Detachment of the Subducting Slab in Ancient Subduction Zones Discerned Using Machine Learning

Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random fo...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 4
Main Authors Ou, Quan, Zheng, Dongyu, Nichols, Alexander R. L., Wang, Kun, Qian, Sheng‐Ping, Zi, Feng, Ma, Anlin, Zeng, Yun‐Chuan, Huang, Zongying, Liao, Jia, Hou, Zixi
Format Journal Article
LanguageEnglish
Published Wiley 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution. Plain Language Summary Determining where volcanic rocks erupted using just their composition is difficult. The current methods, including diagrams and computer models, often provide ambiguous results. To improve this, we created a new computer model that uses a technique called a random forest classifier. We fed the trace element compositions of basalts from across the world into a computer, along with whether the rocks formed at a destructive (e.g., western Pacific margin) or constructive (e.g., mid‐ocean ridge) plate boundary. Our new model correctly identified the geochemical signatures of basalts from the two types over 98% of the time. We then tested the model using basalts from the Bangong‐Nujiang suture zone in central Tibet, which has a complex tectonic history with evidence for the existence of both destructive and constructive plate boundaries. Our model shows that up until about 108–107 million years ago, basalts in this region had features of both types of plate boundary, after which their characteristics became solely destructive. This shift could be due to a subducted oceanic plate detaching and sinking in the mantle, which matches other geological evidence. This shows how powerful our new model can be in understanding how Earth's lithosphere evolves. Key Points A global trace element data set of basalts from destructive and constructive plate boundaries was used to train the machine learning model The trained models clearly differentiate basalts from the two boundaries with an accuracy higher than 98% Applied to Bangong‐Nujiang suture zone, a simplification of basalt types 108–107 million years ago, marking subducting slab's detachement
AbstractList Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution. Determining where volcanic rocks erupted using just their composition is difficult. The current methods, including diagrams and computer models, often provide ambiguous results. To improve this, we created a new computer model that uses a technique called a random forest classifier. We fed the trace element compositions of basalts from across the world into a computer, along with whether the rocks formed at a destructive (e.g., western Pacific margin) or constructive (e.g., mid‐ocean ridge) plate boundary. Our new model correctly identified the geochemical signatures of basalts from the two types over 98% of the time. We then tested the model using basalts from the Bangong‐Nujiang suture zone in central Tibet, which has a complex tectonic history with evidence for the existence of both destructive and constructive plate boundaries. Our model shows that up until about 108–107 million years ago, basalts in this region had features of both types of plate boundary, after which their characteristics became solely destructive. This shift could be due to a subducted oceanic plate detaching and sinking in the mantle, which matches other geological evidence. This shows how powerful our new model can be in understanding how Earth's lithosphere evolves. A global trace element data set of basalts from destructive and constructive plate boundaries was used to train the machine learning model The trained models clearly differentiate basalts from the two boundaries with an accuracy higher than 98% Applied to Bangong‐Nujiang suture zone, a simplification of basalt types 108–107 million years ago, marking subducting slab's detachement
Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution. Plain Language Summary Determining where volcanic rocks erupted using just their composition is difficult. The current methods, including diagrams and computer models, often provide ambiguous results. To improve this, we created a new computer model that uses a technique called a random forest classifier. We fed the trace element compositions of basalts from across the world into a computer, along with whether the rocks formed at a destructive (e.g., western Pacific margin) or constructive (e.g., mid‐ocean ridge) plate boundary. Our new model correctly identified the geochemical signatures of basalts from the two types over 98% of the time. We then tested the model using basalts from the Bangong‐Nujiang suture zone in central Tibet, which has a complex tectonic history with evidence for the existence of both destructive and constructive plate boundaries. Our model shows that up until about 108–107 million years ago, basalts in this region had features of both types of plate boundary, after which their characteristics became solely destructive. This shift could be due to a subducted oceanic plate detaching and sinking in the mantle, which matches other geological evidence. This shows how powerful our new model can be in understanding how Earth's lithosphere evolves. Key Points A global trace element data set of basalts from destructive and constructive plate boundaries was used to train the machine learning model The trained models clearly differentiate basalts from the two boundaries with an accuracy higher than 98% Applied to Bangong‐Nujiang suture zone, a simplification of basalt types 108–107 million years ago, marking subducting slab's detachement
Abstract Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution.
Author Ma, Anlin
Nichols, Alexander R. L.
Qian, Sheng‐Ping
Zheng, Dongyu
Zi, Feng
Zeng, Yun‐Chuan
Wang, Kun
Huang, Zongying
Liao, Jia
Ou, Quan
Hou, Zixi
Author_xml – sequence: 1
  givenname: Quan
  orcidid: 0000-0002-4444-8080
  surname: Ou
  fullname: Ou, Quan
  email: ouquanCSU@126.com
  organization: Chengdu University of Technology
– sequence: 2
  givenname: Dongyu
  orcidid: 0000-0002-4310-8121
  surname: Zheng
  fullname: Zheng, Dongyu
  email: zhengdongyu@cdut.edu.cn
  organization: Chengdu University of Technology
– sequence: 3
  givenname: Alexander R. L.
  orcidid: 0000-0002-8298-2882
  surname: Nichols
  fullname: Nichols, Alexander R. L.
  organization: University of Canterbury
– sequence: 4
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: China University of Mining and Technology
– sequence: 5
  givenname: Sheng‐Ping
  orcidid: 0000-0003-1750-6027
  surname: Qian
  fullname: Qian, Sheng‐Ping
  organization: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
– sequence: 6
  givenname: Feng
  surname: Zi
  fullname: Zi, Feng
  organization: Hunan University of Science and Technology
– sequence: 7
  givenname: Anlin
  surname: Ma
  fullname: Ma, Anlin
  organization: Nanjing University
– sequence: 8
  givenname: Yun‐Chuan
  orcidid: 0000-0002-9701-9693
  surname: Zeng
  fullname: Zeng, Yun‐Chuan
  organization: China University of Geosciences
– sequence: 9
  givenname: Zongying
  surname: Huang
  fullname: Huang, Zongying
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Jia
  surname: Liao
  fullname: Liao, Jia
  organization: China Geological Survey
– sequence: 11
  givenname: Zixi
  surname: Hou
  fullname: Hou, Zixi
  organization: Chengdu University of Technology
BookMark eNp9kMtOAjEUhhuDiYjsfIA-gOjptNNplwSUSzAmIhsXTjq9QMnQMTNjDG9vETWsXLU5_fr9Of8l6oQqWISuCdwSSORdAgmbTwGAAZyhbiIlHaQJgc7J_QL1m2YbGUoTEJB10dvYtkpvdja0uHK43Vi8_CjMh259WONlqQrsAx4G7Q_E71MV8GtMb_DYN9rWwRq8ag4fHqPLB4sXVtUhDq7QuVNlY_s_Zw-tHu5fRtPB4mkyGw0XA01EIgZUGJMY4JAZkmasYJoankmeSk4Y1zxzhtgICmokUUZrCoS7tEhTJouUO9pDs6PXVGqbv9d-p-p9Ximffw-qep2ruvW6tLnTRgoRUwQtYlVSZYV0EJOcZpoBj66bo0vXVdPU1v35COSHqvPTqiMOR_zTl3b_L5vPJ88kLvEFbvZ-zg
Cites_doi 10.1016/S0009‐2541(97)00105‐8
10.1002/gj.2631
10.1080/00206814.2014.947639
10.1023/A:1010933404324
10.1016/j.lithos.2016.07.029
10.1002/2016GC006248
10.1007/bf02702907
10.2110/jsr.2019.55
10.1016/0012‐821X(87)90223‐8
10.1007/s11430‐022‐9947‐6
10.1016/j.lithos.2015.09.015
10.1016/0012‐821x(73)90129‐5
10.1016/j.gsf.2021.101283
10.1002/gj.4302
10.1007/BF00310465
10.1016/j.epsl.2013.08.034
10.1016/j.earscirev.2022.104031
10.1007/bf00375192
10.1029/2018jb015808
10.1029/2001rg000108
10.1016/0012‐821x(80)90116‐8
10.1130/B35896.1
10.1130/b26033.1
10.1130/1052‐5173(2005)015[4:TSFHIO]2.0.CO;2
10.1007/s11004‐023‐10128‐z
10.1016/s0012‐821x(00)00374‐5
10.1016/j.lithos.2015.07.016
10.1016/j.palaeo.2021.110661
10.1016/0012‐821x(82)90120‐0
10.1007/s00531‐016‐1391‐3
10.1016/j.gr.2015.11.006
10.1016/j.lithos.2022.106944
10.1016/j.gr.2011.11.014
10.1038/s41598‐017‐16482‐3
10.1016/j.epsl.2011.01.011
10.1029/2021GL094236
10.1016/j.jseaes.2016.12.010
10.1007/978-3-319-39193-9_268-1
10.1130/b35124.1
10.1016/0012‐821x(79)90133‐x
10.1016/j.lithos.2022.106713
10.1029/2020TC006198
10.1007/BF00321985
10.1007/978-3-540-76504-2
10.1016/j.gca.2005.12.016
10.1016/S0016‐7037(99)00355‐5
10.1016/j.epsl.2010.11.035
10.1029/2022GC010745
10.1016/j.gr.2015.05.013
10.1016/0016‐7037(87)90006‐8
10.1016/j.lithos.2014.07.010
10.1029/2018GL080964
10.1029/2017gc007401
10.1017/9781108777834.008
10.1093/petrology/egi005
10.1029/2022JB025772
10.1109/TNNLS.2022.3229161
10.1016/j.lithos.2017.11.012
10.1016/j.lithos.2016.09.002
10.1130/G38030.1
10.1002/2017JB014743
10.1016/j.epsl.2005.12.016
10.1126/science.276.5312.551
10.1016/j.gr.2015.07.004
10.1007/s11430‐022‐1011‐9
10.1029/JB089iB12p10311
10.1016/j.gr.2011.08.003
10.1002/2016GL070709
10.1007/s12583‐016‐0701‐9
10.1016/j.gsf.2019.05.003
10.1029/2007jb004934
10.1016/j.lithos.2015.03.021
10.1130/B32045.1
10.1093/petrology/egg061
10.1130/B35864.1
10.1016/0012‐821X(91)90029‐H
10.1016/0012‐821X(94)90154‐6
10.1016/j.lithos.2019.06.005
10.1007/s11430‐020‐9675‐y
10.1016/j.lithos.2013.01.012
10.1002/gj.3070
10.1016/j.lithos.2012.12.015
10.1016/0009‐2541(86)90004‐5
10.1111/j.1365‐3121.2008.00815.x
10.1016/j.gca.2007.07.027
10.1016/j.lithos.2015.06.022
10.1016/j.cageo.2021.104717
10.1016/j.jseaes.2016.02.006
10.1002/gj.3832
10.1016/j.epsl.2010.03.013
10.1016/j.gsf.2019.02.003
10.1016/j.epsl.2006.11.019
10.1016/j.lithos.2012.11.019
10.1016/j.earscirev.2022.104192
10.1007/s00410‐003‐0495‐5
10.1029/2017TC004842
10.1029/2005jb003799
10.1029/2020TC006280
10.1007/s00410‐016‐1292‐2
10.5281/zenodo.14059244
10.1038/362739a0
10.6084/m9.figshare.24015024.v8
10.1029/2005gc001092
10.1002/2014JB011362
10.1016/j.tecto.2020.228500
10.1016/j.lithos.2017.09.003
10.1038/36087
10.1016/j.gr.2018.08.006
10.1130/G48142.1
10.1016/j.gr.2014.06.010
10.1007/s11430‐007‐0045‐5
10.1130/b26074.1
10.1093/petrology/egab080
10.1016/j.lithos.2014.03.025
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000400
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_fcd98857483b4009a7b9f0596fc4c406
10_1029_2024JH000400
JGR188
Genre researchArticle
GrantInformation_xml – fundername: Natural Science Foundation of Sichuan Province
  funderid: 2023NSFSC0757; 2024NSFSC0828
– fundername: Provincial Natural Science Foundation of Hunan
  funderid: 2024JJ5394
– fundername: National Natural Science Foundation of China
  funderid: 41802057; 42202125; 42422602; 42472153
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c1828-38dd2d0607d1574b4c3d6796596146c67fd1e82883d91adcc3016f5b5549b56f3
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:23:17 EDT 2025
Sun Jul 06 05:05:05 EDT 2025
Wed Jan 22 17:11:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1828-38dd2d0607d1574b4c3d6796596146c67fd1e82883d91adcc3016f5b5549b56f3
ORCID 0000-0002-4310-8121
0000-0003-1750-6027
0000-0002-4444-8080
0000-0002-8298-2882
0000-0002-9701-9693
OpenAccessLink https://doaj.org/article/fcd98857483b4009a7b9f0596fc4c406
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_fcd98857483b4009a7b9f0596fc4c406
crossref_primary_10_1029_2024JH000400
wiley_primary_10_1029_2024JH000400_JGR188
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References e_1_2_8_1_36_1
e_1_2_8_1_13_1
e_1_2_8_1_55_1
Song C. (e_1_2_8_2_40_1) 2012; 42
e_1_2_8_1_32_1
e_1_2_8_1_51_1
e_1_2_8_1_70_1
e_1_2_8_2_20_1
e_1_2_8_2_47_1
e_1_2_8_2_24_1
e_1_2_8_2_17_1
e_1_2_8_2_9_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_47_1
e_1_2_8_1_66_1
e_1_2_8_1_43_1
e_1_2_8_2_50_1
e_1_2_8_2_5_1
e_1_2_8_1_20_1
e_1_2_8_1_62_1
Cabanis B. (e_1_2_8_2_6_1) 1989; 309
e_1_2_8_2_54_1
e_1_2_8_2_31_1
e_1_2_8_2_12_1
e_1_2_8_2_35_1
e_1_2_8_1_3_1
e_1_2_8_2_28_1
e_1_2_8_1_7_1
Sun Z. (e_1_2_8_2_43_1) 2008; 24
e_1_2_8_1_17_1
e_1_2_8_1_59_1
e_1_2_8_1_14_1
e_1_2_8_1_33_1
e_1_2_8_1_56_1
e_1_2_8_1_52_1
e_1_2_8_1_71_1
e_1_2_8_1_8_1
Lundberg S. M. (e_1_2_8_1_27_1) 2017
e_1_2_8_2_42_1
Li H. (e_1_2_8_1_24_1) 2016; 40
e_1_2_8_2_23_1
e_1_2_8_2_16_1
e_1_2_8_2_39_1
e_1_2_8_1_26_1
e_1_2_8_1_49_1
Elliott T. (e_1_2_8_1_10_1) 2004
e_1_2_8_1_25_1
e_1_2_8_1_44_1
e_1_2_8_1_67_1
e_1_2_8_2_2_1
Sen G. (e_1_2_8_1_45_1) 2021
e_1_2_8_1_21_1
e_1_2_8_1_40_1
e_1_2_8_1_63_1
e_1_2_8_2_11_1
e_1_2_8_2_53_1
e_1_2_8_2_30_1
e_1_2_8_2_15_1
e_1_2_8_2_34_1
e_1_2_8_2_27_1
e_1_2_8_1_4_1
e_1_2_8_1_18_1
e_1_2_8_1_37_1
e_1_2_8_1_11_1
e_1_2_8_1_57_1
Yu Y. (e_1_2_8_2_52_1) 2016; 35
e_1_2_8_1_34_1
e_1_2_8_1_53_1
e_1_2_8_1_30_1
e_1_2_8_2_22_1
e_1_2_8_1_9_1
e_1_2_8_2_41_1
e_1_2_8_2_26_1
e_1_2_8_2_45_1
e_1_2_8_2_19_1
e_1_2_8_2_38_1
e_1_2_8_2_7_1
e_1_2_8_1_22_1
e_1_2_8_1_68_1
e_1_2_8_2_3_1
e_1_2_8_1_64_1
e_1_2_8_1_41_1
e_1_2_8_2_10_1
e_1_2_8_2_33_1
e_1_2_8_1_60_1
e_1_2_8_2_14_1
e_1_2_8_2_37_1
e_1_2_8_2_56_1
Zhu X. (e_1_2_8_2_57_1) 2015; 89
Zhu X. (e_1_2_8_2_58_1) 2015; 89
e_1_2_8_2_49_1
e_1_2_8_1_5_1
e_1_2_8_1_72_1
e_1_2_8_1_19_1
e_1_2_8_1_15_1
e_1_2_8_1_38_1
e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_58_1
e_1_2_8_1_31_1
e_1_2_8_1_54_1
e_1_2_8_1_50_1
e_1_2_8_2_21_1
e_1_2_8_2_44_1
e_1_2_8_2_25_1
e_1_2_8_2_48_1
e_1_2_8_2_18_1
Pearce J. A. (e_1_2_8_2_36_1) 1982
Tang X. (e_1_2_8_2_46_1) 2013; 56
e_1_2_8_2_8_1
e_1_2_8_1_28_1
e_1_2_8_1_23_1
e_1_2_8_1_46_1
e_1_2_8_1_69_1
e_1_2_8_1_42_1
e_1_2_8_1_65_1
e_1_2_8_2_51_1
e_1_2_8_2_4_1
e_1_2_8_1_61_1
e_1_2_8_2_55_1
e_1_2_8_2_32_1
e_1_2_8_2_13_1
e_1_2_8_1_2_1
e_1_2_8_2_29_1
e_1_2_8_1_6_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
References_xml – ident: e_1_2_8_1_31_1
  doi: 10.1016/S0009‐2541(97)00105‐8
– ident: e_1_2_8_2_23_1
  doi: 10.1002/gj.2631
– ident: e_1_2_8_2_14_1
  doi: 10.1080/00206814.2014.947639
– ident: e_1_2_8_1_3_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_2_25_1
  doi: 10.1016/j.lithos.2016.07.029
– ident: e_1_2_8_2_18_1
  doi: 10.1002/2016GC006248
– ident: e_1_2_8_1_54_1
  doi: 10.1007/bf02702907
– start-page: 33
  volume-title: Encyclopedia of geology
  year: 2021
  ident: e_1_2_8_1_45_1
– ident: e_1_2_8_1_72_1
  doi: 10.2110/jsr.2019.55
– start-page: 23
  volume-title: Inside the subduction factory
  year: 2004
  ident: e_1_2_8_1_10_1
– ident: e_1_2_8_1_42_1
  doi: 10.1016/0012‐821X(87)90223‐8
– ident: e_1_2_8_1_69_1
  doi: 10.1007/s11430‐022‐9947‐6
– ident: e_1_2_8_2_19_1
  doi: 10.1016/j.lithos.2015.09.015
– ident: e_1_2_8_1_33_1
  doi: 10.1016/0012‐821x(73)90129‐5
– ident: e_1_2_8_1_64_1
  doi: 10.1016/j.gsf.2021.101283
– ident: e_1_2_8_2_10_1
  doi: 10.1002/gj.4302
– ident: e_1_2_8_1_66_1
  doi: 10.1007/s11430‐022‐9947‐6
– ident: e_1_2_8_1_44_1
  doi: 10.1007/BF00310465
– ident: e_1_2_8_1_25_1
  doi: 10.1016/j.epsl.2013.08.034
– ident: e_1_2_8_1_16_1
  doi: 10.1016/j.earscirev.2022.104031
– ident: e_1_2_8_2_37_1
  doi: 10.1007/bf00375192
– ident: e_1_2_8_1_6_1
  doi: 10.1029/2018jb015808
– ident: e_1_2_8_1_50_1
  doi: 10.1029/2001rg000108
– ident: e_1_2_8_1_57_1
  doi: 10.1016/0012‐821x(80)90116‐8
– ident: e_1_2_8_2_16_1
  doi: 10.1130/B35896.1
– ident: e_1_2_8_1_20_1
  doi: 10.1130/b26033.1
– ident: e_1_2_8_1_51_1
  doi: 10.1130/1052‐5173(2005)015[4:TSFHIO]2.0.CO;2
– ident: e_1_2_8_1_19_1
  doi: 10.1007/s11004‐023‐10128‐z
– ident: e_1_2_8_1_22_1
  doi: 10.1016/s0012‐821x(00)00374‐5
– ident: e_1_2_8_2_47_1
  doi: 10.1016/j.lithos.2015.07.016
– volume: 89
  start-page: 534
  issue: 3
  year: 2015
  ident: e_1_2_8_2_57_1
  article-title: Zircon U‐Pb ages geochemistry of the porphyries from the Duobuza porphyry Cu‐Au deposit Tibet and their metallogenic significance
  publication-title: Acta Geologica Sinica
– ident: e_1_2_8_2_49_1
  doi: 10.1016/j.palaeo.2021.110661
– ident: e_1_2_8_1_46_1
  doi: 10.1016/0012‐821x(82)90120‐0
– ident: e_1_2_8_2_26_1
  doi: 10.1007/s00531‐016‐1391‐3
– ident: e_1_2_8_2_7_1
  doi: 10.1016/j.gr.2015.11.006
– ident: e_1_2_8_2_13_1
  doi: 10.1016/j.lithos.2022.106944
– ident: e_1_2_8_2_39_1
  doi: 10.1016/j.gr.2011.11.014
– ident: e_1_2_8_2_5_1
  doi: 10.1038/s41598‐017‐16482‐3
– ident: e_1_2_8_1_43_1
  doi: 10.1016/j.epsl.2011.01.011
– ident: e_1_2_8_2_48_1
  doi: 10.1029/2021GL094236
– ident: e_1_2_8_2_50_1
  doi: 10.1016/j.jseaes.2016.12.010
– ident: e_1_2_8_1_37_1
  doi: 10.1007/978-3-319-39193-9_268-1
– ident: e_1_2_8_1_21_1
  doi: 10.1130/b35124.1
– ident: e_1_2_8_1_58_1
  doi: 10.1016/0012‐821x(79)90133‐x
– ident: e_1_2_8_2_31_1
  doi: 10.1016/j.lithos.2022.106713
– ident: e_1_2_8_1_28_1
  doi: 10.1029/2020TC006198
– ident: e_1_2_8_1_35_1
  doi: 10.1007/BF00321985
– ident: e_1_2_8_1_12_1
  doi: 10.1007/978-3-540-76504-2
– ident: e_1_2_8_1_56_1
  doi: 10.1016/j.gca.2005.12.016
– ident: e_1_2_8_1_11_1
  doi: 10.1016/S0016‐7037(99)00355‐5
– ident: e_1_2_8_1_53_1
  doi: 10.1016/j.epsl.2010.11.035
– ident: e_1_2_8_1_71_1
  doi: 10.1029/2022GC010745
– ident: e_1_2_8_2_29_1
  doi: 10.1016/j.gr.2015.05.013
– ident: e_1_2_8_1_14_1
  doi: 10.1016/0016‐7037(87)90006‐8
– ident: e_1_2_8_2_24_1
  doi: 10.1016/j.lithos.2014.07.010
– volume: 89
  start-page: 109
  issue: 1
  year: 2015
  ident: e_1_2_8_2_58_1
  article-title: Geochronology and geochemistry of porphyries from the Naruo porphyry copper deposit Tibet and their metallogenic significance
  publication-title: Acta Geologica Sinica
– ident: e_1_2_8_2_33_1
  doi: 10.1029/2018GL080964
– ident: e_1_2_8_1_52_1
  doi: 10.1029/2017gc007401
– ident: e_1_2_8_1_41_1
  doi: 10.1017/9781108777834.008
– ident: e_1_2_8_1_36_1
  doi: 10.1093/petrology/egi005
– ident: e_1_2_8_1_63_1
  doi: 10.1029/2022JB025772
– ident: e_1_2_8_1_2_1
  doi: 10.1109/TNNLS.2022.3229161
– ident: e_1_2_8_2_30_1
  doi: 10.1016/j.lithos.2017.11.012
– ident: e_1_2_8_1_61_1
  doi: 10.1016/j.lithos.2016.09.002
– ident: e_1_2_8_2_28_1
  doi: 10.1130/G38030.1
– ident: e_1_2_8_2_32_1
  doi: 10.1002/2017JB014743
– ident: e_1_2_8_2_44_1
  doi: 10.1016/j.epsl.2005.12.016
– ident: e_1_2_8_1_15_1
  doi: 10.1126/science.276.5312.551
– start-page: 528
  volume-title: Andesites: Orogenic andesites and related rocks
  year: 1982
  ident: e_1_2_8_2_36_1
– ident: e_1_2_8_1_7_1
  doi: 10.1016/j.gr.2015.07.004
– volume: 42
  start-page: 241
  issue: 2
  year: 2012
  ident: e_1_2_8_2_40_1
  article-title: Late Triassic paleomagnetic data from the Qiangtang terrane of Tibetan Plateau and their tectonic significances
  publication-title: Journal of Jilin University (Earth Science Edition)
– ident: e_1_2_8_1_26_1
– ident: e_1_2_8_1_68_1
  doi: 10.1007/s11430‐022‐1011‐9
– ident: e_1_2_8_2_2_1
  doi: 10.1029/JB089iB12p10311
– ident: e_1_2_8_2_42_1
  doi: 10.1016/j.gr.2011.08.003
– volume: 40
  start-page: 663
  issue: 04
  year: 2016
  ident: e_1_2_8_1_24_1
  article-title: Age and tectonic significance of Jingzhushan Formation in Bangong lake area, Tibet
  publication-title: Geotectonica et Metallogenia
– ident: e_1_2_8_1_39_1
  doi: 10.1002/2016GL070709
– ident: e_1_2_8_1_18_1
  doi: 10.1007/s12583‐016‐0701‐9
– ident: e_1_2_8_2_56_1
  doi: 10.1016/j.gsf.2019.05.003
– ident: e_1_2_8_1_5_1
  doi: 10.1029/2007jb004934
– ident: e_1_2_8_2_15_1
  doi: 10.1016/j.lithos.2015.03.021
– ident: e_1_2_8_2_17_1
  doi: 10.1130/B32045.1
– volume: 35
  start-page: 1281
  year: 2016
  ident: e_1_2_8_2_52_1
  article-title: The petrology and geochemistry of Early Cretaceous ocean island volcanic rocks in the middle‐western segment of Bangong Co‐Nujiang suture zone
  publication-title: Geological Bulletin of China
– ident: e_1_2_8_2_11_1
  doi: 10.1093/petrology/egg061
– ident: e_1_2_8_2_38_1
  doi: 10.1130/B35864.1
– ident: e_1_2_8_1_29_1
  doi: 10.1016/0012‐821X(91)90029‐H
– ident: e_1_2_8_1_4_1
  doi: 10.1016/0012‐821X(94)90154‐6
– ident: e_1_2_8_2_20_1
  doi: 10.1016/j.lithos.2019.06.005
– ident: e_1_2_8_1_60_1
  doi: 10.1007/s11430‐020‐9675‐y
– ident: e_1_2_8_2_41_1
  doi: 10.1016/j.lithos.2013.01.012
– ident: e_1_2_8_2_35_1
  doi: 10.1002/gj.3070
– volume: 309
  start-page: 2023
  issue: 20
  year: 1989
  ident: e_1_2_8_2_6_1
  article-title: Le diagramme La/10‐Y/15‐Nb/8: Unoutil pour la discrimination des series volcaniques et la mise en evidence des processus de melande et/ou de contamination crustale
  publication-title: Comptes Rendues de la Academie des Sciences Série IIA
– ident: e_1_2_8_2_22_1
  doi: 10.1016/j.lithos.2012.12.015
– volume: 56
  start-page: 136
  issue: 1
  year: 2013
  ident: e_1_2_8_2_46_1
  article-title: Paleomagnetism and Ar‐Ar geochronology of Cretaceous volcanic rocks in the middle Lhasa terrane, China and tectonic implications
  publication-title: Chinese Journal of Geophysics
– ident: e_1_2_8_1_30_1
  doi: 10.1016/0009‐2541(86)90004‐5
– ident: e_1_2_8_1_40_1
  doi: 10.1111/j.1365‐3121.2008.00815.x
– ident: e_1_2_8_1_13_1
  doi: 10.1016/j.gca.2007.07.027
– ident: e_1_2_8_1_23_1
  doi: 10.1016/j.lithos.2015.06.022
– ident: e_1_2_8_1_70_1
  doi: 10.1016/j.cageo.2021.104717
– ident: e_1_2_8_2_55_1
  doi: 10.1016/j.jseaes.2016.02.006
– ident: e_1_2_8_1_17_1
  doi: 10.1002/gj.3832
– ident: e_1_2_8_2_45_1
  doi: 10.1016/j.epsl.2010.03.013
– ident: e_1_2_8_1_67_1
  doi: 10.1016/j.gsf.2019.02.003
– ident: e_1_2_8_2_12_1
  doi: 10.1016/j.epsl.2006.11.019
– volume: 24
  start-page: 1621
  issue: 7
  year: 2008
  ident: e_1_2_8_2_43_1
  article-title: New Early Cretaceous paleomagnetic data from volcanic of the eastern Lhusa Block and its tectonic implications
  publication-title: Acta Petrologica Sinica
– ident: e_1_2_8_2_27_1
  doi: 10.1016/j.lithos.2012.11.019
– ident: e_1_2_8_1_9_1
  doi: 10.1016/j.earscirev.2022.104192
– ident: e_1_2_8_1_49_1
  doi: 10.1007/s00410‐003‐0495‐5
– ident: e_1_2_8_2_8_1
  doi: 10.1029/2017TC004842
– ident: e_1_2_8_1_48_1
  doi: 10.1029/2005jb003799
– ident: e_1_2_8_2_4_1
  doi: 10.1029/2020TC006280
– start-page: 10
  volume-title: Proceedings of the 31st international conference on neural information processing systems
  year: 2017
  ident: e_1_2_8_1_27_1
– ident: e_1_2_8_1_34_1
  doi: 10.1007/s00410‐016‐1292‐2
– ident: e_1_2_8_1_65_1
  doi: 10.5281/zenodo.14059244
– ident: e_1_2_8_1_38_1
  doi: 10.1038/362739a0
– ident: e_1_2_8_1_32_1
  doi: 10.6084/m9.figshare.24015024.v8
– ident: e_1_2_8_1_55_1
  doi: 10.1029/2005gc001092
– ident: e_1_2_8_2_34_1
  doi: 10.1002/2014JB011362
– ident: e_1_2_8_2_9_1
  doi: 10.1016/j.tecto.2020.228500
– ident: e_1_2_8_2_54_1
  doi: 10.1016/j.lithos.2017.09.003
– ident: e_1_2_8_1_47_1
  doi: 10.1038/36087
– ident: e_1_2_8_1_59_1
  doi: 10.1016/j.gr.2018.08.006
– ident: e_1_2_8_1_62_1
  doi: 10.1130/G48142.1
– ident: e_1_2_8_2_51_1
  doi: 10.1016/j.gr.2014.06.010
– ident: e_1_2_8_2_3_1
  doi: 10.1007/s11430‐007‐0045‐5
– ident: e_1_2_8_1_8_1
  doi: 10.1130/b26074.1
– ident: e_1_2_8_2_53_1
  doi: 10.1093/petrology/egab080
– ident: e_1_2_8_2_21_1
  doi: 10.1016/j.lithos.2014.03.025
SSID ssj0003320807
Score 2.2759168
Snippet Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to...
Abstract Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms Bangong‐Nujiang ocean
basalts
machine learning
simplification of basalt types
slab detachment
trace elements
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjykgcYGCKS2EnssVCgqgRCQKWKgSh-lS4pasv_584xUbsgsTqOY519vs-Xu-8IuVCxTVKlWWQA4Efc6Syq4EyMKrQPsJ8Apfpoi6d8MOLDcTYODjfMhWn4IVqHG2qGP69RwSu1CGQDyJEJt3Y-HMR-F26SLcyuRe78lD-3PhbG0rjJmE4xTA0sVRxi32GI69UB1qySJ-9fB6ve2tzvkp0AE2mvWdc9smHrffLRt8tKf6I_j84cBehGQe-RsBXsD32F9aTTmvZqn-PYPprV9B0J-Wl_utB2Dscq9XEC9NHHUVoaKFYnB2R0f_d2O4hCfYRIw61AREwYkxoQZmGSrOCKa2bQLZRJsLm5zgtnEiuwnLCRSWW0BmXOXaYAQUiV5Y4dkk4NEzgiVBunXF5YZmMAJLKQKucO0IcTqUYOry65_JVP-dXQYJT-93Uqy1U5dskNCq_tg-TVvmE2n5RBF0qnjRQCZiyYgndkVSjpsAyQ01wDwOiSKy_6P79UDh9eEiGO_9H3hGxjaxOMcko6y_m3PQNIsVTnft_8AErTv2Y
  priority: 102
  providerName: Wiley-Blackwell
Title Detachment of the Subducting Slab in Ancient Subduction Zones Discerned Using Machine Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000400
https://doaj.org/article/fcd98857483b4009a7b9f0596fc4c406
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB5gYLBIbCe2x0JbqkpFCKhUMRDFX8CSolJWfjtnJ1TtAgtLhiSKo3fnu2fn8g6hM524lGrDiAWCT7g3GSkhJpIy5AfwJ2CpsdriNh9O-GiaTVdafYWasFoeuAbu0hurpMwEl0yDv6lSaOVDzxhvuOG12DbkvJXFVIjBjFGgQqKpdE-oCot8Phom0WnXclCU6l-npjG3DHbQdkMKcbd-mV204ao99Nxzi9K8ht07PPMYiBqGWR7kWSHb4AewHn6rcLeKfzQuL80q_BTk93Hv7cO4OQRRHKsC8DhWTTrcCKq-7KPJoP94PSRNNwRiYA0gCZPWUgvQCZsCHJobZsMmEEAB0c7kwtvUydA82Kq0tMbA1M19poEvKJ3lnh2gVgUvcIiwsV77XDjmEqAfSiidcw9cw0tqgmJXG53_4FO816IXRfxYTVWximMbXQXwlvcEqep4AgxYNAYs_jJgG11E6H8dqRjd3KdSHv3HgMdoKzy6rkk5Qa3F_NOdArNY6A7apPyuE10JjuOv_jd3rMfl
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDK0wMMDBF5OIk9FgqE0lYIWqliIIpfpUuKSvn_3Dmhahck1sRxrLPP9_l89x0hF9I3QShV5GkA-B6zKvYK2BO9Au0DrCdAqS7aop9kQ9YZxaO6zinmwlT8EAuHG2qG269RwdEhXbMNIEkmHNtZJ_PdMlwnGywJU9TMkD0vnCxRFPpVynSIcWpgqvw6-B26uF7uYMUsOfb-VbTqzM39DtmucSJtVRO7S9ZMuUfe22ZeqA906NGppYDdKCg-MraCAaKvMKF0UtJW6ZIcF6-mJX1DRn7annwpM4N9lbpAAdpzgZSG1hyr430yvL8b3GZeXSDBU3As4F7EtQ41SDPVQZwyyVSk0S8UCzC6iUpSqwPDsZ6wFkGhlQJtTmwsAUIIGSc2OiCNEgZwSKjSVtokNZHxAZGIVMiEWYAflocKSbya5PJXPvlnxYORu_vrUOTLcmySGxTeog2yV7sH09k4r5Uht0oLzmHEPJLwjShSKSzWAbKKKUAYTXLlRP_nn_LOw0vA-dE_2p6TzWzQ6-bdx_7TMdnCFlVkyglpzGff5hTwxVyeuTX0A7ufwtI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIgFgQBRnh5gYIjIw0nssVBKKVBVQKWKgSh-lS5pVcr_584JUbsgsSaOY53v8fl8_kzIhfRNEEoVeRoAvsesir0cfKKXY3wAfQKU6qot-kl3yHqjeFQl3PAsTMkPUSfc0DKcv0YDn2lbkQ0gRyas2lmv6zstXCcbbr8PmZ3ZoM6xRFHolyemQyxTg0jlV7Xv0MX1cgcrUcmR96-CVRdtOjtku4KJtFXO6y5ZM8Ue-WibRa4-MZ9Hp5YCdKNg90jYCvGHvsJ80klBW4U741i_mhb0HQn5aXvypcwc3Cp1dQL02dVRGlpRrI73ybBz93bb9ar7ETwFqwLuRVzrUIMwUx3EKZNMRRrTQrGAmJuoJLU6MByvE9YiyLVSYMyJjSUgCCHjxEYHpFHAAA4JVdpKm6QmMj4AEpEKmTAL6MPyUCGHV5Nc_sonm5U0GJnbvg5FtizHJrlB4dVtkLzaPZjOx1llC5lVWnAOI-aRhG9Enkph8Rogq5gCgNEkV070f_4p692_BJwf_aPtOdkctDvZ00P_8ZhsYYOyLuWENBbzb3MK6GIhz5wK_QDEQsIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detachment+of+the+Subducting+Slab+in+Ancient+Subduction+Zones+Discerned+Using+Machine+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Quan+Ou&rft.au=Dongyu+Zheng&rft.au=Alexander+R.+L.+Nichols&rft.au=Kun+Wang&rft.date=2024-12-01&rft.pub=Wiley&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000400&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fcd98857483b4009a7b9f0596fc4c406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon