Retention, stability, iron bioavailability and sensory evaluation of extruded rice fortified with iron, folic acid and vitamin B 12

Fortification of rice with micronutrients using extrusion technology is considered a sustainable strategy to prevent nutritional deficiencies in general population. The objective of the present study is to assess the retention, stability and iron bioavailability from indigenously developed triple fo...

Full description

Saved in:
Bibliographic Details
Published inMaternal and child nutrition Vol. 16; no. S3; p. e12932
Main Authors Jyrwa, Yvette Wilda, Palika, Ravindranadh, Boddula, Swetha, Boiroju, Naveen Kumar, Madhari, Radhika, Pullakhandam, Raghu, Thingnganing, Longvah
Format Journal Article
LanguageEnglish
Published England 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fortification of rice with micronutrients using extrusion technology is considered a sustainable strategy to prevent nutritional deficiencies in general population. The objective of the present study is to assess the retention, stability and iron bioavailability from indigenously developed triple fortified rice (iron, folic acid and vitamin B 12 ) during rinsing and different cooking methods. Further, we also assessed the acceptability of fortified rice in adult human volunteers. The retention of iron during rinsing with excess water was ≥90%, whereas folic acid and vitamin B 12 levels were reduced by ~25% during rinsing. Watertight cooking of rice (in electric cooker or on flame) had no additional effect on the nutrient levels as compared with rinsed rice, implying their stability during cooking. However, cooking with excess water followed by decanting led to loss of 45% iron and ≥70% folic acid and vitamin B 12 . The dialyzable iron and ferritin synthesis in Caco‐2 cells was significantly ( P < .01) higher from fortified rice compared with unfortified rice. In addition, inclusion of ascorbic acid significantly ( P < .01) increased the iron bioavailability from the fortified rice. Triangle tests in adult human subjects revealed that there are no significant sensory differences among fortified and unfortified rice. Further, fortified rice consumption appears to bridge the gaps in dietary iron intake deficits in children and women of reproductive age. These results suggest that the iron‐, folic acid‐ and vitamin B 12 ‐fortified rice has higher retention and stability of fortified nutrients and is acceptable for consumption in adult human volunteers.
ISSN:1740-8695
1740-8709
DOI:10.1111/mcn.12932