VIE-Net: Regressive U-Net for Vegetation Index Estimation

Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive evaluation methods. Among these indexes, the Normalized Difference Vegetation Index (NDVI) is a key metric used for assessing plant cover and h...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 144650 - 144661
Main Authors Capparella, Valerio, Nerio Nemmi, Eugenio, Violino, Simona, Costa, Corrado, Figorilli, Simone, Moscovini, Lavinia, Pallottino, Federico, Pane, Catello, Mei, Alessandro, Ortenzi, Luciano
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive evaluation methods. Among these indexes, the Normalized Difference Vegetation Index (NDVI) is a key metric used for assessing plant cover and health by combining Near-Infrared (NIR) and Red reflectance. NDVI calculation is based on multispectral cameras equipped with NIR sensors. However, the presence of this sensor is what makes the device costly and therefore impractical for small-scale farms. To address this limitation, recent works have explored the use of artificial intelligence to build AI-powered RGB cameras as a more affordable alternative for NDVI estimation. This has been done by means of generative artificial intelligence (often prone to hallucinations) or via shallow neural networks (pixel-wise regression) with the drawback of a high computational cost. Here, we introduce an end-to-end non-generative approach for NDVI estimation from calibrated RGB images. The proposed model, called VIE-Net, is a convolutional neural network based on a regressive version of the U-Net architecture. The model is tested on two datasets with images captured at 25 m above ground level (remote sensing) and 1 meter from the subject (proximal sensing), achieving correlation performance up to <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.98 </tex-math></inline-formula> when non-vegetative background is removed. A lightweight version of the model was also tested, achieving <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.84 </tex-math></inline-formula>. This approach not only provides a cost-effective solution for NDVI estimation but also improves the reliability of vegetation health assessment using standard RGB images.
AbstractList Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive evaluation methods. Among these indexes, the Normalized Difference Vegetation Index (NDVI) is a key metric used for assessing plant cover and health by combining Near-Infrared (NIR) and Red reflectance. NDVI calculation is based on multispectral cameras equipped with NIR sensors. However, the presence of this sensor is what makes the device costly and therefore impractical for small-scale farms. To address this limitation, recent works have explored the use of artificial intelligence to build AI-powered RGB cameras as a more affordable alternative for NDVI estimation. This has been done by means of generative artificial intelligence (often prone to hallucinations) or via shallow neural networks (pixel-wise regression) with the drawback of a high computational cost. Here, we introduce an end-to-end non-generative approach for NDVI estimation from calibrated RGB images. The proposed model, called VIE-Net, is a convolutional neural network based on a regressive version of the U-Net architecture. The model is tested on two datasets with images captured at 25 m above ground level (remote sensing) and 1 meter from the subject (proximal sensing), achieving correlation performance up to <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.98 </tex-math></inline-formula> when non-vegetative background is removed. A lightweight version of the model was also tested, achieving <inline-formula> <tex-math notation="LaTeX">r^{2} = 0.84 </tex-math></inline-formula>. This approach not only provides a cost-effective solution for NDVI estimation but also improves the reliability of vegetation health assessment using standard RGB images.
Author Mei, Alessandro
Costa, Corrado
Figorilli, Simone
Violino, Simona
Pane, Catello
Capparella, Valerio
Nerio Nemmi, Eugenio
Moscovini, Lavinia
Ortenzi, Luciano
Pallottino, Federico
Author_xml – sequence: 1
  givenname: Valerio
  surname: Capparella
  fullname: Capparella, Valerio
  organization: Dipartimento di Matematica, Università di Roma "La Sapienza,", Rome, Italy
– sequence: 2
  givenname: Eugenio
  orcidid: 0000-0001-6518-7863
  surname: Nerio Nemmi
  fullname: Nerio Nemmi, Eugenio
  organization: Department of Computer Science, Sapienza University of Rome, Rome, Italy
– sequence: 3
  givenname: Simona
  surname: Violino
  fullname: Violino, Simona
  organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy
– sequence: 4
  givenname: Corrado
  surname: Costa
  fullname: Costa, Corrado
  organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy
– sequence: 5
  givenname: Simone
  surname: Figorilli
  fullname: Figorilli, Simone
  organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy
– sequence: 6
  givenname: Lavinia
  orcidid: 0000-0001-9886-3194
  surname: Moscovini
  fullname: Moscovini, Lavinia
  organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy
– sequence: 7
  givenname: Federico
  surname: Pallottino
  fullname: Pallottino, Federico
  organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Monterotondo, Rome, Italy
– sequence: 8
  givenname: Catello
  surname: Pane
  fullname: Pane, Catello
  organization: Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Orticoltura e Florovivaismo, Pescia, Pontecagnano Faiano, Italy
– sequence: 9
  givenname: Alessandro
  surname: Mei
  fullname: Mei, Alessandro
  organization: Department of Computer Science, Sapienza University of Rome, Rome, Italy
– sequence: 10
  givenname: Luciano
  orcidid: 0000-0002-1245-8882
  surname: Ortenzi
  fullname: Ortenzi, Luciano
  email: luciano.ortenzi@unitus.it
  organization: Department of Computer Science, Sapienza University of Rome, Rome, Italy
BookMark eNpNkGFLwzAQhoNMcM79Av2QP9CaXNqm8dsodRaGgnP7GtL2MiraSlJE_72ZHeh9ueO9e4-X55LM-qFHQq45izln6nZVFOV2GwODNBapyjkkZ2QOPFORSEU2-zdfkKX3ryxUHqRUzonaV2X0iOMdfcaDQ--7T6S7o0Lt4OgeDziasRt6WvUtftHSj937r3BFzq1587g89QXZ3ZcvxUO0eVpXxWoTNTyHJGqZ4QZAIhjBLRMIrRRSoglBTWZqxTIVThLA2si0TfLWSmUaU3NpAUUtFkRMfxs3eO_Q6g8XIrhvzZk-AtATAH0EoE8AgutmcnWI-OfgYZcoED804VgF
CODEN IAECCG
Cites_doi 10.1109/TIP.2003.819861
10.3390/jimaging9030061
10.1007/978-1-4757-9083-2_11
10.1109/34.24792
10.1145/3339825.3391861
10.1038/s41597-023-02098-y
10.26782/jmcms.spl.4/2019.11.00003
10.1007/3-540-44938-8_13
10.1016/j.proenv.2015.10.043
10.1016/j.biocontrol.2021.104784
10.1145/3571730
10.1007/s11119-019-09704-3
10.1016/j.compag.2023.107833
10.1007/978-3-030-11021-5_15
10.1016/j.catena.2022.106529
10.3390/drones5040118
10.1109/TKDE.2021.3130191
10.1016/j.neucom.2018.05.103
10.1016/j.suscom.2022.100759
10.3390/rs15112833
10.1016/j.compag.2021.106617
10.1007/978-3-319-24574-4_28
10.1109/ICCVW60793.2023.00484
10.1109/IEMBS.1996.652767
10.1016/j.compag.2025.109919
10.1016/j.compag.2023.108536
10.1007/s11554-024-01474-0
10.1117/12.2575765
10.5555/3104322.3104425
10.3389/fpls.2021.630059
10.3390/s22176490
10.1016/j.compag.2024.108964
10.3390/s120607063
10.3390/rs14010084
10.1145/3463475
10.1016/j.compag.2022.107396
10.3390/math13050856
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/ACCESS.2025.3598124
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2169-3536
EndPage 144661
ExternalDocumentID 10_1109_ACCESS_2025_3598124
11124492
Genre orig-research
GrantInformation_xml – fundername: Ministry for Education, University, and Research (MIUR) through the initiative “Department of Excellence” of Department of Agriculture and Forest Science (DAFE) Project 2023–2027 “Digital, Intelligent, Green and Sustainable (acronym: D.I.Ver.So)
  grantid: 232/2016
– fundername: Italian Ministry of Agriculture, Ministry of Agriculture, Food Sovereignty and Forestry (MASAF), National Program Sub-Project “Tecnologie Digitali Integrate per il Rafforzamento Sostenibile di Produzioni e Trasformazioni Agroalimentari (AgroFiliere)” (AgriDigit program)
  grantid: DM 36503.7305.2018
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c1824-d0a1a227e2a31f03e2d7377ea981a6ab90690a142eba75d48df79acab17f2e3b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 16:41:03 EDT 2025
Wed Aug 27 07:37:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1824-d0a1a227e2a31f03e2d7377ea981a6ab90690a142eba75d48df79acab17f2e3b3
ORCID 0000-0001-9886-3194
0000-0002-1245-8882
0000-0001-6518-7863
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11124492
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3598124
ieee_primary_11124492
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref19
ref18
Rohlf (ref27) 2013
Rouse (ref3); 1
Rawte (ref14) 2023
(ref37) 2023
ref24
ref46
ref23
ref45
Kingma (ref36) 2014
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Rohlf (ref26) 2015; 26
Howard (ref38) 2017
ref28
ref29
ref8
ref7
ref9
ref4
ref6
ref5
Liu (ref15) 2024
ref40
Kriegler (ref2) 1969; 1969
References_xml – year: 2024
  ident: ref15
  article-title: A survey on hallucination in large vision-language models
  publication-title: arXiv:2402.00253
– ident: ref35
  doi: 10.1109/TIP.2003.819861
– ident: ref21
  doi: 10.3390/jimaging9030061
– ident: ref23
  doi: 10.1007/978-1-4757-9083-2_11
– ident: ref24
  doi: 10.1109/34.24792
– ident: ref10
  doi: 10.1145/3339825.3391861
– ident: ref29
  doi: 10.1038/s41597-023-02098-y
– ident: ref5
  doi: 10.26782/jmcms.spl.4/2019.11.00003
– ident: ref31
  doi: 10.1007/3-540-44938-8_13
– ident: ref4
  doi: 10.1016/j.proenv.2015.10.043
– ident: ref44
  doi: 10.1016/j.biocontrol.2021.104784
– ident: ref13
  doi: 10.1145/3571730
– ident: ref1
  doi: 10.1007/s11119-019-09704-3
– year: 2023
  ident: ref14
  article-title: A survey of hallucination in large foundation models
  publication-title: arXiv:2309.05922
– ident: ref9
  doi: 10.1016/j.compag.2023.107833
– ident: ref39
  doi: 10.1007/978-3-030-11021-5_15
– ident: ref19
  doi: 10.1016/j.catena.2022.106529
– ident: ref6
  doi: 10.3390/drones5040118
– ident: ref32
  doi: 10.1109/TKDE.2021.3130191
– ident: ref34
  doi: 10.1016/j.neucom.2018.05.103
– ident: ref18
  doi: 10.1016/j.suscom.2022.100759
– ident: ref20
  doi: 10.3390/rs15112833
– year: 2014
  ident: ref36
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref11
  doi: 10.1016/j.compag.2021.106617
– volume: 1969
  start-page: 97
  year: 1969
  ident: ref2
  article-title: Preprocessing transformations and their effects on multispectral recognition
  publication-title: Remote Sens. Environ.
– ident: ref17
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref33
  doi: 10.1109/ICCVW60793.2023.00484
– year: 2017
  ident: ref38
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref25
  doi: 10.1109/IEMBS.1996.652767
– ident: ref12
  doi: 10.1016/j.compag.2025.109919
– volume: 1
  start-page: 309
  volume-title: Proc., 3rd Earth Resource Technol. Satell. (ERTS) Symp.
  ident: ref3
  article-title: Monitoring vegetation systems in the great plains with ERTS
– ident: ref16
  doi: 10.1016/j.compag.2023.108536
– ident: ref45
  doi: 10.1007/s11554-024-01474-0
– ident: ref7
  doi: 10.1117/12.2575765
– ident: ref30
  doi: 10.5555/3104322.3104425
– year: 2013
  ident: ref27
  article-title: Tpssuper
– ident: ref46
  doi: 10.3389/fpls.2021.630059
– ident: ref28
  doi: 10.3390/s22176490
– ident: ref42
  doi: 10.1016/j.compag.2024.108964
– ident: ref22
  doi: 10.3390/s120607063
– volume: 26
  start-page: 9
  issue: 1
  year: 2015
  ident: ref26
  article-title: The tps series of software
  publication-title: Hystrix
– ident: ref43
  doi: 10.3390/rs14010084
– ident: ref40
  doi: 10.1145/3463475
– volume-title: Qualcomm U-net Segmentation
  year: 2023
  ident: ref37
– ident: ref8
  doi: 10.1016/j.compag.2022.107396
– ident: ref41
  doi: 10.3390/math13050856
SSID ssj0000816957
Score 2.3343372
Snippet Vegetation indexes (VIs) are important indicators in agriculture, revealing valuable information about the vegetative status of crops through nondestructive...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 144650
SubjectTerms Accuracy
Agriculture
AI-powered sensors
Cameras
end-to-end approach
Indexes
machine learning application
Meters
Neural networks
Normalized difference vegetation index
open source
regressive convolutional neural network
remote and proximal sensing
RGB sensor
Sensors
Training
Vegetation mapping
Title VIE-Net: Regressive U-Net for Vegetation Index Estimation
URI https://ieeexplore.ieee.org/document/11124492
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iyiPygMjSRPHqTFbVbVqkeiAaNUt8uPSAalFVbrw6zk7LhQkJLbESiTnzrm773z3mZC7UgiLjptFBhREXBuIpNRZZLMUWMKBg6cvfp50R1P-NM_noVnd98IAgC8-g9hd-r18uzIblyrr4H-J3kiixd1H5FY3a30lVNwJEjIXgVkoTWSn1-_jRyAGZHnsiOpSxn94n53jVLw3GR6TyXYedRHJW7ypdGw-flE0_nuiJ-QoxJW0Vy-EU7IHyzNy2FusA7cG4N0O9-A5kbPxIJpA9UhfwGNuNHt06kYoxrF0BotQiEjHjlCRDtAW1G2OTTIdDl77oyicoxAZRA88solKFWMCmMrSMsmAWZEJAQpForpKS8dWrFLOQCuRW_5gSyGVUToVJYNMZxeksVwt4ZJQjB41aM24yYELRKCo2BRkbpU11uRJi9xv5Vu813QZhYcZiSxqdRROHUVQR4s0nfC-Hw1yu_pj_JocuNfrFMgNaVTrDdxiUFDptgfTbb8kPgG8RrS_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBZxHlmYGRpLHj1Jitqlq10GZAbdUt8uPSAalFVbrw6zknKRQkJLbYiiznzrmX774j5D4TwqLiZr4BBT7XBnwpdeTbiAILOXAo4ItHSas_4c-zeFYVqxe1MABQJJ9B4B6Lu3y7NGsXKmvif4naSKLE3UXFH9OyXOsrpOJ6SMhYVNhCNJTNdqeDn4FeIIsDB1VHGf-hf7YaqhT6pHdEks1OyjSSt2Cd68B8_AJp_PdWj8lhZVl67fIonJAdWJySg_Z8VaFrAI620AfPiJwOun4C-ZP3CoXXjYLPm7gZDy1ZbwrzKhXRGzhIRa-L0qAsdKyTSa877vT9qpOCb9B_4L4NFVWMCWAqolkYAbMiEgIUkkS1lJYOr1hRzkArEVv-aDMhlVGaioxBpKNzUlssF3BBPLQfNWjNuImBC_RBkbUUZGyVNdbEYYM8bOibvpeAGWnhaIQyLdmROnakFTsapO6I9_1qRbfLP-bvyF5_PBqmw0HyckX23VJlQOSa1PLVGm7QRMj1bXEwPgEWmrcT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VIE-Net%3A+Regressive+U-Net+for+Vegetation+Index+Estimation&rft.jtitle=IEEE+access&rft.au=Capparella%2C+Valerio&rft.au=Nerio+Nemmi%2C+Eugenio&rft.au=Violino%2C+Simona&rft.au=Costa%2C+Corrado&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=144650&rft.epage=144661&rft_id=info:doi/10.1109%2FACCESS.2025.3598124&rft.externalDocID=11124492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon