crossref_primary_10_1364_OE_517736
crossref_citationtrail_10_1364_OE_517736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-03
2024-Jun-03
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2024
References Bousquet (oe-32-12-21870-R21) 2018; 123
Liu (oe-32-12-21870-R10) 2018; 63
Eldering (oe-32-12-21870-R7) 2019; 12
Liu (oe-32-12-21870-R2) 2023; 4
Hu (oe-32-12-21870-R29) 2019; 58
Amediek (oe-32-12-21870-R17) 2017; 56
Refaat (oe-32-12-21870-R18) 2016; 55
Santer (oe-32-12-21870-R3) 2013; 110
Menzies (oe-32-12-21870-R16) 2014; 31
Stocker (oe-32-12-21870-R4) 2013; 3
McCarthy (oe-32-12-21870-R38) 2004
Huanhuan Li (oe-32-12-21870-R28) 2015; 13
Zhu (oe-32-12-21870-R33) 2021; 13
Refaat (oe-32-12-21870-R32) 2015; 54
Mao (oe-32-12-21870-R19) 2021; 48
ArnoldSullivan (oe-32-12-21870-R22) 2023
Ehret (oe-32-12-21870-R20) 2017; 9
Shi (oe-32-12-21870-R23) 2021; 48
Taylor (oe-32-12-21870-R12) 2022; 14
Wang (oe-32-12-21870-R25) 2021; 14
Wallace (oe-32-12-21870-R35) 2011; 115
Kuze (oe-32-12-21870-R8) 2009; 48
Gordon (oe-32-12-21870-R34) 2022; 277
Liu (oe-32-12-21870-R37) 2018; 45
Crisp (oe-32-12-21870-R9) 2008; 2
Refaat (oe-32-12-21870-R6) 2021; 12
Zhu (oe-32-12-21870-R24) 2020; 12
Hersbach (oe-32-12-21870-R36) 2020; 146
Imasu (oe-32-12-21870-R11) 2023; 10
Abshire (oe-32-12-21870-R15) 2010; 62
Zhu (oe-32-12-21870-R30) 2019; 27
Du (oe-32-12-21870-R26) 2017; 15
Kiel (oe-32-12-21870-R41) 2019; 12
Chen (oe-32-12-21870-R27) 2018; 35
Ehret (oe-32-12-21870-R31) 2008; 90
References_xml – volume: 9
  start-page: 1052
  year: 2017
  ident: oe-32-12-21870-R20
  publication-title: Remote Sens.
  doi: 10.3390/rs9101052
– volume: 15
  start-page: 031401
  year: 2017
  ident: oe-32-12-21870-R26
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL201715.031401
– volume: 13
  start-page: 111402
  year: 2015
  ident: oe-32-12-21870-R28
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL201513.111402
– volume: 146
  start-page: 1999
  year: 2020
  ident: oe-32-12-21870-R36
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 63
  start-page: 1200
  year: 2018
  ident: oe-32-12-21870-R10
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.08.004
– volume: 48
  start-page: e2021
  year: 2021
  ident: oe-32-12-21870-R19
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL093805
– volume: 2
  start-page: 023508
  year: 2008
  ident: oe-32-12-21870-R9
  publication-title: J. Appl. Remote Sens
  doi: 10.1117/1.2898457
– volume: 123
  start-page: 11,766
  year: 2018
  ident: oe-32-12-21870-R21
  publication-title: JGR Atmospheres
  doi: 10.1029/2018JD028907
– volume: 48
  start-page: e2020
  year: 2021
  ident: oe-32-12-21870-R23
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL091160
– volume: 110
  start-page: 17235
  year: 2013
  ident: oe-32-12-21870-R3
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1305332110
– volume: 12
  start-page: 412
  year: 2021
  ident: oe-32-12-21870-R6
  publication-title: Atmosphere
  doi: 10.3390/atmos12030412
– volume: 54
  start-page: 1387
  year: 2015
  ident: oe-32-12-21870-R32
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.001387
– volume: 13
  start-page: 2007
  year: 2021
  ident: oe-32-12-21870-R33
  publication-title: Remote Sens.
  doi: 10.3390/rs13102007
– volume: 14
  start-page: 325
  year: 2022
  ident: oe-32-12-21870-R12
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-325-2022
– volume: 115
  start-page: 13804
  year: 2011
  ident: oe-32-12-21870-R35
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp208800s
– start-page: 667
  year: 2023
  ident: oe-32-12-21870-R22
  article-title: Overview and status of the methane remote sensing lidar mission: MERLIN
– volume: 14
  start-page: 6601
  year: 2021
  ident: oe-32-12-21870-R25
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-6601-2021
– volume: 55
  start-page: 4232
  year: 2016
  ident: oe-32-12-21870-R18
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.004232
– volume: 27
  start-page: 32679
  year: 2019
  ident: oe-32-12-21870-R30
  publication-title: Opt. Express
  doi: 10.1364/OE.27.032679
– volume: 277
  start-page: 107949
  year: 2022
  ident: oe-32-12-21870-R34
  publication-title: J. Quant. Spectrosc. Rad. Trans.
  doi: 10.1016/j.jqsrt.2021.107949
– volume: 48
  start-page: 6716
  year: 2009
  ident: oe-32-12-21870-R8
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.006716
– volume: 56
  start-page: 5182
  year: 2017
  ident: oe-32-12-21870-R17
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.005182
– volume: 58
  start-page: 616
  year: 2019
  ident: oe-32-12-21870-R29
  publication-title: Appl. Opt.
  doi: 10.1364/AO.58.000616
– volume: 90
  start-page: 593
  year: 2008
  ident: oe-32-12-21870-R31
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-007-2892-3
– volume: 35
  start-page: 024201
  year: 2018
  ident: oe-32-12-21870-R27
  publication-title: Chinese Phys. Lett.
  doi: 10.1088/0256-307X/35/2/024201
– volume: 45
  start-page: 277
  year: 2018
  ident: oe-32-12-21870-R37
  publication-title: Chin. J. Lasers
– volume: 12
  start-page: 2341
  year: 2019
  ident: oe-32-12-21870-R7
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-2341-2019
– year: 2004
  ident: oe-32-12-21870-R38
– volume: 3
  start-page: 666
  year: 2013
  ident: oe-32-12-21870-R4
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate1864
– volume: 12
  start-page: 1999
  year: 2020
  ident: oe-32-12-21870-R24
  publication-title: Remote Sens.
  doi: 10.3390/rs12121999
– volume: 4
  start-page: 205
  year: 2023
  ident: oe-32-12-21870-R2
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-023-00406-z
– volume: 62
  start-page: 770
  year: 2010
  ident: oe-32-12-21870-R15
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2010.00502.x
– volume: 12
  start-page: 2241
  year: 2019
  ident: oe-32-12-21870-R41
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-2241-2019
– volume: 10
  start-page: 33
  year: 2023
  ident: oe-32-12-21870-R11
  publication-title: Prog Earth Planet Sci
  doi: 10.1186/s40645-023-00562-2
– volume: 31
  start-page: 404
  year: 2014
  ident: oe-32-12-21870-R16
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/JTECH-D-13-00128.1
SSID ssj0014797
Score 2.515249
Snippet In contrast to the passive remote sensing of global CO 2 column concentrations (XCO 2 ), active remote sensing with a lidar enables continuous XCO 2...
In contrast to the passive remote sensing of global CO column concentrations (XCO ), active remote sensing with a lidar enables continuous XCO measurements...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 21870
Title Preliminary analysis of global column-averaged CO 2 concentration data from the spaceborne aerosol and carbon dioxide detection lidar onboard AEMS
URI https://www.ncbi.nlm.nih.gov/pubmed/38859531
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIlAviDflUY0QB6TIpfbaa_tYRUEVUjGHVgqnaF9GllI7GEeqOPRH8IuZfdhOoEjAxY7s9VrJ9-Xbmd2ZWULexIyWPJdRkKMtEJhqIAHP8I-nFcplmelS2Qzvs4_s9CL-sEgWk8n1dnZJJ47k9xvzSv4HVbyGuJos2X9AdugUL-BnxBePiDAe_wrjT61e2V25WlNFaawu4qt8SKM8dcDxe6FqqOmsmEYmzNwFZFrgTYDomGKC6iKN_qDhyTUOn42rIyB5K0zbqrmqlMmz6rTbYHxVKd5Om1o0ZjLiZO4nuL2tW6xtCWh9tR7CPGzVR7_MjwPqyMyZTxIx5y9DkFC1sSSrvla86S8u3ILK541_2M9YRLGNrHIqpp3Kok-Jjqsfab0Mj9OcmyG0uhfVzG0u8pvcUxYjRsX8KAlTl8LQbcG-vrS408zUcPNjzW5t7f7WLXI7QjfDCPvZ9XxYhYrTPPXVqPBN74b37JO7_ZM75syOY2INlPP75J73LODE0eQBmej6IbljI3zlt0fkxxZZoCcLNCU4ssAvZIFZARHskAUMWcCQBZAsMJIFPFmwWwWOLODJAgNZwJIFPFnAkOUxuXg_P5-dBn5DjkCiG9oFSSQlpWWumQp1UoowFyILw5IflyU9lsLYg1Gaac64yiUTsWaJCEVqlvo1nugTslc3tX5GIGWSJlrRVKgwTnSSoZmOaoL9pZpKlhyQt_3vupS-Wr3ZNGW1tEuwLF4W86VD44C8HpquXYmWmxo9deAMTXoEn__xzguyP9L3Jdnr2o1-hSZoJw7t1M2hZctP8vuMIw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+analysis+of+global+column-averaged+CO+2+concentration+data+from+the+spaceborne+aerosol+and+carbon+dioxide+detection+lidar+onboard+AEMS&rft.jtitle=Optics+express&rft.au=Fan%2C+Chuncan&rft.au=Chen%2C+Cheng&rft.au=Liu%2C+Jiqiao&rft.au=Xie%2C+Yuan&rft.date=2024-06-03&rft.eissn=1094-4087&rft.volume=32&rft.issue=12&rft.spage=21870&rft_id=info:doi/10.1364%2FOE.517736&rft_id=info%3Apmid%2F38859531&rft.externalDocID=38859531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon