VIE-Net: Regressive U-Net for Vegetation Index Estimation
Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive evaluation methods. Among these indexes, the Normalized Difference Vegetation Index (NDVI) is a key metric used for assessing plant cover and h...
Saved in:
Published in | IEEE access Vol. 13; pp. 144650 - 144661 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive evaluation methods. Among these indexes, the Normalized Difference Vegetation Index (NDVI) is a key metric used for assessing plant cover and health by combining Near-Infrared (NIR) and Red reflectance. NDVI calculation is based on multispectral cameras equipped with NIR sensors. However, the presence of this sensor is what makes the device costly and therefore impractical for small-scale farms. To address this limitation, recent works have explored the use of artificial intelligence to build AI-powered RGB cameras as a more affordable alternative for NDVI estimation. This has been done by means of generative artificial intelligence (often prone to hallucinations) or via shallow neural networks (pixel-wise regression) with the drawback of a high computational cost. Here, we introduce an end-to-end non-generative approach for NDVI estimation from calibrated RGB images. The proposed model, called VIE-Net, is a convolutional neural network based on a regressive version of the U-Net architecture. The model is tested on two datasets with images captured at 25 m above ground level (remote sensing) and 1 meter from the subject (proximal sensing), achieving correlation performance up to <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.98 </tex-math></inline-formula> when non-vegetative background is removed. A lightweight version of the model was also tested, achieving <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.84 </tex-math></inline-formula>. This approach not only provides a cost-effective solution for NDVI estimation but also improves the reliability of vegetation health assessment using standard RGB images. |
---|---|
AbstractList | Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive evaluation methods. Among these indexes, the Normalized Difference Vegetation Index (NDVI) is a key metric used for assessing plant cover and health by combining Near-Infrared (NIR) and Red reflectance. NDVI calculation is based on multispectral cameras equipped with NIR sensors. However, the presence of this sensor is what makes the device costly and therefore impractical for small-scale farms. To address this limitation, recent works have explored the use of artificial intelligence to build AI-powered RGB cameras as a more affordable alternative for NDVI estimation. This has been done by means of generative artificial intelligence (often prone to hallucinations) or via shallow neural networks (pixel-wise regression) with the drawback of a high computational cost. Here, we introduce an end-to-end non-generative approach for NDVI estimation from calibrated RGB images. The proposed model, called VIE-Net, is a convolutional neural network based on a regressive version of the U-Net architecture. The model is tested on two datasets with images captured at 25 m above ground level (remote sensing) and 1 meter from the subject (proximal sensing), achieving correlation performance up to <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.98 </tex-math></inline-formula> when non-vegetative background is removed. A lightweight version of the model was also tested, achieving <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.84 </tex-math></inline-formula>. This approach not only provides a cost-effective solution for NDVI estimation but also improves the reliability of vegetation health assessment using standard RGB images. |
Author | Mei, Alessandro Costa, Corrado Figorilli, Simone Violino, Simona Pane, Catello Capparella, Valerio Nerio Nemmi, Eugenio Moscovini, Lavinia Ortenzi, Luciano Pallottino, Federico |
Author_xml | – sequence: 1 givenname: Valerio surname: Capparella fullname: Capparella, Valerio organization: Dipartimento di Matematica, Università di Roma "La Sapienza,", Rome, Italy – sequence: 2 givenname: Eugenio orcidid: 0000-0001-6518-7863 surname: Nerio Nemmi fullname: Nerio Nemmi, Eugenio organization: Department of Computer Science, Sapienza University of Rome, Rome, Italy – sequence: 3 givenname: Simona surname: Violino fullname: Violino, Simona organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy – sequence: 4 givenname: Corrado surname: Costa fullname: Costa, Corrado organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy – sequence: 5 givenname: Simone surname: Figorilli fullname: Figorilli, Simone organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy – sequence: 6 givenname: Lavinia orcidid: 0000-0001-9886-3194 surname: Moscovini fullname: Moscovini, Lavinia organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy – sequence: 7 givenname: Federico surname: Pallottino fullname: Pallottino, Federico organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy – sequence: 8 givenname: Catello surname: Pane fullname: Pane, Catello organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Orticoltura e Florovivaismo, Pescia, Pontecagnano Faiano, Italy – sequence: 9 givenname: Alessandro surname: Mei fullname: Mei, Alessandro organization: Department of Computer Science, Sapienza University of Rome, Rome, Italy – sequence: 10 givenname: Luciano orcidid: 0000-0002-1245-8882 surname: Ortenzi fullname: Ortenzi, Luciano email: luciano.ortenzi@unitus.it organization: Department of Computer Science, Sapienza University of Rome, Rome, Italy |
BookMark | eNpNkGFLwzAQhoNMcM79Av2QP9CaXNqm8dsodRaGgnP7GtL2MiraSlJE_72ZHeh9ueO9e4-X55LM-qFHQq45izln6nZVFOV2GwODNBapyjkkZ2QOPFORSEU2-zdfkKX3ryxUHqRUzonaV2X0iOMdfcaDQ--7T6S7o0Lt4OgeDziasRt6WvUtftHSj937r3BFzq1587g89QXZ3ZcvxUO0eVpXxWoTNTyHJGqZ4QZAIhjBLRMIrRRSoglBTWZqxTIVThLA2si0TfLWSmUaU3NpAUUtFkRMfxs3eO_Q6g8XIrhvzZk-AtATAH0EoE8AgutmcnWI-OfgYZcoED804VgF |
CODEN | IAECCG |
Cites_doi | 10.1109/TIP.2003.819861 10.3390/jimaging9030061 10.1007/978-1-4757-9083-2_11 10.1109/34.24792 10.1145/3339825.3391861 10.1038/s41597-023-02098-y 10.26782/jmcms.spl.4/2019.11.00003 10.1007/3-540-44938-8_13 10.1016/j.proenv.2015.10.043 10.1016/j.biocontrol.2021.104784 10.1145/3571730 10.1007/s11119-019-09704-3 10.1016/j.compag.2023.107833 10.1007/978-3-030-11021-5_15 10.1016/j.catena.2022.106529 10.3390/drones5040118 10.1109/TKDE.2021.3130191 10.1016/j.neucom.2018.05.103 10.1016/j.suscom.2022.100759 10.3390/rs15112833 10.1016/j.compag.2021.106617 10.1007/978-3-319-24574-4_28 10.1109/ICCVW60793.2023.00484 10.1109/IEMBS.1996.652767 10.1016/j.compag.2025.109919 10.1016/j.compag.2023.108536 10.1007/s11554-024-01474-0 10.1117/12.2575765 10.5555/3104322.3104425 10.3389/fpls.2021.630059 10.3390/s22176490 10.1016/j.compag.2024.108964 10.3390/s120607063 10.3390/rs14010084 10.1145/3463475 10.1016/j.compag.2022.107396 10.3390/math13050856 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION |
DOI | 10.1109/ACCESS.2025.3598124 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 2169-3536 |
EndPage | 144661 |
ExternalDocumentID | 10_1109_ACCESS_2025_3598124 11124492 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry for Education, University, and Research (MIUR) through the initiative “Department of Excellence” of Department of Agriculture and Forest Science (DAFE) Project 2023–2027 “Digital, Intelligent, Green and Sustainable (acronym: D.I.Ver.So) grantid: 232/2016 – fundername: Italian Ministry of Agriculture, Ministry of Agriculture, Food Sovereignty and Forestry (MASAF), National Program Sub-Project “Tecnologie Digitali Integrate per il Rafforzamento Sostenibile di Produzioni e Trasformazioni Agroalimentari (AgroFiliere)” (AgriDigit program) grantid: DM 36503.7305.2018 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION |
ID | FETCH-LOGICAL-c1824-d0a1a227e2a31f03e2d7377ea981a6ab90690a142eba75d48df79acab17f2e3b3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 16:41:03 EDT 2025 Wed Aug 27 07:37:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1824-d0a1a227e2a31f03e2d7377ea981a6ab90690a142eba75d48df79acab17f2e3b3 |
ORCID | 0000-0001-9886-3194 0000-0002-1245-8882 0000-0001-6518-7863 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11124492 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3598124 ieee_primary_11124492 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref31 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref19 ref18 Rohlf (ref27) 2013 Rouse (ref3); 1 Rawte (ref14) 2023 (ref37) 2023 ref24 ref46 ref23 ref45 Kingma (ref36) 2014 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Rohlf (ref26) 2015; 26 Howard (ref38) 2017 ref28 ref29 ref8 ref7 ref9 ref4 ref6 ref5 Liu (ref15) 2024 ref40 Kriegler (ref2) 1969; 1969 |
References_xml | – year: 2024 ident: ref15 article-title: A survey on hallucination in large vision-language models publication-title: arXiv:2402.00253 – ident: ref35 doi: 10.1109/TIP.2003.819861 – ident: ref21 doi: 10.3390/jimaging9030061 – ident: ref23 doi: 10.1007/978-1-4757-9083-2_11 – ident: ref24 doi: 10.1109/34.24792 – ident: ref10 doi: 10.1145/3339825.3391861 – ident: ref29 doi: 10.1038/s41597-023-02098-y – ident: ref5 doi: 10.26782/jmcms.spl.4/2019.11.00003 – ident: ref31 doi: 10.1007/3-540-44938-8_13 – ident: ref4 doi: 10.1016/j.proenv.2015.10.043 – ident: ref44 doi: 10.1016/j.biocontrol.2021.104784 – ident: ref13 doi: 10.1145/3571730 – ident: ref1 doi: 10.1007/s11119-019-09704-3 – year: 2023 ident: ref14 article-title: A survey of hallucination in large foundation models publication-title: arXiv:2309.05922 – ident: ref9 doi: 10.1016/j.compag.2023.107833 – ident: ref39 doi: 10.1007/978-3-030-11021-5_15 – ident: ref19 doi: 10.1016/j.catena.2022.106529 – ident: ref6 doi: 10.3390/drones5040118 – ident: ref32 doi: 10.1109/TKDE.2021.3130191 – ident: ref34 doi: 10.1016/j.neucom.2018.05.103 – ident: ref18 doi: 10.1016/j.suscom.2022.100759 – ident: ref20 doi: 10.3390/rs15112833 – year: 2014 ident: ref36 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref11 doi: 10.1016/j.compag.2021.106617 – volume: 1969 start-page: 97 year: 1969 ident: ref2 article-title: Preprocessing transformations and their effects on multispectral recognition publication-title: Remote Sens. Environ. – ident: ref17 doi: 10.1007/978-3-319-24574-4_28 – ident: ref33 doi: 10.1109/ICCVW60793.2023.00484 – year: 2017 ident: ref38 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref25 doi: 10.1109/IEMBS.1996.652767 – ident: ref12 doi: 10.1016/j.compag.2025.109919 – volume: 1 start-page: 309 volume-title: Proc., 3rd Earth Resource Technol. Satell. (ERTS) Symp. ident: ref3 article-title: Monitoring vegetation systems in the great plains with ERTS – ident: ref16 doi: 10.1016/j.compag.2023.108536 – ident: ref45 doi: 10.1007/s11554-024-01474-0 – ident: ref7 doi: 10.1117/12.2575765 – ident: ref30 doi: 10.5555/3104322.3104425 – year: 2013 ident: ref27 article-title: Tpssuper – ident: ref46 doi: 10.3389/fpls.2021.630059 – ident: ref28 doi: 10.3390/s22176490 – ident: ref42 doi: 10.1016/j.compag.2024.108964 – ident: ref22 doi: 10.3390/s120607063 – volume: 26 start-page: 9 issue: 1 year: 2015 ident: ref26 article-title: The tps series of software publication-title: Hystrix – ident: ref43 doi: 10.3390/rs14010084 – ident: ref40 doi: 10.1145/3463475 – volume-title: Qualcomm U-net Segmentation year: 2023 ident: ref37 – ident: ref8 doi: 10.1016/j.compag.2022.107396 – ident: ref41 doi: 10.3390/math13050856 |
SSID | ssj0000816957 |
Score | 2.3343372 |
Snippet | Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 144650 |
SubjectTerms | Accuracy Agriculture AI-powered sensors Cameras end-to-end approach Indexes machine learning application Meters Neural networks Normalized difference vegetation index open source regressive convolutional neural network remote and proximal sensing RGB sensor Sensors Training Vegetation mapping |
Title | VIE-Net: Regressive U-Net for Vegetation Index Estimation |
URI | https://ieeexplore.ieee.org/document/11124492 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iyiPygMjSRPHqTFbVbVqkeiAaNUt8uPSAalFVbrw6zk7LhQkJLbESiTnzrm773z3mZC7UgiLjptFBhREXBuIpNRZZLMUWMKBg6cvfp50R1P-NM_noVnd98IAgC8-g9hd-r18uzIblyrr4H-J3kiixd1H5FY3a30lVNwJEjIXgVkoTWSn1-_jRyAGZHnsiOpSxn94n53jVLw3GR6TyXYedRHJW7ypdGw-flE0_nuiJ-QoxJW0Vy-EU7IHyzNy2FusA7cG4N0O9-A5kbPxIJpA9UhfwGNuNHt06kYoxrF0BotQiEjHjlCRDtAW1G2OTTIdDl77oyicoxAZRA88solKFWMCmMrSMsmAWZEJAQpForpKS8dWrFLOQCuRW_5gSyGVUToVJYNMZxeksVwt4ZJQjB41aM24yYELRKCo2BRkbpU11uRJi9xv5Vu813QZhYcZiSxqdRROHUVQR4s0nfC-Hw1yu_pj_JocuNfrFMgNaVTrDdxiUFDptgfTbb8kPgG8RrS_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBZxHlmYGRpLHj1Jitqlq10GZAbdUt8uPSAalFVbrw6zknKRQkJLbYiiznzrmX774j5D4TwqLiZr4BBT7XBnwpdeTbiAILOXAo4ItHSas_4c-zeFYVqxe1MABQJJ9B4B6Lu3y7NGsXKmvif4naSKLE3UXFH9OyXOsrpOJ6SMhYVNhCNJTNdqeDn4FeIIsDB1VHGf-hf7YaqhT6pHdEks1OyjSSt2Cd68B8_AJp_PdWj8lhZVl67fIonJAdWJySg_Z8VaFrAI620AfPiJwOun4C-ZP3CoXXjYLPm7gZDy1ZbwrzKhXRGzhIRa-L0qAsdKyTSa877vT9qpOCb9B_4L4NFVWMCWAqolkYAbMiEgIUkkS1lJYOr1hRzkArEVv-aDMhlVGaioxBpKNzUlssF3BBPLQfNWjNuImBC_RBkbUUZGyVNdbEYYM8bOibvpeAGWnhaIQyLdmROnakFTsapO6I9_1qRbfLP-bvyF5_PBqmw0HyckX23VJlQOSa1PLVGm7QRMj1bXEwPgEWmrcT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VIE-Net%3A+Regressive+U-Net+for+Vegetation+Index+Estimation&rft.jtitle=IEEE+access&rft.au=Capparella%2C+Valerio&rft.au=Nerio+Nemmi%2C+Eugenio&rft.au=Violino%2C+Simona&rft.au=Costa%2C+Corrado&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=144650&rft.epage=144661&rft_id=info:doi/10.1109%2FACCESS.2025.3598124&rft.externalDocID=11124492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |