Clustering of Global Magnetospheric Observations

The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, S...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 4
Main Authors Edmond, James, Raeder, Joachim, Ferdousi, Banafsheh, Argall, Matthew, Innocenti, Maria Elena
Format Journal Article
LanguageEnglish
Published Wiley 01.12.2024
Online AccessGet full text

Cover

Loading…
Abstract The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4% $\%$. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles. Plain Language Summary Machine learning in space science often uses supervised methods for classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters, and flag important transient events related to the dynamics of the magnetosphere. Key Points MMS and THEMIS measurements are classified into magnetosphere, magnetosheath, and solar wind regions using unsupervised methods We created a data set of 5228 magnetopause and 3047 bow shock crossings inferred from the classifications The model is capable of detecting Hot Flow Anomalies, Foreshock Bubbles, and Bursty Bulk Flows
AbstractList The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles. Machine learning in space science often uses supervised methods for classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters, and flag important transient events related to the dynamics of the magnetosphere. MMS and THEMIS measurements are classified into magnetosphere, magnetosheath, and solar wind regions using unsupervised methods We created a data set of 5228 magnetopause and 3047 bow shock crossings inferred from the classifications The model is capable of detecting Hot Flow Anomalies, Foreshock Bubbles, and Bursty Bulk Flows
Abstract The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4%. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles.
The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4% $\%$. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles. Plain Language Summary Machine learning in space science often uses supervised methods for classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters, and flag important transient events related to the dynamics of the magnetosphere. Key Points MMS and THEMIS measurements are classified into magnetosphere, magnetosheath, and solar wind regions using unsupervised methods We created a data set of 5228 magnetopause and 3047 bow shock crossings inferred from the classifications The model is capable of detecting Hot Flow Anomalies, Foreshock Bubbles, and Bursty Bulk Flows
Author Argall, Matthew
Edmond, James
Innocenti, Maria Elena
Ferdousi, Banafsheh
Raeder, Joachim
Author_xml – sequence: 1
  givenname: James
  orcidid: 0009-0008-0657-0545
  surname: Edmond
  fullname: Edmond, James
  email: james.edmond@unh.edu
  organization: University of New Hampshire
– sequence: 2
  givenname: Joachim
  orcidid: 0000-0002-2690-7458
  surname: Raeder
  fullname: Raeder, Joachim
  organization: University of New Hampshire
– sequence: 3
  givenname: Banafsheh
  surname: Ferdousi
  fullname: Ferdousi, Banafsheh
  organization: Air Force Research Laboratory
– sequence: 4
  givenname: Matthew
  orcidid: 0000-0001-6315-1613
  surname: Argall
  fullname: Argall, Matthew
  organization: University of New Hampshire
– sequence: 5
  givenname: Maria Elena
  orcidid: 0000-0002-5782-0013
  surname: Innocenti
  fullname: Innocenti, Maria Elena
  organization: Ruhr‐Universität Bochum
BookMark eNp9kMtOwzAQRS1UJErpjg_IBxAYP-LYS1RBHwJVQrC2HHtSUoW4sgOof0-gCHXF6o7uHJ3FPSejLnRIyCWFawpM3zBgYrUAAMboCRkzrXleMAqjo_uMTFPaDgznDBSUYwKz9j31GJtuk4U6m7ehsm32aDcd9iHtXoePy9ZVwvhh-yZ06YKc1rZNOP3NCXm5v3ueLfKH9Xw5u33IHVVM54Vy2leq9NxjicqWSmoqVaWUl9RpLLyTlpU1tYiCeg4aJVXOl8zVKMHzCVkevD7YrdnF5s3GvQm2MT9FiBtjY9-4Fo3UVgnnayEFiKJwtkKhBa0LKjRlUA2uq4PLxZBSxPrPR8F8j2eOxxtwOOCfTYv7f1mzmj_RQvMv9B9v-A
Cites_doi 10.25080/Majora-92bf1922-00a
10.1007/s11214‐015‐0164‐9
10.1029/94JA01263
10.1177/1536867X0500500206
10.3389/fspas.2020.00054
10.3389/fspas.2022.1020815
10.1007/BF00337288
10.1016/j.neucom.2003.09.009
10.1007/978-3-642-04898-2_455
10.5281/zenodo.10651702
10.1016/0032‐0633(62)90180‐0
10.5281/zenodo.10651397
10.18637/jss.v078.i09
10.1038/s41592‐019‐0686‐2
10.1007/s11214‐016‐0245‐4
10.3389/fspas.2020.553207
10.1146/annurev‐astro‐091918‐104416
10.1126/science.138.3545.1095.b
10.1007/s11214‐005‐3825‐2
10.1007/s11214‐008‐9336‐1
10.1109/TIT.1982.1056489
10.1038/s41586‐020‐2649‐2
10.1029/2000JA000252
10.1007/s11214‐008‐9440‐2
10.1007/s11214‐014‐0057‐3
10.1029/2009JA014828
10.1038/318269a0
10.1145/3292500.3330701
10.5281/zenodo.6564714
10.1109/SBAC-PAD49847.2020.00037
10.1016/S0964-2749(02)80212-8
10.1029/2022JA030273
10.1017/S0022377823000454
10.1002/2017JA024383
10.1109/MASSP.1984.1162229
10.1007/978-3-030-43823-4_10
10.1029/2022JA031094
10.1029/2020SW002603
10.1007/978-3-319-21903-5_8
10.1029/2021JA029773
10.1029/2006JA011663
10.3389/fspas.2020.00055
10.1029/2020JA028058
10.5194/angeo‐39‐861‐2021
10.1029/2021JA029620
10.1029/98JA01103
10.1007/s11214‐008‐9365‐9
10.1029/RG009i004p00953
ContentType Journal Article
Copyright 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000221
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_69a84cdf4640455cabe4941f5149120b
10_1029_2024JH000221
JGR159
Genre researchArticle
GrantInformation_xml – fundername: NASA
  funderid: FA9550‐18‐1‐0483
– fundername: German Science Foundation
  funderid: 497938371, SFB1491
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c1829-58c9db87d3de7e8a7869168b88d61c9e5dc6a27f1aee41d309e618cd72cfe60d3
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:12:23 EDT 2025
Sun Jul 06 05:06:49 EDT 2025
Wed Jan 22 17:11:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1829-58c9db87d3de7e8a7869168b88d61c9e5dc6a27f1aee41d309e618cd72cfe60d3
ORCID 0000-0002-2690-7458
0000-0002-5782-0013
0009-0008-0657-0545
0000-0001-6315-1613
OpenAccessLink https://doaj.org/article/69a84cdf4640455cabe4941f5149120b
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_69a84cdf4640455cabe4941f5149120b
crossref_primary_10_1029_2024JH000221
wiley_primary_10_1029_2024JH000221_JGR159
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2011
2010
2021; 126
2002; 12
2019; 57
2005; 118
2023; 128
2020; 17
2020; 585
2011; 12
1962; 9
2020; 125
2008; 141
2001; 106
2020; 18
1962; 138
2020; 7
1971; 9
2007; 112
1982; 28
2023; 89
1985; 318
2022
1984; 1
2020
2021; 39
2010; 115
2004; 56
2022; 9
1982; 43
2017; 78
2005; 5
2019
1994; 99
2016; 199
2018
2016
2024b
1998; 103
2014
2024a
2017; 122
2022; 127
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_8_1
Kohonen T. (e_1_2_13_29_1) 2014
e_1_2_13_41_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_32_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_7_1
Pedregosa F. (e_1_2_13_43_1) 2011; 12
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_3_1
Angelopoulos V. (e_1_2_13_5_1) 2014
e_1_2_13_28_1
References_xml – start-page: 3
  year: 2014
  end-page: 25
– volume: 141
  start-page: 235
  issue: 1
  year: 2008
  end-page: 264
  article-title: The themis fluxgate magnetometer
  publication-title: Space Science Reviews
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 199
  start-page: 331
  issue: 1
  year: 2016
  end-page: 406
  article-title: Fast plasma investigation for magnetospheric multiscale
  publication-title: Space Science Reviews
– volume: 39
  start-page: 861
  issue: 5
  year: 2021
  end-page: 881
  article-title: Unsupervised classification of simulated magnetospheric regions
  publication-title: Annales Geophysicae
– volume: 89
  issue: 3
  year: 2023
  article-title: Unsupervised classification of fully kinetic simulations of plasmoid instability using self‐organizing maps (SOMs)
  publication-title: Journal of Plasma Physics
– volume: 199
  start-page: 189
  issue: 1
  year: 2016
  end-page: 256
  article-title: The magnetospheric multiscale magnetometers
  publication-title: Space Science Reviews
– year: 2018
– year: 2014
– volume: 128
  issue: 5
  year: 2023
  article-title: Statistical survey of magnetic forces associated with earthward bursty bulk flows measured by mms 2017–2021
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 141
  start-page: 5
  issue: 1
  year: 2008
  end-page: 34
  article-title: The themis mission
  publication-title: Space Science Reviews
– volume: 7
  year: 2020
  article-title: Mms sitl ground loop: Automating the burst data selection process
  publication-title: Frontiers in Astronomy and Space Sciences
– start-page: 195
  year: 2016
  end-page: 211
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  end-page: 362
  article-title: Array programming with NumPy
  publication-title: Nature
– start-page: 1094
  year: 2011
  end-page: 1096
– year: 2022
  article-title: argallmr/pymms: v0.4.6 (2022‐05‐19)
  publication-title: Zenodo
– volume: 199
  start-page: 5
  issue: 1
  year: 2016
  end-page: 21
  article-title: Magnetospheric multiscale overview and science objectives
  publication-title: Space Science Reviews
– volume: 12
  start-page: 127
  year: 2002
  end-page: 135
– year: 2024b
  article-title: Clustering of global magnetospheric observations
  publication-title: Zenodo
– volume: 125
  issue: 9
  year: 2020
  article-title: Formation and topology of foreshock bubbles
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  end-page: 272
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
– year: 2019
– volume: 103
  start-page: 17691
  issue: A8
  year: 1998
  end-page: 17700
  article-title: Magnetopause location under extreme solar wind conditions
  publication-title: Journal of Geophysical Research
– volume: 106
  start-page: 25361
  issue: A11
  year: 2001
  end-page: 25376
  article-title: The location of low mach number bow shocks at earth
  publication-title: Journal of Geophysical Research
– volume: 127
  issue: 8
  year: 2022
  article-title: Statistical study of favorable foreshock ion properties for the formation of hot flow anomalies and foreshock bubbles
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 141
  start-page: 277
  issue: 1
  year: 2008
  end-page: 302
  article-title: The THEMIS ESA plasma instrument and in‐flight calibration
  publication-title: Space Science Reviews
– volume: 9
  start-page: 103
  issue: 3
  year: 1962
  end-page: 107
  article-title: The study of interplanetary ionized gas, high‐energy electrons and corpuscular radiation of the sun, employing three‐electrode charged particle traps on the second soviet space rocket
  publication-title: Planetary and Space Science
– year: 2024a
  article-title: Clustering of global magnetospheric observations
  publication-title: Zenodo
– volume: 56
  start-page: 187
  year: 2004
  end-page: 203
  article-title: On the use of self‐organizing maps to accelerate vector quantization
  publication-title: Neurocomputing
– start-page: 209
  year: 2020
  end-page: 216
– start-page: 56
  year: 2010
  end-page: 61
– volume: 7
  year: 2020
  article-title: Automatic classification of plasma regions in near‐earth space with supervised machine learning: Application to magnetospheric multi scale 2016–2019 observations
  publication-title: Frontiers in Astronomy and Space Sciences
– volume: 7
  year: 2020
  article-title: Visualizing and interpreting unsupervised solar wind classifications
  publication-title: Frontiers in Astronomy and Space Sciences
– volume: 57
  start-page: 157
  issue: 1
  year: 2019
  end-page: 187
  article-title: The properties of the solar corona and its connection to the solar wind
  publication-title: Annual Review of Astronomy and Astrophysics
– volume: 18
  issue: 11
  year: 2020
  article-title: Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning
  publication-title: Space Weather
– volume: 5
  start-page: 208
  issue: 2
  year: 2005
  end-page: 223
  article-title: Data inspection using biplots
  publication-title: STATA Journal
– volume: 43
  start-page: 59
  issue: 1
  year: 1982
  end-page: 69
  article-title: Self‐organized formation of topologically correct feature maps
  publication-title: Biological Cybernetics
– volume: 126
  issue: 10
  year: 2021
  article-title: Automated classification of plasma regions using 3D particle energy distributions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 99
  start-page: 21257
  issue: A11
  year: 1994
  end-page: 21280
  article-title: Statistical characteristics of bursty bulk flow events
  publication-title: Journal of Geophysical Research
– volume: 9
  start-page: 953
  issue: 4
  year: 1971
  end-page: 985
  article-title: Structure of the magnetopause
  publication-title: Reviews of Geophysics
– volume: 112
  issue: A1
  year: 2007
  article-title: Formation of hot flow anomalies and solitary shocks
  publication-title: Journal of Geophysical Research
– volume: 9
  year: 2022
  article-title: The space physics environment data analysis system in python
  publication-title: Frontiers in Astronomy and Space Sciences
– volume: 122
  start-page: 10910
  issue: 11
  year: 2017
  end-page: 10920
  article-title: Classification of solar wind with machine learning
  publication-title: Journal of Geophysical Research: Space Physics
– start-page: 111
  year: 2020
  end-page: 120
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  end-page: 137
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
– volume: 138
  start-page: 1095
  issue: 3545
  year: 1962
  end-page: 1097
  article-title: Solar plasma experiment
  publication-title: Science
– volume: 78
  start-page: 1
  issue: 9
  year: 2017
  end-page: 21
  article-title: somoclu: An efficient parallel library for self‐organizing maps
  publication-title: Journal of Statistical Software
– volume: 1
  start-page: 4
  issue: 2
  year: 1984
  end-page: 29
  article-title: Vector quantization
  publication-title: IEEE ASSP Magazine
– volume: 115
  issue: A6
  year: 2010
  article-title: Foreshock bubbles and their global magnetospheric impacts
  publication-title: Journal of Geophysical Research
– volume: 318
  start-page: 269
  issue: 6043
  year: 1985
  end-page: 271
  article-title: An active current sheet in the solar wind
  publication-title: Nature
– volume: 127
  issue: 1
  year: 2022
  article-title: Massive multi‐mission statistical study and analytical modeling of the earth’s magnetopause: 1. A gradient boosting based automatic detection of near‐earth regions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 118
  start-page: 95
  issue: 1
  year: 2005
  end-page: 152
  article-title: The magnetosheath
  publication-title: Space Science Reviews
– ident: e_1_2_13_35_1
  doi: 10.25080/Majora-92bf1922-00a
– ident: e_1_2_13_11_1
  doi: 10.1007/s11214‐015‐0164‐9
– ident: e_1_2_13_6_1
  doi: 10.1029/94JA01263
– ident: e_1_2_13_26_1
  doi: 10.1177/1536867X0500500206
– ident: e_1_2_13_8_1
  doi: 10.3389/fspas.2020.00054
– ident: e_1_2_13_20_1
  doi: 10.3389/fspas.2022.1020815
– ident: e_1_2_13_28_1
  doi: 10.1007/BF00337288
– ident: e_1_2_13_15_1
  doi: 10.1016/j.neucom.2003.09.009
– ident: e_1_2_13_50_1
– ident: e_1_2_13_25_1
  doi: 10.1007/978-3-642-04898-2_455
– ident: e_1_2_13_17_1
  doi: 10.5281/zenodo.10651702
– ident: e_1_2_13_21_1
  doi: 10.1016/0032‐0633(62)90180‐0
– ident: e_1_2_13_16_1
  doi: 10.5281/zenodo.10651397
– ident: e_1_2_13_53_1
  doi: 10.18637/jss.v078.i09
– ident: e_1_2_13_51_1
  doi: 10.1038/s41592‐019‐0686‐2
– ident: e_1_2_13_45_1
  doi: 10.1007/s11214‐016‐0245‐4
– ident: e_1_2_13_3_1
  doi: 10.3389/fspas.2020.553207
– ident: e_1_2_13_14_1
  doi: 10.1146/annurev‐astro‐091918‐104416
– ident: e_1_2_13_36_1
  doi: 10.1126/science.138.3545.1095.b
– ident: e_1_2_13_32_1
  doi: 10.1007/s11214‐005‐3825‐2
– ident: e_1_2_13_4_1
  doi: 10.1007/s11214‐008‐9336‐1
– ident: e_1_2_13_31_1
  doi: 10.1109/TIT.1982.1056489
– ident: e_1_2_13_22_1
  doi: 10.1038/s41586‐020‐2649‐2
– ident: e_1_2_13_18_1
  doi: 10.1029/2000JA000252
– ident: e_1_2_13_34_1
  doi: 10.1007/s11214‐008‐9440‐2
– ident: e_1_2_13_46_1
  doi: 10.1007/s11214‐014‐0057‐3
– ident: e_1_2_13_40_1
  doi: 10.1029/2009JA014828
– ident: e_1_2_13_47_1
  doi: 10.1038/318269a0
– ident: e_1_2_13_2_1
  doi: 10.1145/3292500.3330701
– ident: e_1_2_13_7_1
  doi: 10.5281/zenodo.6564714
– volume-title: Matlab implementations and applications of the self‐organizing map
  year: 2014
  ident: e_1_2_13_29_1
– ident: e_1_2_13_33_1
  doi: 10.1109/SBAC-PAD49847.2020.00037
– ident: e_1_2_13_13_1
  doi: 10.1016/S0964-2749(02)80212-8
– ident: e_1_2_13_30_1
  doi: 10.1029/2022JA030273
– ident: e_1_2_13_27_1
  doi: 10.1017/S0022377823000454
– ident: e_1_2_13_12_1
  doi: 10.1002/2017JA024383
– ident: e_1_2_13_19_1
  doi: 10.1109/MASSP.1984.1162229
– start-page: 3
  volume-title: The Artemis mission
  year: 2014
  ident: e_1_2_13_5_1
– ident: e_1_2_13_23_1
  doi: 10.1007/978-3-030-43823-4_10
– ident: e_1_2_13_44_1
  doi: 10.1029/2022JA031094
– ident: e_1_2_13_49_1
  doi: 10.1029/2020SW002603
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_13_43_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_13_38_1
  doi: 10.1007/978-3-319-21903-5_8
– ident: e_1_2_13_37_1
  doi: 10.1029/2021JA029773
– ident: e_1_2_13_42_1
  doi: 10.1029/2006JA011663
– ident: e_1_2_13_10_1
  doi: 10.3389/fspas.2020.00055
– ident: e_1_2_13_41_1
  doi: 10.1029/2020JA028058
– ident: e_1_2_13_24_1
  doi: 10.5194/angeo‐39‐861‐2021
– ident: e_1_2_13_39_1
  doi: 10.1029/2021JA029620
– ident: e_1_2_13_48_1
  doi: 10.1029/98JA01103
– ident: e_1_2_13_9_1
  doi: 10.1007/s11214‐008‐9365‐9
– ident: e_1_2_13_52_1
  doi: 10.1029/RG009i004p00953
SSID ssj0003320807
Score 2.275916
Snippet The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less...
Abstract The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXryIouL6ogc9eCimSZomR11clwUfiAt7K3lMF0Fa2cf_d5LWZfcieA0hpV-TzjfTb74Scs0rTHVsQVMvpU4FZ3mqK8NTC6C9tSALiALZFzmaiPE0n3YFt9AL0_pDrAtu4WTE93U44MYuOrOB4JGJWbsYj6KBC2Y_u6G7Nkj6mHhb11g4Z7TtmGZBpoaRinbad1zibnOBragUzfu3yWqMNsMDst_RxOS-fa6HZAfqI0IHX6vga4DRJmmqpLXrT57NrIZlswj-AJ8uebXrOuvimEyGjx-DUdr98SB1yPN1miuHCKnCcw8FKFMoifRNWaW8zJyG3DtpWFFlBkBknlMNMlPOF8xVIKnnJ6RXNzWckiRX0ioOSPicRWSUtdYr7Rg1yPh8Tvvk5veOy-_W2KKMH6SZLjeR6ZOHAMd6TrCjjgPNfFZ2u7uU2ijhfCWkQIqYO2NBaJFVyMZ0xqjtk9sI5p9XKsdP70iuzv4x95zshdFWXnJBesv5Ci6RJCztVdwJP2UGsXk
  priority: 102
  providerName: Wiley-Blackwell
Title Clustering of Global Magnetospheric Observations
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000221
https://doaj.org/article/69a84cdf4640455cabe4941f5149120b
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7uRFFBXnj9GDHjwU0yTNj6PK5hhMRRzsVprkVQTpxG1X_3Zf0jq2i1689FBK035fyfu85vENIRe8wlLHKpp6KU0qOMtTU5U8tQDGWwtSQWyQfZDDiRhN8-naVl-hJ6yxB26Eu5am1ML5SkiB9JG70oIwIqsw0ZuMURtmX8x5a8VUmIM5Z4hCqu10p8yEIl-MhtHvJdvIQdGqfxNNY24Z7JHdFgqTm-Zh9skW1AeE3r0vg4sB5pZkViWNOX8yLl9rWMzmwQ3gzSWPdvVXdX5IJoP-y90wbfc3SB1SvUlz7VAPrTz3oECXSkuENW219jJzBnLvZMlUlZUAIvOcGpCZdl4xV4Gknh-RTj2r4ZgkuZZWc0C8c1YgVFhrvTaO0RL5zue0Sy5_3rj4aGwsirj8zEyxrkyX3AY5VtcE8-l4AkNStCEp_gpJl1xFMX8dqRjdPyNKnfzHgKdkJ9y66TI5I53F5xLOkRUWtke2mXjqxY8Dj-Ov_jf0ornJ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeD6EEvoqg4f_agBw_FNEnT5KjDWec2RTbYrTTJ6xCklf34_03SWraL4LU8Uvqa9H3y-vJ9CN3Qwm51VIJDw7kMGSVxKIuchgpAGqWAJ-ALZEc8nbD-NJ42fU7dWZhaH6JNuLmV4b_XboG7hHSjNuBEMu22nfVTr-Bitz87jJPEtTAg7L1NslBKcH1kmrg6NRuqcFP8boe4Xx9gIyx59f5NWvXhpneA9htODB7qF3uItqA8Qrj7tXLCBjbcBFUR1Hr9wTCflbCsFk4g4FMHb6pNtC6O0aT3NO6mYdPyINQW9GUYC21dJBJDDSQg8kRwy29CCWF4pCXERvOcJEWUA7DIUCyBR0KbhOgCODb0BG2XVQmnKIgFV4KCJT6tmOUMpZQRUhOcW-QzMe6g298nzr5rZYvM_5EmMlv3TAc9One0Nk6P2l-o5rOsmd4Zl7lg2hSMM8uIsc4VMMmiwuKYjAhWHXTnnfnnnbL-84elq7N_2F6j3XQ8HGSDl9HrOdpzFnWtyQXaXs5XcGmJYamu_Kz4ARhRtOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDKIgXUVScP3vQg4dimqRpctTpnFPnEAe7lfx4HYJ0Yz_-f5O0lu0ieC2PlL4mfZ_38vItQle0cKmOznBsOZcxoySNZaForAGk1Rp4BqFBts-7Q9YbpaO64ObPwlT6EE3Bza-M8L32C3xqi1pswGtkuqyd9bpBwMVlP1t-v8-3dBE2aGoslBJcnZgmvk3NRSpc9767IW5XB1iLSkG8fx1WQ7Tp7KHdGhOju-q97qMNKA8Qbn8vva6BizbRpIgquf7oTY1LWEzmXh_gy0Tvuqmzzg_RsPP42e7G9R8PYuM4X8apMM5DIrPUQgZCZYI7fBNaCMsTIyG1hiuSFYkCYImlWAJPhLEZMQVwbOkR2iwnJRyjKBVcCwoO-IxmDjO01lZIQ7ByxGdT3ELXv0-cTythizxsSBOZr3qmhe69OxobL0cdLkxm47ye3TmXSjBjC8aZQ8TUKA1MsqRwNCYTgnUL3QRn_nmnvPf04eDq5B-2l2h78NDJX5_7L6doxxtUnSZnaHMxW8K544WFvgiT4gdCZrQX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+of+Global+Magnetospheric+Observations&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=James+Edmond&rft.au=Joachim+Raeder&rft.au=Banafsheh+Ferdousi&rft.au=Matthew+Argall&rft.date=2024-12-01&rft.pub=Wiley&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000221&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69a84cdf4640455cabe4941f5149120b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon