Detachment of the Subducting Slab in Ancient Subduction Zones Discerned Using Machine Learning
Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random fo...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 4 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution.
Plain Language Summary
Determining where volcanic rocks erupted using just their composition is difficult. The current methods, including diagrams and computer models, often provide ambiguous results. To improve this, we created a new computer model that uses a technique called a random forest classifier. We fed the trace element compositions of basalts from across the world into a computer, along with whether the rocks formed at a destructive (e.g., western Pacific margin) or constructive (e.g., mid‐ocean ridge) plate boundary. Our new model correctly identified the geochemical signatures of basalts from the two types over 98% of the time. We then tested the model using basalts from the Bangong‐Nujiang suture zone in central Tibet, which has a complex tectonic history with evidence for the existence of both destructive and constructive plate boundaries. Our model shows that up until about 108–107 million years ago, basalts in this region had features of both types of plate boundary, after which their characteristics became solely destructive. This shift could be due to a subducted oceanic plate detaching and sinking in the mantle, which matches other geological evidence. This shows how powerful our new model can be in understanding how Earth's lithosphere evolves.
Key Points
A global trace element data set of basalts from destructive and constructive plate boundaries was used to train the machine learning model
The trained models clearly differentiate basalts from the two boundaries with an accuracy higher than 98%
Applied to Bangong‐Nujiang suture zone, a simplification of basalt types 108–107 million years ago, marking subducting slab's detachement |
---|---|
AbstractList | Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution.
Determining where volcanic rocks erupted using just their composition is difficult. The current methods, including diagrams and computer models, often provide ambiguous results. To improve this, we created a new computer model that uses a technique called a random forest classifier. We fed the trace element compositions of basalts from across the world into a computer, along with whether the rocks formed at a destructive (e.g., western Pacific margin) or constructive (e.g., mid‐ocean ridge) plate boundary. Our new model correctly identified the geochemical signatures of basalts from the two types over 98% of the time. We then tested the model using basalts from the Bangong‐Nujiang suture zone in central Tibet, which has a complex tectonic history with evidence for the existence of both destructive and constructive plate boundaries. Our model shows that up until about 108–107 million years ago, basalts in this region had features of both types of plate boundary, after which their characteristics became solely destructive. This shift could be due to a subducted oceanic plate detaching and sinking in the mantle, which matches other geological evidence. This shows how powerful our new model can be in understanding how Earth's lithosphere evolves.
A global trace element data set of basalts from destructive and constructive plate boundaries was used to train the machine learning model The trained models clearly differentiate basalts from the two boundaries with an accuracy higher than 98% Applied to Bangong‐Nujiang suture zone, a simplification of basalt types 108–107 million years ago, marking subducting slab's detachement Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution. Plain Language Summary Determining where volcanic rocks erupted using just their composition is difficult. The current methods, including diagrams and computer models, often provide ambiguous results. To improve this, we created a new computer model that uses a technique called a random forest classifier. We fed the trace element compositions of basalts from across the world into a computer, along with whether the rocks formed at a destructive (e.g., western Pacific margin) or constructive (e.g., mid‐ocean ridge) plate boundary. Our new model correctly identified the geochemical signatures of basalts from the two types over 98% of the time. We then tested the model using basalts from the Bangong‐Nujiang suture zone in central Tibet, which has a complex tectonic history with evidence for the existence of both destructive and constructive plate boundaries. Our model shows that up until about 108–107 million years ago, basalts in this region had features of both types of plate boundary, after which their characteristics became solely destructive. This shift could be due to a subducted oceanic plate detaching and sinking in the mantle, which matches other geological evidence. This shows how powerful our new model can be in understanding how Earth's lithosphere evolves. Key Points A global trace element data set of basalts from destructive and constructive plate boundaries was used to train the machine learning model The trained models clearly differentiate basalts from the two boundaries with an accuracy higher than 98% Applied to Bangong‐Nujiang suture zone, a simplification of basalt types 108–107 million years ago, marking subducting slab's detachement Abstract Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to uncertainties in existing classification diagrams and machine‐learning attempts. To address this, we trained a machine‐learning model using a random forest classifier on trace element concentrations of a global basalt‐dataset, categorized by types of tectonic plate boundary—destructive or constructive—at which they formed. Achieving an accuracy exceeding 98%, the model efficiently extracts the distinctive characteristics from each basalt type. When applied to the Bangong‐Nujiang suture zone in central Tibet, the model reveals that the basalts exhibited features of both boundary types prior to 108–107 Ma before transitioning to solely destructive characteristics. This transition is likely to be caused by the detachment of a descending oceanic slab, aligning with existing geological evidence. This case study highlights the promising potential of machine learning models, trained on simplified basalt types, in more accurately tracing lithospheric evolution. |
Author | Ma, Anlin Nichols, Alexander R. L. Qian, Sheng‐Ping Zheng, Dongyu Zi, Feng Zeng, Yun‐Chuan Wang, Kun Huang, Zongying Liao, Jia Ou, Quan Hou, Zixi |
Author_xml | – sequence: 1 givenname: Quan orcidid: 0000-0002-4444-8080 surname: Ou fullname: Ou, Quan email: ouquanCSU@126.com organization: Chengdu University of Technology – sequence: 2 givenname: Dongyu orcidid: 0000-0002-4310-8121 surname: Zheng fullname: Zheng, Dongyu email: zhengdongyu@cdut.edu.cn organization: Chengdu University of Technology – sequence: 3 givenname: Alexander R. L. orcidid: 0000-0002-8298-2882 surname: Nichols fullname: Nichols, Alexander R. L. organization: University of Canterbury – sequence: 4 givenname: Kun surname: Wang fullname: Wang, Kun organization: China University of Mining and Technology – sequence: 5 givenname: Sheng‐Ping orcidid: 0000-0003-1750-6027 surname: Qian fullname: Qian, Sheng‐Ping organization: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) – sequence: 6 givenname: Feng surname: Zi fullname: Zi, Feng organization: Hunan University of Science and Technology – sequence: 7 givenname: Anlin surname: Ma fullname: Ma, Anlin organization: Nanjing University – sequence: 8 givenname: Yun‐Chuan orcidid: 0000-0002-9701-9693 surname: Zeng fullname: Zeng, Yun‐Chuan organization: China University of Geosciences – sequence: 9 givenname: Zongying surname: Huang fullname: Huang, Zongying organization: Chinese Academy of Sciences – sequence: 10 givenname: Jia surname: Liao fullname: Liao, Jia organization: China Geological Survey – sequence: 11 givenname: Zixi surname: Hou fullname: Hou, Zixi organization: Chengdu University of Technology |
BookMark | eNp9kMtOAjEUhhuDiYjsfIA-gOjptNNplwSUSzAmIhsXTjq9QMnQMTNjDG9vETWsXLU5_fr9Of8l6oQqWISuCdwSSORdAgmbTwGAAZyhbiIlHaQJgc7J_QL1m2YbGUoTEJB10dvYtkpvdja0uHK43Vi8_CjMh259WONlqQrsAx4G7Q_E71MV8GtMb_DYN9rWwRq8ag4fHqPLB4sXVtUhDq7QuVNlY_s_Zw-tHu5fRtPB4mkyGw0XA01EIgZUGJMY4JAZkmasYJoankmeSk4Y1zxzhtgICmokUUZrCoS7tEhTJouUO9pDs6PXVGqbv9d-p-p9Ximffw-qep2ruvW6tLnTRgoRUwQtYlVSZYV0EJOcZpoBj66bo0vXVdPU1v35COSHqvPTqiMOR_zTl3b_L5vPJ88kLvEFbvZ-zg |
Cites_doi | 10.1016/S0009‐2541(97)00105‐8 10.1002/gj.2631 10.1080/00206814.2014.947639 10.1023/A:1010933404324 10.1016/j.lithos.2016.07.029 10.1002/2016GC006248 10.1007/bf02702907 10.2110/jsr.2019.55 10.1016/0012‐821X(87)90223‐8 10.1007/s11430‐022‐9947‐6 10.1016/j.lithos.2015.09.015 10.1016/0012‐821x(73)90129‐5 10.1016/j.gsf.2021.101283 10.1002/gj.4302 10.1007/BF00310465 10.1016/j.epsl.2013.08.034 10.1016/j.earscirev.2022.104031 10.1007/bf00375192 10.1029/2018jb015808 10.1029/2001rg000108 10.1016/0012‐821x(80)90116‐8 10.1130/B35896.1 10.1130/b26033.1 10.1130/1052‐5173(2005)015[4:TSFHIO]2.0.CO;2 10.1007/s11004‐023‐10128‐z 10.1016/s0012‐821x(00)00374‐5 10.1016/j.lithos.2015.07.016 10.1016/j.palaeo.2021.110661 10.1016/0012‐821x(82)90120‐0 10.1007/s00531‐016‐1391‐3 10.1016/j.gr.2015.11.006 10.1016/j.lithos.2022.106944 10.1016/j.gr.2011.11.014 10.1038/s41598‐017‐16482‐3 10.1016/j.epsl.2011.01.011 10.1029/2021GL094236 10.1016/j.jseaes.2016.12.010 10.1007/978-3-319-39193-9_268-1 10.1130/b35124.1 10.1016/0012‐821x(79)90133‐x 10.1016/j.lithos.2022.106713 10.1029/2020TC006198 10.1007/BF00321985 10.1007/978-3-540-76504-2 10.1016/j.gca.2005.12.016 10.1016/S0016‐7037(99)00355‐5 10.1016/j.epsl.2010.11.035 10.1029/2022GC010745 10.1016/j.gr.2015.05.013 10.1016/0016‐7037(87)90006‐8 10.1016/j.lithos.2014.07.010 10.1029/2018GL080964 10.1029/2017gc007401 10.1017/9781108777834.008 10.1093/petrology/egi005 10.1029/2022JB025772 10.1109/TNNLS.2022.3229161 10.1016/j.lithos.2017.11.012 10.1016/j.lithos.2016.09.002 10.1130/G38030.1 10.1002/2017JB014743 10.1016/j.epsl.2005.12.016 10.1126/science.276.5312.551 10.1016/j.gr.2015.07.004 10.1007/s11430‐022‐1011‐9 10.1029/JB089iB12p10311 10.1016/j.gr.2011.08.003 10.1002/2016GL070709 10.1007/s12583‐016‐0701‐9 10.1016/j.gsf.2019.05.003 10.1029/2007jb004934 10.1016/j.lithos.2015.03.021 10.1130/B32045.1 10.1093/petrology/egg061 10.1130/B35864.1 10.1016/0012‐821X(91)90029‐H 10.1016/0012‐821X(94)90154‐6 10.1016/j.lithos.2019.06.005 10.1007/s11430‐020‐9675‐y 10.1016/j.lithos.2013.01.012 10.1002/gj.3070 10.1016/j.lithos.2012.12.015 10.1016/0009‐2541(86)90004‐5 10.1111/j.1365‐3121.2008.00815.x 10.1016/j.gca.2007.07.027 10.1016/j.lithos.2015.06.022 10.1016/j.cageo.2021.104717 10.1016/j.jseaes.2016.02.006 10.1002/gj.3832 10.1016/j.epsl.2010.03.013 10.1016/j.gsf.2019.02.003 10.1016/j.epsl.2006.11.019 10.1016/j.lithos.2012.11.019 10.1016/j.earscirev.2022.104192 10.1007/s00410‐003‐0495‐5 10.1029/2017TC004842 10.1029/2005jb003799 10.1029/2020TC006280 10.1007/s00410‐016‐1292‐2 10.5281/zenodo.14059244 10.1038/362739a0 10.6084/m9.figshare.24015024.v8 10.1029/2005gc001092 10.1002/2014JB011362 10.1016/j.tecto.2020.228500 10.1016/j.lithos.2017.09.003 10.1038/36087 10.1016/j.gr.2018.08.006 10.1130/G48142.1 10.1016/j.gr.2014.06.010 10.1007/s11430‐007‐0045‐5 10.1130/b26074.1 10.1093/petrology/egab080 10.1016/j.lithos.2014.03.025 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1029/2024JH000400 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_fcd98857483b4009a7b9f0596fc4c406 10_1029_2024JH000400 JGR188 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of Sichuan Province funderid: 2023NSFSC0757; 2024NSFSC0828 – fundername: Provincial Natural Science Foundation of Hunan funderid: 2024JJ5394 – fundername: National Natural Science Foundation of China funderid: 41802057; 42202125; 42422602; 42472153 |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c1828-38dd2d0607d1574b4c3d6796596146c67fd1e82883d91adcc3016f5b5549b56f3 |
IEDL.DBID | DOA |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:23:17 EDT 2025 Sun Jul 06 05:05:05 EDT 2025 Wed Jan 22 17:11:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1828-38dd2d0607d1574b4c3d6796596146c67fd1e82883d91adcc3016f5b5549b56f3 |
ORCID | 0000-0002-4310-8121 0000-0003-1750-6027 0000-0002-4444-8080 0000-0002-8298-2882 0000-0002-9701-9693 |
OpenAccessLink | https://doaj.org/article/fcd98857483b4009a7b9f0596fc4c406 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fcd98857483b4009a7b9f0596fc4c406 crossref_primary_10_1029_2024JH000400 wiley_primary_10_1029_2024JH000400_JGR188 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | e_1_2_8_1_36_1 e_1_2_8_1_13_1 e_1_2_8_1_55_1 Song C. (e_1_2_8_2_40_1) 2012; 42 e_1_2_8_1_32_1 e_1_2_8_1_51_1 e_1_2_8_1_70_1 e_1_2_8_2_20_1 e_1_2_8_2_47_1 e_1_2_8_2_24_1 e_1_2_8_2_17_1 e_1_2_8_2_9_1 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_47_1 e_1_2_8_1_66_1 e_1_2_8_1_43_1 e_1_2_8_2_50_1 e_1_2_8_2_5_1 e_1_2_8_1_20_1 e_1_2_8_1_62_1 Cabanis B. (e_1_2_8_2_6_1) 1989; 309 e_1_2_8_2_54_1 e_1_2_8_2_31_1 e_1_2_8_2_12_1 e_1_2_8_2_35_1 e_1_2_8_1_3_1 e_1_2_8_2_28_1 e_1_2_8_1_7_1 Sun Z. (e_1_2_8_2_43_1) 2008; 24 e_1_2_8_1_17_1 e_1_2_8_1_59_1 e_1_2_8_1_14_1 e_1_2_8_1_33_1 e_1_2_8_1_56_1 e_1_2_8_1_52_1 e_1_2_8_1_71_1 e_1_2_8_1_8_1 Lundberg S. M. (e_1_2_8_1_27_1) 2017 e_1_2_8_2_42_1 Li H. (e_1_2_8_1_24_1) 2016; 40 e_1_2_8_2_23_1 e_1_2_8_2_16_1 e_1_2_8_2_39_1 e_1_2_8_1_26_1 e_1_2_8_1_49_1 Elliott T. (e_1_2_8_1_10_1) 2004 e_1_2_8_1_25_1 e_1_2_8_1_44_1 e_1_2_8_1_67_1 e_1_2_8_2_2_1 Sen G. (e_1_2_8_1_45_1) 2021 e_1_2_8_1_21_1 e_1_2_8_1_40_1 e_1_2_8_1_63_1 e_1_2_8_2_11_1 e_1_2_8_2_53_1 e_1_2_8_2_30_1 e_1_2_8_2_15_1 e_1_2_8_2_34_1 e_1_2_8_2_27_1 e_1_2_8_1_4_1 e_1_2_8_1_18_1 e_1_2_8_1_37_1 e_1_2_8_1_11_1 e_1_2_8_1_57_1 Yu Y. (e_1_2_8_2_52_1) 2016; 35 e_1_2_8_1_34_1 e_1_2_8_1_53_1 e_1_2_8_1_30_1 e_1_2_8_2_22_1 e_1_2_8_1_9_1 e_1_2_8_2_41_1 e_1_2_8_2_26_1 e_1_2_8_2_45_1 e_1_2_8_2_19_1 e_1_2_8_2_38_1 e_1_2_8_2_7_1 e_1_2_8_1_22_1 e_1_2_8_1_68_1 e_1_2_8_2_3_1 e_1_2_8_1_64_1 e_1_2_8_1_41_1 e_1_2_8_2_10_1 e_1_2_8_2_33_1 e_1_2_8_1_60_1 e_1_2_8_2_14_1 e_1_2_8_2_37_1 e_1_2_8_2_56_1 Zhu X. (e_1_2_8_2_57_1) 2015; 89 Zhu X. (e_1_2_8_2_58_1) 2015; 89 e_1_2_8_2_49_1 e_1_2_8_1_5_1 e_1_2_8_1_72_1 e_1_2_8_1_19_1 e_1_2_8_1_15_1 e_1_2_8_1_38_1 e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_58_1 e_1_2_8_1_31_1 e_1_2_8_1_54_1 e_1_2_8_1_50_1 e_1_2_8_2_21_1 e_1_2_8_2_44_1 e_1_2_8_2_25_1 e_1_2_8_2_48_1 e_1_2_8_2_18_1 Pearce J. A. (e_1_2_8_2_36_1) 1982 Tang X. (e_1_2_8_2_46_1) 2013; 56 e_1_2_8_2_8_1 e_1_2_8_1_28_1 e_1_2_8_1_23_1 e_1_2_8_1_46_1 e_1_2_8_1_69_1 e_1_2_8_1_42_1 e_1_2_8_1_65_1 e_1_2_8_2_51_1 e_1_2_8_2_4_1 e_1_2_8_1_61_1 e_1_2_8_2_55_1 e_1_2_8_2_32_1 e_1_2_8_2_13_1 e_1_2_8_1_2_1 e_1_2_8_2_29_1 e_1_2_8_1_6_1 e_1_2_8_1_16_1 e_1_2_8_1_39_1 |
References_xml | – ident: e_1_2_8_1_31_1 doi: 10.1016/S0009‐2541(97)00105‐8 – ident: e_1_2_8_2_23_1 doi: 10.1002/gj.2631 – ident: e_1_2_8_2_14_1 doi: 10.1080/00206814.2014.947639 – ident: e_1_2_8_1_3_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_2_25_1 doi: 10.1016/j.lithos.2016.07.029 – ident: e_1_2_8_2_18_1 doi: 10.1002/2016GC006248 – ident: e_1_2_8_1_54_1 doi: 10.1007/bf02702907 – start-page: 33 volume-title: Encyclopedia of geology year: 2021 ident: e_1_2_8_1_45_1 – ident: e_1_2_8_1_72_1 doi: 10.2110/jsr.2019.55 – start-page: 23 volume-title: Inside the subduction factory year: 2004 ident: e_1_2_8_1_10_1 – ident: e_1_2_8_1_42_1 doi: 10.1016/0012‐821X(87)90223‐8 – ident: e_1_2_8_1_69_1 doi: 10.1007/s11430‐022‐9947‐6 – ident: e_1_2_8_2_19_1 doi: 10.1016/j.lithos.2015.09.015 – ident: e_1_2_8_1_33_1 doi: 10.1016/0012‐821x(73)90129‐5 – ident: e_1_2_8_1_64_1 doi: 10.1016/j.gsf.2021.101283 – ident: e_1_2_8_2_10_1 doi: 10.1002/gj.4302 – ident: e_1_2_8_1_66_1 doi: 10.1007/s11430‐022‐9947‐6 – ident: e_1_2_8_1_44_1 doi: 10.1007/BF00310465 – ident: e_1_2_8_1_25_1 doi: 10.1016/j.epsl.2013.08.034 – ident: e_1_2_8_1_16_1 doi: 10.1016/j.earscirev.2022.104031 – ident: e_1_2_8_2_37_1 doi: 10.1007/bf00375192 – ident: e_1_2_8_1_6_1 doi: 10.1029/2018jb015808 – ident: e_1_2_8_1_50_1 doi: 10.1029/2001rg000108 – ident: e_1_2_8_1_57_1 doi: 10.1016/0012‐821x(80)90116‐8 – ident: e_1_2_8_2_16_1 doi: 10.1130/B35896.1 – ident: e_1_2_8_1_20_1 doi: 10.1130/b26033.1 – ident: e_1_2_8_1_51_1 doi: 10.1130/1052‐5173(2005)015[4:TSFHIO]2.0.CO;2 – ident: e_1_2_8_1_19_1 doi: 10.1007/s11004‐023‐10128‐z – ident: e_1_2_8_1_22_1 doi: 10.1016/s0012‐821x(00)00374‐5 – ident: e_1_2_8_2_47_1 doi: 10.1016/j.lithos.2015.07.016 – volume: 89 start-page: 534 issue: 3 year: 2015 ident: e_1_2_8_2_57_1 article-title: Zircon U‐Pb ages geochemistry of the porphyries from the Duobuza porphyry Cu‐Au deposit Tibet and their metallogenic significance publication-title: Acta Geologica Sinica – ident: e_1_2_8_2_49_1 doi: 10.1016/j.palaeo.2021.110661 – ident: e_1_2_8_1_46_1 doi: 10.1016/0012‐821x(82)90120‐0 – ident: e_1_2_8_2_26_1 doi: 10.1007/s00531‐016‐1391‐3 – ident: e_1_2_8_2_7_1 doi: 10.1016/j.gr.2015.11.006 – ident: e_1_2_8_2_13_1 doi: 10.1016/j.lithos.2022.106944 – ident: e_1_2_8_2_39_1 doi: 10.1016/j.gr.2011.11.014 – ident: e_1_2_8_2_5_1 doi: 10.1038/s41598‐017‐16482‐3 – ident: e_1_2_8_1_43_1 doi: 10.1016/j.epsl.2011.01.011 – ident: e_1_2_8_2_48_1 doi: 10.1029/2021GL094236 – ident: e_1_2_8_2_50_1 doi: 10.1016/j.jseaes.2016.12.010 – ident: e_1_2_8_1_37_1 doi: 10.1007/978-3-319-39193-9_268-1 – ident: e_1_2_8_1_21_1 doi: 10.1130/b35124.1 – ident: e_1_2_8_1_58_1 doi: 10.1016/0012‐821x(79)90133‐x – ident: e_1_2_8_2_31_1 doi: 10.1016/j.lithos.2022.106713 – ident: e_1_2_8_1_28_1 doi: 10.1029/2020TC006198 – ident: e_1_2_8_1_35_1 doi: 10.1007/BF00321985 – ident: e_1_2_8_1_12_1 doi: 10.1007/978-3-540-76504-2 – ident: e_1_2_8_1_56_1 doi: 10.1016/j.gca.2005.12.016 – ident: e_1_2_8_1_11_1 doi: 10.1016/S0016‐7037(99)00355‐5 – ident: e_1_2_8_1_53_1 doi: 10.1016/j.epsl.2010.11.035 – ident: e_1_2_8_1_71_1 doi: 10.1029/2022GC010745 – ident: e_1_2_8_2_29_1 doi: 10.1016/j.gr.2015.05.013 – ident: e_1_2_8_1_14_1 doi: 10.1016/0016‐7037(87)90006‐8 – ident: e_1_2_8_2_24_1 doi: 10.1016/j.lithos.2014.07.010 – volume: 89 start-page: 109 issue: 1 year: 2015 ident: e_1_2_8_2_58_1 article-title: Geochronology and geochemistry of porphyries from the Naruo porphyry copper deposit Tibet and their metallogenic significance publication-title: Acta Geologica Sinica – ident: e_1_2_8_2_33_1 doi: 10.1029/2018GL080964 – ident: e_1_2_8_1_52_1 doi: 10.1029/2017gc007401 – ident: e_1_2_8_1_41_1 doi: 10.1017/9781108777834.008 – ident: e_1_2_8_1_36_1 doi: 10.1093/petrology/egi005 – ident: e_1_2_8_1_63_1 doi: 10.1029/2022JB025772 – ident: e_1_2_8_1_2_1 doi: 10.1109/TNNLS.2022.3229161 – ident: e_1_2_8_2_30_1 doi: 10.1016/j.lithos.2017.11.012 – ident: e_1_2_8_1_61_1 doi: 10.1016/j.lithos.2016.09.002 – ident: e_1_2_8_2_28_1 doi: 10.1130/G38030.1 – ident: e_1_2_8_2_32_1 doi: 10.1002/2017JB014743 – ident: e_1_2_8_2_44_1 doi: 10.1016/j.epsl.2005.12.016 – ident: e_1_2_8_1_15_1 doi: 10.1126/science.276.5312.551 – start-page: 528 volume-title: Andesites: Orogenic andesites and related rocks year: 1982 ident: e_1_2_8_2_36_1 – ident: e_1_2_8_1_7_1 doi: 10.1016/j.gr.2015.07.004 – volume: 42 start-page: 241 issue: 2 year: 2012 ident: e_1_2_8_2_40_1 article-title: Late Triassic paleomagnetic data from the Qiangtang terrane of Tibetan Plateau and their tectonic significances publication-title: Journal of Jilin University (Earth Science Edition) – ident: e_1_2_8_1_26_1 – ident: e_1_2_8_1_68_1 doi: 10.1007/s11430‐022‐1011‐9 – ident: e_1_2_8_2_2_1 doi: 10.1029/JB089iB12p10311 – ident: e_1_2_8_2_42_1 doi: 10.1016/j.gr.2011.08.003 – volume: 40 start-page: 663 issue: 04 year: 2016 ident: e_1_2_8_1_24_1 article-title: Age and tectonic significance of Jingzhushan Formation in Bangong lake area, Tibet publication-title: Geotectonica et Metallogenia – ident: e_1_2_8_1_39_1 doi: 10.1002/2016GL070709 – ident: e_1_2_8_1_18_1 doi: 10.1007/s12583‐016‐0701‐9 – ident: e_1_2_8_2_56_1 doi: 10.1016/j.gsf.2019.05.003 – ident: e_1_2_8_1_5_1 doi: 10.1029/2007jb004934 – ident: e_1_2_8_2_15_1 doi: 10.1016/j.lithos.2015.03.021 – ident: e_1_2_8_2_17_1 doi: 10.1130/B32045.1 – volume: 35 start-page: 1281 year: 2016 ident: e_1_2_8_2_52_1 article-title: The petrology and geochemistry of Early Cretaceous ocean island volcanic rocks in the middle‐western segment of Bangong Co‐Nujiang suture zone publication-title: Geological Bulletin of China – ident: e_1_2_8_2_11_1 doi: 10.1093/petrology/egg061 – ident: e_1_2_8_2_38_1 doi: 10.1130/B35864.1 – ident: e_1_2_8_1_29_1 doi: 10.1016/0012‐821X(91)90029‐H – ident: e_1_2_8_1_4_1 doi: 10.1016/0012‐821X(94)90154‐6 – ident: e_1_2_8_2_20_1 doi: 10.1016/j.lithos.2019.06.005 – ident: e_1_2_8_1_60_1 doi: 10.1007/s11430‐020‐9675‐y – ident: e_1_2_8_2_41_1 doi: 10.1016/j.lithos.2013.01.012 – ident: e_1_2_8_2_35_1 doi: 10.1002/gj.3070 – volume: 309 start-page: 2023 issue: 20 year: 1989 ident: e_1_2_8_2_6_1 article-title: Le diagramme La/10‐Y/15‐Nb/8: Unoutil pour la discrimination des series volcaniques et la mise en evidence des processus de melande et/ou de contamination crustale publication-title: Comptes Rendues de la Academie des Sciences Série IIA – ident: e_1_2_8_2_22_1 doi: 10.1016/j.lithos.2012.12.015 – volume: 56 start-page: 136 issue: 1 year: 2013 ident: e_1_2_8_2_46_1 article-title: Paleomagnetism and Ar‐Ar geochronology of Cretaceous volcanic rocks in the middle Lhasa terrane, China and tectonic implications publication-title: Chinese Journal of Geophysics – ident: e_1_2_8_1_30_1 doi: 10.1016/0009‐2541(86)90004‐5 – ident: e_1_2_8_1_40_1 doi: 10.1111/j.1365‐3121.2008.00815.x – ident: e_1_2_8_1_13_1 doi: 10.1016/j.gca.2007.07.027 – ident: e_1_2_8_1_23_1 doi: 10.1016/j.lithos.2015.06.022 – ident: e_1_2_8_1_70_1 doi: 10.1016/j.cageo.2021.104717 – ident: e_1_2_8_2_55_1 doi: 10.1016/j.jseaes.2016.02.006 – ident: e_1_2_8_1_17_1 doi: 10.1002/gj.3832 – ident: e_1_2_8_2_45_1 doi: 10.1016/j.epsl.2010.03.013 – ident: e_1_2_8_1_67_1 doi: 10.1016/j.gsf.2019.02.003 – ident: e_1_2_8_2_12_1 doi: 10.1016/j.epsl.2006.11.019 – volume: 24 start-page: 1621 issue: 7 year: 2008 ident: e_1_2_8_2_43_1 article-title: New Early Cretaceous paleomagnetic data from volcanic of the eastern Lhusa Block and its tectonic implications publication-title: Acta Petrologica Sinica – ident: e_1_2_8_2_27_1 doi: 10.1016/j.lithos.2012.11.019 – ident: e_1_2_8_1_9_1 doi: 10.1016/j.earscirev.2022.104192 – ident: e_1_2_8_1_49_1 doi: 10.1007/s00410‐003‐0495‐5 – ident: e_1_2_8_2_8_1 doi: 10.1029/2017TC004842 – ident: e_1_2_8_1_48_1 doi: 10.1029/2005jb003799 – ident: e_1_2_8_2_4_1 doi: 10.1029/2020TC006280 – start-page: 10 volume-title: Proceedings of the 31st international conference on neural information processing systems year: 2017 ident: e_1_2_8_1_27_1 – ident: e_1_2_8_1_34_1 doi: 10.1007/s00410‐016‐1292‐2 – ident: e_1_2_8_1_65_1 doi: 10.5281/zenodo.14059244 – ident: e_1_2_8_1_38_1 doi: 10.1038/362739a0 – ident: e_1_2_8_1_32_1 doi: 10.6084/m9.figshare.24015024.v8 – ident: e_1_2_8_1_55_1 doi: 10.1029/2005gc001092 – ident: e_1_2_8_2_34_1 doi: 10.1002/2014JB011362 – ident: e_1_2_8_2_9_1 doi: 10.1016/j.tecto.2020.228500 – ident: e_1_2_8_2_54_1 doi: 10.1016/j.lithos.2017.09.003 – ident: e_1_2_8_1_47_1 doi: 10.1038/36087 – ident: e_1_2_8_1_59_1 doi: 10.1016/j.gr.2018.08.006 – ident: e_1_2_8_1_62_1 doi: 10.1130/G48142.1 – ident: e_1_2_8_2_51_1 doi: 10.1016/j.gr.2014.06.010 – ident: e_1_2_8_2_3_1 doi: 10.1007/s11430‐007‐0045‐5 – ident: e_1_2_8_1_8_1 doi: 10.1130/b26074.1 – ident: e_1_2_8_2_53_1 doi: 10.1093/petrology/egab080 – ident: e_1_2_8_2_21_1 doi: 10.1016/j.lithos.2014.03.025 |
SSID | ssj0003320807 |
Score | 2.2759168 |
Snippet | Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to... Abstract Identification of complex geochemical signatures of basalts from various tectonic settings using trace elements contents is still challenging due to... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | Bangong‐Nujiang ocean basalts machine learning simplification of basalt types slab detachment trace elements |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjykgcYGCKS2EnssVCgqgRCQKWKgSh-lS4pasv_584xUbsgsTqOY519vs-Xu-8IuVCxTVKlWWQA4Efc6Syq4EyMKrQPsJ8Apfpoi6d8MOLDcTYODjfMhWn4IVqHG2qGP69RwSu1CGQDyJEJt3Y-HMR-F26SLcyuRe78lD-3PhbG0rjJmE4xTA0sVRxi32GI69UB1qySJ-9fB6ve2tzvkp0AE2mvWdc9smHrffLRt8tKf6I_j84cBehGQe-RsBXsD32F9aTTmvZqn-PYPprV9B0J-Wl_utB2Dscq9XEC9NHHUVoaKFYnB2R0f_d2O4hCfYRIw61AREwYkxoQZmGSrOCKa2bQLZRJsLm5zgtnEiuwnLCRSWW0BmXOXaYAQUiV5Y4dkk4NEzgiVBunXF5YZmMAJLKQKucO0IcTqUYOry65_JVP-dXQYJT-93Uqy1U5dskNCq_tg-TVvmE2n5RBF0qnjRQCZiyYgndkVSjpsAyQ01wDwOiSKy_6P79UDh9eEiGO_9H3hGxjaxOMcko6y_m3PQNIsVTnft_8AErTv2Y priority: 102 providerName: Wiley-Blackwell |
Title | Detachment of the Subducting Slab in Ancient Subduction Zones Discerned Using Machine Learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000400 https://doaj.org/article/fcd98857483b4009a7b9f0596fc4c406 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB5gYLBIbCe2x0JbqkpFCKhUMRDFX8CSolJWfjtnJ1TtAgtLhiSKo3fnu2fn8g6hM524lGrDiAWCT7g3GSkhJpIy5AfwJ2CpsdriNh9O-GiaTVdafYWasFoeuAbu0hurpMwEl0yDv6lSaOVDzxhvuOG12DbkvJXFVIjBjFGgQqKpdE-oCot8Phom0WnXclCU6l-npjG3DHbQdkMKcbd-mV204ao99Nxzi9K8ht07PPMYiBqGWR7kWSHb4AewHn6rcLeKfzQuL80q_BTk93Hv7cO4OQRRHKsC8DhWTTrcCKq-7KPJoP94PSRNNwRiYA0gCZPWUgvQCZsCHJobZsMmEEAB0c7kwtvUydA82Kq0tMbA1M19poEvKJ3lnh2gVgUvcIiwsV77XDjmEqAfSiidcw9cw0tqgmJXG53_4FO816IXRfxYTVWximMbXQXwlvcEqep4AgxYNAYs_jJgG11E6H8dqRjd3KdSHv3HgMdoKzy6rkk5Qa3F_NOdArNY6A7apPyuE10JjuOv_jd3rMfl |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDK0wMMDBF5OIk9FgqE0lYIWqliIIpfpUuKSvn_3Dmhahck1sRxrLPP9_l89x0hF9I3QShV5GkA-B6zKvYK2BO9Au0DrCdAqS7aop9kQ9YZxaO6zinmwlT8EAuHG2qG269RwdEhXbMNIEkmHNtZJ_PdMlwnGywJU9TMkD0vnCxRFPpVynSIcWpgqvw6-B26uF7uYMUsOfb-VbTqzM39DtmucSJtVRO7S9ZMuUfe22ZeqA906NGppYDdKCg-MraCAaKvMKF0UtJW6ZIcF6-mJX1DRn7annwpM4N9lbpAAdpzgZSG1hyr430yvL8b3GZeXSDBU3As4F7EtQ41SDPVQZwyyVSk0S8UCzC6iUpSqwPDsZ6wFkGhlQJtTmwsAUIIGSc2OiCNEgZwSKjSVtokNZHxAZGIVMiEWYAflocKSbya5PJXPvlnxYORu_vrUOTLcmySGxTeog2yV7sH09k4r5Uht0oLzmHEPJLwjShSKSzWAbKKKUAYTXLlRP_nn_LOw0vA-dE_2p6TzWzQ6-bdx_7TMdnCFlVkyglpzGff5hTwxVyeuTX0A7ufwtI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIgFgQBRnh5gYIjIw0nssVBKKVBVQKWKgSh-lS5pVcr_584JUbsgsSaOY53v8fl8_kzIhfRNEEoVeRoAvsesir0cfKKXY3wAfQKU6qot-kl3yHqjeFQl3PAsTMkPUSfc0DKcv0YDn2lbkQ0gRyas2lmv6zstXCcbbr8PmZ3ZoM6xRFHolyemQyxTg0jlV7Xv0MX1cgcrUcmR96-CVRdtOjtku4KJtFXO6y5ZM8Ue-WibRa4-MZ9Hp5YCdKNg90jYCvGHvsJ80klBW4U741i_mhb0HQn5aXvypcwc3Cp1dQL02dVRGlpRrI73ybBz93bb9ar7ETwFqwLuRVzrUIMwUx3EKZNMRRrTQrGAmJuoJLU6MByvE9YiyLVSYMyJjSUgCCHjxEYHpFHAAA4JVdpKm6QmMj4AEpEKmTAL6MPyUCGHV5Nc_sonm5U0GJnbvg5FtizHJrlB4dVtkLzaPZjOx1llC5lVWnAOI-aRhG9Enkph8Rogq5gCgNEkV070f_4p692_BJwf_aPtOdkctDvZ00P_8ZhsYYOyLuWENBbzb3MK6GIhz5wK_QDEQsIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detachment+of+the+Subducting+Slab+in+Ancient+Subduction+Zones+Discerned+Using+Machine+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Quan+Ou&rft.au=Dongyu+Zheng&rft.au=Alexander+R.+L.+Nichols&rft.au=Kun+Wang&rft.date=2024-12-01&rft.pub=Wiley&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000400&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fcd98857483b4009a7b9f0596fc4c406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |