Clustering of Global Magnetospheric Observations
The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, S...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.12.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4% $\%$. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles.
Plain Language Summary
Machine learning in space science often uses supervised methods for classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters, and flag important transient events related to the dynamics of the magnetosphere.
Key Points
MMS and THEMIS measurements are classified into magnetosphere, magnetosheath, and solar wind regions using unsupervised methods
We created a data set of 5228 magnetopause and 3047 bow shock crossings inferred from the classifications
The model is capable of detecting Hot Flow Anomalies, Foreshock Bubbles, and Bursty Bulk Flows |
---|---|
AbstractList | The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles.
Machine learning in space science often uses supervised methods for classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters, and flag important transient events related to the dynamics of the magnetosphere.
MMS and THEMIS measurements are classified into magnetosphere, magnetosheath, and solar wind regions using unsupervised methods We created a data set of 5228 magnetopause and 3047 bow shock crossings inferred from the classifications The model is capable of detecting Hot Flow Anomalies, Foreshock Bubbles, and Bursty Bulk Flows Abstract The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4%. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles. The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4% $\%$. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles. Plain Language Summary Machine learning in space science often uses supervised methods for classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters, and flag important transient events related to the dynamics of the magnetosphere. Key Points MMS and THEMIS measurements are classified into magnetosphere, magnetosheath, and solar wind regions using unsupervised methods We created a data set of 5228 magnetopause and 3047 bow shock crossings inferred from the classifications The model is capable of detecting Hot Flow Anomalies, Foreshock Bubbles, and Bursty Bulk Flows |
Author | Argall, Matthew Edmond, James Innocenti, Maria Elena Ferdousi, Banafsheh Raeder, Joachim |
Author_xml | – sequence: 1 givenname: James orcidid: 0009-0008-0657-0545 surname: Edmond fullname: Edmond, James email: james.edmond@unh.edu organization: University of New Hampshire – sequence: 2 givenname: Joachim orcidid: 0000-0002-2690-7458 surname: Raeder fullname: Raeder, Joachim organization: University of New Hampshire – sequence: 3 givenname: Banafsheh surname: Ferdousi fullname: Ferdousi, Banafsheh organization: Air Force Research Laboratory – sequence: 4 givenname: Matthew orcidid: 0000-0001-6315-1613 surname: Argall fullname: Argall, Matthew organization: University of New Hampshire – sequence: 5 givenname: Maria Elena orcidid: 0000-0002-5782-0013 surname: Innocenti fullname: Innocenti, Maria Elena organization: Ruhr‐Universität Bochum |
BookMark | eNp9kMtOwzAQRS1UJErpjg_IBxAYP-LYS1RBHwJVQrC2HHtSUoW4sgOof0-gCHXF6o7uHJ3FPSejLnRIyCWFawpM3zBgYrUAAMboCRkzrXleMAqjo_uMTFPaDgznDBSUYwKz9j31GJtuk4U6m7ehsm32aDcd9iHtXoePy9ZVwvhh-yZ06YKc1rZNOP3NCXm5v3ueLfKH9Xw5u33IHVVM54Vy2leq9NxjicqWSmoqVaWUl9RpLLyTlpU1tYiCeg4aJVXOl8zVKMHzCVkevD7YrdnF5s3GvQm2MT9FiBtjY9-4Fo3UVgnnayEFiKJwtkKhBa0LKjRlUA2uq4PLxZBSxPrPR8F8j2eOxxtwOOCfTYv7f1mzmj_RQvMv9B9v-A |
Cites_doi | 10.25080/Majora-92bf1922-00a 10.1007/s11214‐015‐0164‐9 10.1029/94JA01263 10.1177/1536867X0500500206 10.3389/fspas.2020.00054 10.3389/fspas.2022.1020815 10.1007/BF00337288 10.1016/j.neucom.2003.09.009 10.1007/978-3-642-04898-2_455 10.5281/zenodo.10651702 10.1016/0032‐0633(62)90180‐0 10.5281/zenodo.10651397 10.18637/jss.v078.i09 10.1038/s41592‐019‐0686‐2 10.1007/s11214‐016‐0245‐4 10.3389/fspas.2020.553207 10.1146/annurev‐astro‐091918‐104416 10.1126/science.138.3545.1095.b 10.1007/s11214‐005‐3825‐2 10.1007/s11214‐008‐9336‐1 10.1109/TIT.1982.1056489 10.1038/s41586‐020‐2649‐2 10.1029/2000JA000252 10.1007/s11214‐008‐9440‐2 10.1007/s11214‐014‐0057‐3 10.1029/2009JA014828 10.1038/318269a0 10.1145/3292500.3330701 10.5281/zenodo.6564714 10.1109/SBAC-PAD49847.2020.00037 10.1016/S0964-2749(02)80212-8 10.1029/2022JA030273 10.1017/S0022377823000454 10.1002/2017JA024383 10.1109/MASSP.1984.1162229 10.1007/978-3-030-43823-4_10 10.1029/2022JA031094 10.1029/2020SW002603 10.1007/978-3-319-21903-5_8 10.1029/2021JA029773 10.1029/2006JA011663 10.3389/fspas.2020.00055 10.1029/2020JA028058 10.5194/angeo‐39‐861‐2021 10.1029/2021JA029620 10.1029/98JA01103 10.1007/s11214‐008‐9365‐9 10.1029/RG009i004p00953 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1029/2024JH000221 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_69a84cdf4640455cabe4941f5149120b 10_1029_2024JH000221 JGR159 |
Genre | researchArticle |
GrantInformation_xml | – fundername: NASA funderid: FA9550‐18‐1‐0483 – fundername: German Science Foundation funderid: 497938371, SFB1491 |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c1829-58c9db87d3de7e8a7869168b88d61c9e5dc6a27f1aee41d309e618cd72cfe60d3 |
IEDL.DBID | DOA |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:12:23 EDT 2025 Sun Jul 06 05:06:49 EDT 2025 Wed Jan 22 17:11:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1829-58c9db87d3de7e8a7869168b88d61c9e5dc6a27f1aee41d309e618cd72cfe60d3 |
ORCID | 0000-0002-2690-7458 0000-0002-5782-0013 0009-0008-0657-0545 0000-0001-6315-1613 |
OpenAccessLink | https://doaj.org/article/69a84cdf4640455cabe4941f5149120b |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69a84cdf4640455cabe4941f5149120b crossref_primary_10_1029_2024JH000221 wiley_primary_10_1029_2024JH000221_JGR159 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2011 2010 2021; 126 2002; 12 2019; 57 2005; 118 2023; 128 2020; 17 2020; 585 2011; 12 1962; 9 2020; 125 2008; 141 2001; 106 2020; 18 1962; 138 2020; 7 1971; 9 2007; 112 1982; 28 2023; 89 1985; 318 2022 1984; 1 2020 2021; 39 2010; 115 2004; 56 2022; 9 1982; 43 2017; 78 2005; 5 2019 1994; 99 2016; 199 2018 2016 2024b 1998; 103 2014 2024a 2017; 122 2022; 127 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_22_1 e_1_2_13_8_1 Kohonen T. (e_1_2_13_29_1) 2014 e_1_2_13_41_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_32_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_7_1 Pedregosa F. (e_1_2_13_43_1) 2011; 12 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_3_1 Angelopoulos V. (e_1_2_13_5_1) 2014 e_1_2_13_28_1 |
References_xml | – start-page: 3 year: 2014 end-page: 25 – volume: 141 start-page: 235 issue: 1 year: 2008 end-page: 264 article-title: The themis fluxgate magnetometer publication-title: Space Science Reviews – volume: 12 start-page: 2825 issue: Oct year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – volume: 199 start-page: 331 issue: 1 year: 2016 end-page: 406 article-title: Fast plasma investigation for magnetospheric multiscale publication-title: Space Science Reviews – volume: 39 start-page: 861 issue: 5 year: 2021 end-page: 881 article-title: Unsupervised classification of simulated magnetospheric regions publication-title: Annales Geophysicae – volume: 89 issue: 3 year: 2023 article-title: Unsupervised classification of fully kinetic simulations of plasmoid instability using self‐organizing maps (SOMs) publication-title: Journal of Plasma Physics – volume: 199 start-page: 189 issue: 1 year: 2016 end-page: 256 article-title: The magnetospheric multiscale magnetometers publication-title: Space Science Reviews – year: 2018 – year: 2014 – volume: 128 issue: 5 year: 2023 article-title: Statistical survey of magnetic forces associated with earthward bursty bulk flows measured by mms 2017–2021 publication-title: Journal of Geophysical Research: Space Physics – volume: 141 start-page: 5 issue: 1 year: 2008 end-page: 34 article-title: The themis mission publication-title: Space Science Reviews – volume: 7 year: 2020 article-title: Mms sitl ground loop: Automating the burst data selection process publication-title: Frontiers in Astronomy and Space Sciences – start-page: 195 year: 2016 end-page: 211 – volume: 585 start-page: 357 issue: 7825 year: 2020 end-page: 362 article-title: Array programming with NumPy publication-title: Nature – start-page: 1094 year: 2011 end-page: 1096 – year: 2022 article-title: argallmr/pymms: v0.4.6 (2022‐05‐19) publication-title: Zenodo – volume: 199 start-page: 5 issue: 1 year: 2016 end-page: 21 article-title: Magnetospheric multiscale overview and science objectives publication-title: Space Science Reviews – volume: 12 start-page: 127 year: 2002 end-page: 135 – year: 2024b article-title: Clustering of global magnetospheric observations publication-title: Zenodo – volume: 125 issue: 9 year: 2020 article-title: Formation and topology of foreshock bubbles publication-title: Journal of Geophysical Research: Space Physics – volume: 17 start-page: 261 issue: 3 year: 2020 end-page: 272 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods – year: 2019 – volume: 103 start-page: 17691 issue: A8 year: 1998 end-page: 17700 article-title: Magnetopause location under extreme solar wind conditions publication-title: Journal of Geophysical Research – volume: 106 start-page: 25361 issue: A11 year: 2001 end-page: 25376 article-title: The location of low mach number bow shocks at earth publication-title: Journal of Geophysical Research – volume: 127 issue: 8 year: 2022 article-title: Statistical study of favorable foreshock ion properties for the formation of hot flow anomalies and foreshock bubbles publication-title: Journal of Geophysical Research: Space Physics – volume: 141 start-page: 277 issue: 1 year: 2008 end-page: 302 article-title: The THEMIS ESA plasma instrument and in‐flight calibration publication-title: Space Science Reviews – volume: 9 start-page: 103 issue: 3 year: 1962 end-page: 107 article-title: The study of interplanetary ionized gas, high‐energy electrons and corpuscular radiation of the sun, employing three‐electrode charged particle traps on the second soviet space rocket publication-title: Planetary and Space Science – year: 2024a article-title: Clustering of global magnetospheric observations publication-title: Zenodo – volume: 56 start-page: 187 year: 2004 end-page: 203 article-title: On the use of self‐organizing maps to accelerate vector quantization publication-title: Neurocomputing – start-page: 209 year: 2020 end-page: 216 – start-page: 56 year: 2010 end-page: 61 – volume: 7 year: 2020 article-title: Automatic classification of plasma regions in near‐earth space with supervised machine learning: Application to magnetospheric multi scale 2016–2019 observations publication-title: Frontiers in Astronomy and Space Sciences – volume: 7 year: 2020 article-title: Visualizing and interpreting unsupervised solar wind classifications publication-title: Frontiers in Astronomy and Space Sciences – volume: 57 start-page: 157 issue: 1 year: 2019 end-page: 187 article-title: The properties of the solar corona and its connection to the solar wind publication-title: Annual Review of Astronomy and Astrophysics – volume: 18 issue: 11 year: 2020 article-title: Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning publication-title: Space Weather – volume: 5 start-page: 208 issue: 2 year: 2005 end-page: 223 article-title: Data inspection using biplots publication-title: STATA Journal – volume: 43 start-page: 59 issue: 1 year: 1982 end-page: 69 article-title: Self‐organized formation of topologically correct feature maps publication-title: Biological Cybernetics – volume: 126 issue: 10 year: 2021 article-title: Automated classification of plasma regions using 3D particle energy distributions publication-title: Journal of Geophysical Research: Space Physics – volume: 99 start-page: 21257 issue: A11 year: 1994 end-page: 21280 article-title: Statistical characteristics of bursty bulk flow events publication-title: Journal of Geophysical Research – volume: 9 start-page: 953 issue: 4 year: 1971 end-page: 985 article-title: Structure of the magnetopause publication-title: Reviews of Geophysics – volume: 112 issue: A1 year: 2007 article-title: Formation of hot flow anomalies and solitary shocks publication-title: Journal of Geophysical Research – volume: 9 year: 2022 article-title: The space physics environment data analysis system in python publication-title: Frontiers in Astronomy and Space Sciences – volume: 122 start-page: 10910 issue: 11 year: 2017 end-page: 10920 article-title: Classification of solar wind with machine learning publication-title: Journal of Geophysical Research: Space Physics – start-page: 111 year: 2020 end-page: 120 – volume: 28 start-page: 129 issue: 2 year: 1982 end-page: 137 article-title: Least squares quantization in PCM publication-title: IEEE Transactions on Information Theory – volume: 138 start-page: 1095 issue: 3545 year: 1962 end-page: 1097 article-title: Solar plasma experiment publication-title: Science – volume: 78 start-page: 1 issue: 9 year: 2017 end-page: 21 article-title: somoclu: An efficient parallel library for self‐organizing maps publication-title: Journal of Statistical Software – volume: 1 start-page: 4 issue: 2 year: 1984 end-page: 29 article-title: Vector quantization publication-title: IEEE ASSP Magazine – volume: 115 issue: A6 year: 2010 article-title: Foreshock bubbles and their global magnetospheric impacts publication-title: Journal of Geophysical Research – volume: 318 start-page: 269 issue: 6043 year: 1985 end-page: 271 article-title: An active current sheet in the solar wind publication-title: Nature – volume: 127 issue: 1 year: 2022 article-title: Massive multi‐mission statistical study and analytical modeling of the earth’s magnetopause: 1. A gradient boosting based automatic detection of near‐earth regions publication-title: Journal of Geophysical Research: Space Physics – volume: 118 start-page: 95 issue: 1 year: 2005 end-page: 152 article-title: The magnetosheath publication-title: Space Science Reviews – ident: e_1_2_13_35_1 doi: 10.25080/Majora-92bf1922-00a – ident: e_1_2_13_11_1 doi: 10.1007/s11214‐015‐0164‐9 – ident: e_1_2_13_6_1 doi: 10.1029/94JA01263 – ident: e_1_2_13_26_1 doi: 10.1177/1536867X0500500206 – ident: e_1_2_13_8_1 doi: 10.3389/fspas.2020.00054 – ident: e_1_2_13_20_1 doi: 10.3389/fspas.2022.1020815 – ident: e_1_2_13_28_1 doi: 10.1007/BF00337288 – ident: e_1_2_13_15_1 doi: 10.1016/j.neucom.2003.09.009 – ident: e_1_2_13_50_1 – ident: e_1_2_13_25_1 doi: 10.1007/978-3-642-04898-2_455 – ident: e_1_2_13_17_1 doi: 10.5281/zenodo.10651702 – ident: e_1_2_13_21_1 doi: 10.1016/0032‐0633(62)90180‐0 – ident: e_1_2_13_16_1 doi: 10.5281/zenodo.10651397 – ident: e_1_2_13_53_1 doi: 10.18637/jss.v078.i09 – ident: e_1_2_13_51_1 doi: 10.1038/s41592‐019‐0686‐2 – ident: e_1_2_13_45_1 doi: 10.1007/s11214‐016‐0245‐4 – ident: e_1_2_13_3_1 doi: 10.3389/fspas.2020.553207 – ident: e_1_2_13_14_1 doi: 10.1146/annurev‐astro‐091918‐104416 – ident: e_1_2_13_36_1 doi: 10.1126/science.138.3545.1095.b – ident: e_1_2_13_32_1 doi: 10.1007/s11214‐005‐3825‐2 – ident: e_1_2_13_4_1 doi: 10.1007/s11214‐008‐9336‐1 – ident: e_1_2_13_31_1 doi: 10.1109/TIT.1982.1056489 – ident: e_1_2_13_22_1 doi: 10.1038/s41586‐020‐2649‐2 – ident: e_1_2_13_18_1 doi: 10.1029/2000JA000252 – ident: e_1_2_13_34_1 doi: 10.1007/s11214‐008‐9440‐2 – ident: e_1_2_13_46_1 doi: 10.1007/s11214‐014‐0057‐3 – ident: e_1_2_13_40_1 doi: 10.1029/2009JA014828 – ident: e_1_2_13_47_1 doi: 10.1038/318269a0 – ident: e_1_2_13_2_1 doi: 10.1145/3292500.3330701 – ident: e_1_2_13_7_1 doi: 10.5281/zenodo.6564714 – volume-title: Matlab implementations and applications of the self‐organizing map year: 2014 ident: e_1_2_13_29_1 – ident: e_1_2_13_33_1 doi: 10.1109/SBAC-PAD49847.2020.00037 – ident: e_1_2_13_13_1 doi: 10.1016/S0964-2749(02)80212-8 – ident: e_1_2_13_30_1 doi: 10.1029/2022JA030273 – ident: e_1_2_13_27_1 doi: 10.1017/S0022377823000454 – ident: e_1_2_13_12_1 doi: 10.1002/2017JA024383 – ident: e_1_2_13_19_1 doi: 10.1109/MASSP.1984.1162229 – start-page: 3 volume-title: The Artemis mission year: 2014 ident: e_1_2_13_5_1 – ident: e_1_2_13_23_1 doi: 10.1007/978-3-030-43823-4_10 – ident: e_1_2_13_44_1 doi: 10.1029/2022JA031094 – ident: e_1_2_13_49_1 doi: 10.1029/2020SW002603 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_13_43_1 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – ident: e_1_2_13_38_1 doi: 10.1007/978-3-319-21903-5_8 – ident: e_1_2_13_37_1 doi: 10.1029/2021JA029773 – ident: e_1_2_13_42_1 doi: 10.1029/2006JA011663 – ident: e_1_2_13_10_1 doi: 10.3389/fspas.2020.00055 – ident: e_1_2_13_41_1 doi: 10.1029/2020JA028058 – ident: e_1_2_13_24_1 doi: 10.5194/angeo‐39‐861‐2021 – ident: e_1_2_13_39_1 doi: 10.1029/2021JA029620 – ident: e_1_2_13_48_1 doi: 10.1029/98JA01103 – ident: e_1_2_13_9_1 doi: 10.1007/s11214‐008‐9365‐9 – ident: e_1_2_13_52_1 doi: 10.1029/RG009i004p00953 |
SSID | ssj0003320807 |
Score | 2.275916 |
Snippet | The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less... Abstract The use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXryIouL6ogc9eCimSZomR11clwUfiAt7K3lMF0Fa2cf_d5LWZfcieA0hpV-TzjfTb74Scs0rTHVsQVMvpU4FZ3mqK8NTC6C9tSALiALZFzmaiPE0n3YFt9AL0_pDrAtu4WTE93U44MYuOrOB4JGJWbsYj6KBC2Y_u6G7Nkj6mHhb11g4Z7TtmGZBpoaRinbad1zibnOBragUzfu3yWqMNsMDst_RxOS-fa6HZAfqI0IHX6vga4DRJmmqpLXrT57NrIZlswj-AJ8uebXrOuvimEyGjx-DUdr98SB1yPN1miuHCKnCcw8FKFMoifRNWaW8zJyG3DtpWFFlBkBknlMNMlPOF8xVIKnnJ6RXNzWckiRX0ioOSPicRWSUtdYr7Rg1yPh8Tvvk5veOy-_W2KKMH6SZLjeR6ZOHAMd6TrCjjgPNfFZ2u7uU2ijhfCWkQIqYO2NBaJFVyMZ0xqjtk9sI5p9XKsdP70iuzv4x95zshdFWXnJBesv5Ci6RJCztVdwJP2UGsXk priority: 102 providerName: Wiley-Blackwell |
Title | Clustering of Global Magnetospheric Observations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000221 https://doaj.org/article/69a84cdf4640455cabe4941f5149120b |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7uRFFBXnj9GDHjwU0yTNj6PK5hhMRRzsVprkVQTpxG1X_3Zf0jq2i1689FBK035fyfu85vENIRe8wlLHKpp6KU0qOMtTU5U8tQDGWwtSQWyQfZDDiRhN8-naVl-hJ6yxB26Eu5am1ML5SkiB9JG70oIwIqsw0ZuMURtmX8x5a8VUmIM5Z4hCqu10p8yEIl-MhtHvJdvIQdGqfxNNY24Z7JHdFgqTm-Zh9skW1AeE3r0vg4sB5pZkViWNOX8yLl9rWMzmwQ3gzSWPdvVXdX5IJoP-y90wbfc3SB1SvUlz7VAPrTz3oECXSkuENW219jJzBnLvZMlUlZUAIvOcGpCZdl4xV4Gknh-RTj2r4ZgkuZZWc0C8c1YgVFhrvTaO0RL5zue0Sy5_3rj4aGwsirj8zEyxrkyX3AY5VtcE8-l4AkNStCEp_gpJl1xFMX8dqRjdPyNKnfzHgKdkJ9y66TI5I53F5xLOkRUWtke2mXjqxY8Dj-Ov_jf0ornJ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeD6EEvoqg4f_agBw_FNEnT5KjDWec2RTbYrTTJ6xCklf34_03SWraL4LU8Uvqa9H3y-vJ9CN3Qwm51VIJDw7kMGSVxKIuchgpAGqWAJ-ALZEc8nbD-NJ42fU7dWZhaH6JNuLmV4b_XboG7hHSjNuBEMu22nfVTr-Bitz87jJPEtTAg7L1NslBKcH1kmrg6NRuqcFP8boe4Xx9gIyx59f5NWvXhpneA9htODB7qF3uItqA8Qrj7tXLCBjbcBFUR1Hr9wTCflbCsFk4g4FMHb6pNtC6O0aT3NO6mYdPyINQW9GUYC21dJBJDDSQg8kRwy29CCWF4pCXERvOcJEWUA7DIUCyBR0KbhOgCODb0BG2XVQmnKIgFV4KCJT6tmOUMpZQRUhOcW-QzMe6g298nzr5rZYvM_5EmMlv3TAc9One0Nk6P2l-o5rOsmd4Zl7lg2hSMM8uIsc4VMMmiwuKYjAhWHXTnnfnnnbL-84elq7N_2F6j3XQ8HGSDl9HrOdpzFnWtyQXaXs5XcGmJYamu_Kz4ARhRtOU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDKIgXUVScP3vQg4dimqRpctTpnFPnEAe7lfx4HYJ0Yz_-f5O0lu0ieC2PlL4mfZ_38vItQle0cKmOznBsOZcxoySNZaForAGk1Rp4BqFBts-7Q9YbpaO64ObPwlT6EE3Bza-M8L32C3xqi1pswGtkuqyd9bpBwMVlP1t-v8-3dBE2aGoslBJcnZgmvk3NRSpc9767IW5XB1iLSkG8fx1WQ7Tp7KHdGhOju-q97qMNKA8Qbn8vva6BizbRpIgquf7oTY1LWEzmXh_gy0Tvuqmzzg_RsPP42e7G9R8PYuM4X8apMM5DIrPUQgZCZYI7fBNaCMsTIyG1hiuSFYkCYImlWAJPhLEZMQVwbOkR2iwnJRyjKBVcCwoO-IxmDjO01lZIQ7ByxGdT3ELXv0-cTythizxsSBOZr3qmhe69OxobL0cdLkxm47ye3TmXSjBjC8aZQ8TUKA1MsqRwNCYTgnUL3QRn_nmnvPf04eDq5B-2l2h78NDJX5_7L6doxxtUnSZnaHMxW8K544WFvgiT4gdCZrQX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+of+Global+Magnetospheric+Observations&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=James+Edmond&rft.au=Joachim+Raeder&rft.au=Banafsheh+Ferdousi&rft.au=Matthew+Argall&rft.date=2024-12-01&rft.pub=Wiley&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000221&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69a84cdf4640455cabe4941f5149120b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |