Mixed supervised cross-subject seizure detection with transformer and reference learning
Automatic seizure detection aims to identify occurrences of epileptic seizures, enabling timely seizure intervention and protecting patients’ safety. In recent years, deep learning has significantly promoted the research progress in the field of seizure detection. In this paper, we propose a cross-s...
Saved in:
Published in | Applied soft computing Vol. 175; p. 113104 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 |
DOI | 10.1016/j.asoc.2025.113104 |
Cover
Loading…
Abstract | Automatic seizure detection aims to identify occurrences of epileptic seizures, enabling timely seizure intervention and protecting patients’ safety. In recent years, deep learning has significantly promoted the research progress in the field of seizure detection. In this paper, we propose a cross-subject seizure detection system based on a transformer encoder. A novel data fusion approach is leveraged to mitigate the imbalance issue of seizure and non-seizure data. Meanwhile, a new mapping method is employed to replace traditional feature extractors, effectively enhancing the real-time capabilities of the system. A mixed supervised and unsupervised learning approach, coupled with a specially designed loss function, is utilized to strengthen the model's ability to capture temporal and spatial features in electroencephalogram (EEG) signals. Furthermore, an innovative learning strategy named reference learning is proposed to enhance the model's generalization performance. Finally, the proposed system was evaluated on the publicly available CHB-MIT dataset using the Leave-One-Out Cross-Validation (LOOCV) strategy. The system achieved a segment-based sensitivity of 91.06 % and an event-based sensitivity of 93.59 % in the cross-subject seizure detection task.
•An end-to-end transformer-based model for cross-subject seizure detection is proposed.•The mixed supervised training method is used to train the model.•Enhance model performance through an innovative reference learning strategy.•The proposed model effectively captures the temporal and spatial features of EEG. |
---|---|
AbstractList | Automatic seizure detection aims to identify occurrences of epileptic seizures, enabling timely seizure intervention and protecting patients’ safety. In recent years, deep learning has significantly promoted the research progress in the field of seizure detection. In this paper, we propose a cross-subject seizure detection system based on a transformer encoder. A novel data fusion approach is leveraged to mitigate the imbalance issue of seizure and non-seizure data. Meanwhile, a new mapping method is employed to replace traditional feature extractors, effectively enhancing the real-time capabilities of the system. A mixed supervised and unsupervised learning approach, coupled with a specially designed loss function, is utilized to strengthen the model's ability to capture temporal and spatial features in electroencephalogram (EEG) signals. Furthermore, an innovative learning strategy named reference learning is proposed to enhance the model's generalization performance. Finally, the proposed system was evaluated on the publicly available CHB-MIT dataset using the Leave-One-Out Cross-Validation (LOOCV) strategy. The system achieved a segment-based sensitivity of 91.06 % and an event-based sensitivity of 93.59 % in the cross-subject seizure detection task.
•An end-to-end transformer-based model for cross-subject seizure detection is proposed.•The mixed supervised training method is used to train the model.•Enhance model performance through an innovative reference learning strategy.•The proposed model effectively captures the temporal and spatial features of EEG. |
ArticleNumber | 113104 |
Author | Li, Haotian He, Landi Zhou, Weidong Dong, Xingchen Ji, Dezan Liu, Guoyang |
Author_xml | – sequence: 1 givenname: Landi surname: He fullname: He, Landi organization: School of Integrated Circuits, Shandong University, Jinan 250100, PR China – sequence: 2 givenname: Dezan surname: Ji fullname: Ji, Dezan organization: School of Integrated Circuits, Shandong University, Jinan 250100, PR China – sequence: 3 givenname: Xingchen surname: Dong fullname: Dong, Xingchen organization: School of Integrated Circuits, Shandong University, Jinan 250100, PR China – sequence: 4 givenname: Haotian surname: Li fullname: Li, Haotian organization: School of Integrated Circuits, Shandong University, Jinan 250100, PR China – sequence: 5 givenname: Guoyang surname: Liu fullname: Liu, Guoyang organization: School of Integrated Circuits, Shandong University, Jinan 250100, PR China – sequence: 6 givenname: Weidong orcidid: 0000-0001-9481-1696 surname: Zhou fullname: Zhou, Weidong email: wdzhou@sdu.edu.cn organization: School of Integrated Circuits, Shandong University, Jinan 250100, PR China |
BookMark | eNp9kMtOwzAQRb0oEm3hB1j5BxI8jpM4EhtU8ZKK2IDEzvJjAo5ap7LT8vh6Esqa1cxIc0dnzoLMQh-QkAtgOTCoLrtcp97mnPEyByiAiRmZQ1nJTDSiOiWLlDo2LjZczsnro_9ER9N-h_Hg09ja2KeUpb3p0A40of_eR6QOh3H0faAffninQ9QhtX3cYqQ6OBqxxYjBIt2gjsGHtzNy0upNwvO_uiQvtzfPq_ts_XT3sLpeZxYkDBkaXjPJrawscFML4G2LvGKNcK0p0dTSNbKEojZYCAagay6dAcELC00py2JJ-PHuL_fIoXbRb3X8UsDU5EN1avKhJh_q6GMMXR1DOJIdPEaVrJ_wnY_jm8r1_r_4D6BgblY |
Cites_doi | 10.1155/2020/7902072 10.1016/j.patrec.2019.10.034 10.1016/j.inffus.2023.03.022 10.1016/j.compbiomed.2021.104684 10.1371/journal.pone.0305166 10.1109/JBHI.2021.3138852 10.3390/brainsci13050820 10.1111/epi.14047 10.1016/j.cmpb.2023.107856 10.1109/TNSRE.2021.3055276 10.1097/WNP.0000000000000572 10.1109/CIBCB.2015.7300286 10.1111/j.1528-1167.2007.01391.x 10.1109/JBHI.2022.3199206 10.1061/(ASCE)CP.1943-5487.0000719 10.1016/S0140-6736(14)60456-6 10.1142/S0129065724500126 10.1007/s00521-023-08832-2 10.1097/WNP.0000000000000510 10.1016/j.compeleceng.2016.05.016 10.1109/WPMC48795.2019.9096119 10.1142/S0129065723500545 10.1109/ICMLA55696.2022.00208 10.1186/s40708-020-00105-1 10.1109/TNSRE.2012.2206054 10.1016/j.knosys.2016.11.023 10.1142/S0129065719500242 10.1109/EMBC.2018.8513617 10.3390/ijerph18115780 10.1109/BIOCAS.2018.8584683 10.1016/j.knosys.2013.02.014 10.1016/S0140-6736(18)32596-0 10.1109/NEWCAS.2018.8585542 10.1109/TNSRE.2022.3143540 10.1016/j.bspc.2023.105664 10.1016/j.neucom.2018.10.108 10.1109/CVPR.2018.00508 10.1142/S0129065721500519 10.1109/ACCESS.2018.2870883 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2025.113104 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_asoc_2025_113104 S1568494625004156 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EFKBS |
ID | FETCH-LOGICAL-c181t-eb27082c86c12b7412ffe26094dfb5eb78d985137be34011a728db1423c195853 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Wed Aug 20 07:42:24 EDT 2025 Sat May 24 17:06:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mixed supervised learning Electroencephalogram (EEG) Transformer encoder Epilepsy Cross-subject seizure detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c181t-eb27082c86c12b7412ffe26094dfb5eb78d985137be34011a728db1423c195853 |
ORCID | 0000-0001-9481-1696 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2025_113104 elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113104 |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ives-Deliperi, Butler (bib6) 2018; 35 Birjandtalab, J., et al. Imbalance learning using neural networks for seizure detection. in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2018. IEEE. Amin, Benbadis (bib8) 2019; 36 Liu, Tian, Zhou (bib45) 2022; 32 Zhang (bib19) 2020; 2020 Acharya (bib5) 2013; 45 Abdelhameed, A.M., H.G. Daoud, and M. Bayoumi. Deep convolutional bidirectional LSTM recurrent neural network for epileptic seizure detection. in 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS). 2018. IEEE. Jebelli, Hwang, Lee (bib11) 2018; 32 Zhong (bib14) 2024; 24 Loshchilov, I. and F. Hutter, Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016. Jacoby, Austin (bib4) 2007; 48 Potter (bib38) 2022 He, A., et al. A twofold siamese network for real-time object tracking. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Dosovitskiy, A., et al., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. Samiee, Kovács, Gabbouj (bib48) 2017; 118 Duan (bib49) 2022; 26 Liu (bib21) 2012; 20 Rukhsar, Tiwari (bib35) 2023; 242 Siddiqui (bib12) 2020; 7 Ba, J.L., J.R. Kiros, and G.E. Hinton, Layer normalization. arXiv preprint arXiv:1607.06450, 2016. Tian (bib41) 2023; 13 Sameer, M., et al. Epileptical seizure detection: Performance analysis of gamma band in EEG signal using short-time Fourier transform. in 2019 22nd international symposium on wireless personal multimedia communications (WPMC). 2019. IEEE. Liu (bib10) 2023 Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. Khan (bib28) 2021; 136 Cui (bib17) 2022 Zhang (bib9) 2022; 30 Upadhyay, Padhy, Kankar (bib23) 2016; 53 Shanmugam, Dharmar (bib29) 2023; 35 Thara, PremaSudha, Xiong (bib31) 2019; 128 Wang, Shi, Choy (bib20) 2018; 6 Liu, Zhou, Geng (bib26) 2020; 30 Vaswani (bib18) 2017 Shoeibi (bib16) 2021; 18 Leijten (bib13) 2018; 59 Moshé (bib3) 2015; 385 Ru (bib51) 2024; 19 Tasci (bib25) 2023; 96 Liang (bib40) 2020; 396 Sun (bib34) 2022; 26 Smart, O. and M. Chen. Semi-automated patient-specific scalp eeg seizure detection with unsupervised machine learning. in 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). 2015. IEEE. Zhang (bib50) 2024; 89 Lin (bib44) 2017 Engel, Pedley (bib1) 2008 Thijs (bib2) 2019; 393 Rizal, Priharti, Hadiyoso (bib24) 2021; 17 Dong (bib15) 2024 O’Shea, A., et al. Investigating the impact of CNN depth on neonatal seizure detection performance. in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. IEEE. Li (bib7) 2021; 29 Li (bib39) 2023 Jacoby (10.1016/j.asoc.2025.113104_bib4) 2007; 48 Wang (10.1016/j.asoc.2025.113104_bib20) 2018; 6 Siddiqui (10.1016/j.asoc.2025.113104_bib12) 2020; 7 Rizal (10.1016/j.asoc.2025.113104_bib24) 2021; 17 Liang (10.1016/j.asoc.2025.113104_bib40) 2020; 396 10.1016/j.asoc.2025.113104_bib46 Moshé (10.1016/j.asoc.2025.113104_bib3) 2015; 385 10.1016/j.asoc.2025.113104_bib47 Duan (10.1016/j.asoc.2025.113104_bib49) 2022; 26 Leijten (10.1016/j.asoc.2025.113104_bib13) 2018; 59 10.1016/j.asoc.2025.113104_bib42 Amin (10.1016/j.asoc.2025.113104_bib8) 2019; 36 10.1016/j.asoc.2025.113104_bib43 Khan (10.1016/j.asoc.2025.113104_bib28) 2021; 136 Potter (10.1016/j.asoc.2025.113104_bib38) 2022 Shanmugam (10.1016/j.asoc.2025.113104_bib29) 2023; 35 Dong (10.1016/j.asoc.2025.113104_bib15) 2024 Zhong (10.1016/j.asoc.2025.113104_bib14) 2024; 24 Vaswani (10.1016/j.asoc.2025.113104_bib18) 2017 Acharya (10.1016/j.asoc.2025.113104_bib5) 2013; 45 Liu (10.1016/j.asoc.2025.113104_bib10) 2023 Jebelli (10.1016/j.asoc.2025.113104_bib11) 2018; 32 Tian (10.1016/j.asoc.2025.113104_bib41) 2023; 13 Thara (10.1016/j.asoc.2025.113104_bib31) 2019; 128 Liu (10.1016/j.asoc.2025.113104_bib45) 2022; 32 Engel (10.1016/j.asoc.2025.113104_bib1) 2008 Ives-Deliperi (10.1016/j.asoc.2025.113104_bib6) 2018; 35 Rukhsar (10.1016/j.asoc.2025.113104_bib35) 2023; 242 Sun (10.1016/j.asoc.2025.113104_bib34) 2022; 26 Tasci (10.1016/j.asoc.2025.113104_bib25) 2023; 96 Liu (10.1016/j.asoc.2025.113104_bib26) 2020; 30 Samiee (10.1016/j.asoc.2025.113104_bib48) 2017; 118 Zhang (10.1016/j.asoc.2025.113104_bib50) 2024; 89 10.1016/j.asoc.2025.113104_bib27 Cui (10.1016/j.asoc.2025.113104_bib17) 2022 Zhang (10.1016/j.asoc.2025.113104_bib9) 2022; 30 Shoeibi (10.1016/j.asoc.2025.113104_bib16) 2021; 18 Lin (10.1016/j.asoc.2025.113104_bib44) 2017 10.1016/j.asoc.2025.113104_bib22 Liu (10.1016/j.asoc.2025.113104_bib21) 2012; 20 Li (10.1016/j.asoc.2025.113104_bib39) 2023 Upadhyay (10.1016/j.asoc.2025.113104_bib23) 2016; 53 Thijs (10.1016/j.asoc.2025.113104_bib2) 2019; 393 Li (10.1016/j.asoc.2025.113104_bib7) 2021; 29 Ru (10.1016/j.asoc.2025.113104_bib51) 2024; 19 Zhang (10.1016/j.asoc.2025.113104_bib19) 2020; 2020 10.1016/j.asoc.2025.113104_bib37 10.1016/j.asoc.2025.113104_bib36 10.1016/j.asoc.2025.113104_bib30 10.1016/j.asoc.2025.113104_bib33 10.1016/j.asoc.2025.113104_bib32 |
References_xml | – volume: 30 start-page: 1950024 year: 2020 ident: bib26 article-title: Automatic seizure detection based on S-transform and deep convolutional neural network publication-title: Int. J. Neural Syst. – volume: 89 year: 2024 ident: bib50 article-title: Cross-patient automatic epileptic seizure detection using patient-adversarial neural networks with spatio-temporal EEG augmentation publication-title: Biomed. Signal Process. Control – volume: 26 start-page: 5418 year: 2022 end-page: 5427 ident: bib34 article-title: Continuous seizure detection based on transformer and long-term iEEG publication-title: IEEE J. Biomed. Health Inform. – year: 2017 ident: bib44 article-title: Focal loss for dense object detection publication-title: Proc. IEEE Int. Conf. Comput. Vis. – volume: 7 start-page: 5 year: 2020 ident: bib12 article-title: A review of epileptic seizure detection using machine learning classifiers publication-title: Brain Inform. – volume: 6 start-page: 67277 year: 2018 end-page: 67290 ident: bib20 article-title: Hardware design of real time epileptic seizure detection based on STFT and SVM publication-title: IEEE Access – volume: 96 start-page: 252 year: 2023 end-page: 268 ident: bib25 article-title: Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals publication-title: Inf. Fusion – volume: 48 start-page: 6 year: 2007 end-page: 9 ident: bib4 article-title: Social stigma for adults and children with epilepsy publication-title: Epilepsia – volume: 59 start-page: 42 year: 2018 end-page: 47 ident: bib13 article-title: Multimodal seizure detection: a review publication-title: Epilepsia – year: 2023 ident: bib10 article-title: Epileptic seizure prediction using attention augmented convolutional network publication-title: Int. J. Neural Syst. – year: 2022 ident: bib17 article-title: Transfer Learning Based Seizure Detection: A Review publication-title: in International Conference on Cognitive Computation and Systems – volume: 35 start-page: 504 year: 2018 end-page: 509 ident: bib6 article-title: Relationship between EEG electrode and functional cortex in the international 10 to 20 system publication-title: J. Clin. Neurophysiol. – volume: 396 start-page: 569 year: 2020 end-page: 576 ident: bib40 article-title: Scalp EEG epileptogenic zone recognition and localization based on long-term recurrent convolutional network publication-title: Neurocomputing – year: 2017 ident: bib18 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 year: 2024 ident: bib51 article-title: Epilepsy detection based on multi-head self-attention mechanism publication-title: Plos One – volume: 13 start-page: 820 year: 2023 ident: bib41 article-title: Automatic seizure detection and prediction based on brain connectivity features and a CNNs meet transformers classifier publication-title: Brain Sci. – reference: Loshchilov, I. and F. Hutter, Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016. – reference: Dosovitskiy, A., et al., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. – reference: Birjandtalab, J., et al. Imbalance learning using neural networks for seizure detection. in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2018. IEEE. – volume: 242 year: 2023 ident: bib35 article-title: Lightweight convolution transformer for cross-patient seizure detection in multi-channel EEG signals publication-title: Comput. Methods Prog. Biomed. – volume: 20 start-page: 749 year: 2012 end-page: 755 ident: bib21 article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 45 start-page: 147 year: 2013 end-page: 165 ident: bib5 article-title: Automated EEG analysis of epilepsy: a review publication-title: Knowl. -Based Syst. – volume: 128 start-page: 529 year: 2019 end-page: 535 ident: bib31 article-title: Epileptic seizure detection and prediction using stacked bidirectional long short term memory publication-title: Pattern Recognit. Lett. – volume: 26 start-page: 2147 year: 2022 end-page: 2157 ident: bib49 article-title: An automatic method for epileptic seizure detection based on deep metric learning publication-title: IEEE J. Biomed. Health Inform. – volume: 393 start-page: 689 year: 2019 end-page: 701 ident: bib2 article-title: Epilepsy in adults publication-title: Lancet – volume: 18 start-page: 5780 year: 2021 ident: bib16 article-title: Epileptic seizures detection using deep learning techniques: A review publication-title: Int. J. Environ. Res. Public Health – reference: O’Shea, A., et al. Investigating the impact of CNN depth on neonatal seizure detection performance. in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. IEEE. – volume: 32 start-page: 2150051 year: 2022 ident: bib45 article-title: Patient-independent seizure detection based on channel-perturbation convolutional neural network and bidirectional long short-term memory publication-title: Int. J. Neural Syst. – year: 2024 ident: bib15 article-title: Epileptic seizure detection with an end-to-end temporal convolutional network and bidirectional long short-term memory model publication-title: Int. J. Neural Syst. – volume: 136 year: 2021 ident: bib28 article-title: HVD-LSTM based recognition of epileptic seizures and normal human activity publication-title: Comput. Biol. Med. – volume: 29 start-page: 458 year: 2021 end-page: 467 ident: bib7 article-title: Seizure onset detection using empirical mode decomposition and common spatial pattern publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 36 start-page: 294 year: 2019 end-page: 297 ident: bib8 article-title: The role of EEG in the erroneous diagnosis of epilepsy publication-title: J. Clin. Neurophysiol. – reference: Abdelhameed, A.M., H.G. Daoud, and M. Bayoumi. Deep convolutional bidirectional LSTM recurrent neural network for epileptic seizure detection. in 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS). 2018. IEEE. – year: 2022 ident: bib38 article-title: Unsupervised multivariate time-series transformers for seizure identification on EEG publication-title: 2022 21st IEEE Int. Conf. Mach. Learn. Appl. (ICMLA) – volume: 35 start-page: 20605 year: 2023 end-page: 20617 ident: bib29 article-title: A CNN-LSTM hybrid network for automatic seizure detection in EEG signals publication-title: Neural Comput. Appl. – reference: Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. – start-page: 1 year: 2008 end-page: 13 ident: bib1 article-title: Introduction: what is epilepsy publication-title: Epilepsy: a comprehensive textbook – volume: 30 start-page: 135 year: 2022 end-page: 145 ident: bib9 article-title: Epileptic seizure detection based on bidirectional gated recurrent unit network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 2020 year: 2020 ident: bib19 article-title: Cross-subject seizure detection in EEGs using deep transfer learning publication-title: Comput. Math. Methods Med. – reference: Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. – volume: 118 start-page: 228 year: 2017 end-page: 240 ident: bib48 article-title: Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction publication-title: Knowl. -Based Syst. – volume: 17 year: 2021 ident: bib24 article-title: Seizure detection in epileptic EEG using short-time fourier transform and support vector machine publication-title: Int. J. Online Biomed. Eng. – volume: 53 start-page: 163 year: 2016 end-page: 176 ident: bib23 article-title: A comparative study of feature ranking techniques for epileptic seizure detection using wavelet transform publication-title: Comput. Electr. Eng. – year: 2023 ident: bib39 article-title: A Real-time Cross-patient Seizure Detection Algorithm Based on Adaptive Template Matching publication-title: 2023 6th Int. Conf. Electron. Technol. (ICET) – volume: 385 start-page: 884 year: 2015 end-page: 898 ident: bib3 article-title: Epilepsy: new advances publication-title: Lancet – reference: Sameer, M., et al. Epileptical seizure detection: Performance analysis of gamma band in EEG signal using short-time Fourier transform. in 2019 22nd international symposium on wireless personal multimedia communications (WPMC). 2019. IEEE. – reference: Smart, O. and M. Chen. Semi-automated patient-specific scalp eeg seizure detection with unsupervised machine learning. in 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). 2015. IEEE. – reference: Ba, J.L., J.R. Kiros, and G.E. Hinton, Layer normalization. arXiv preprint arXiv:1607.06450, 2016. – reference: He, A., et al. A twofold siamese network for real-time object tracking. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. – volume: 32 start-page: 04017070 year: 2018 ident: bib11 article-title: EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device publication-title: J. Comput. Civ. Eng. – volume: 24 year: 2024 ident: bib14 article-title: Automatic seizure detection based on stockwell transform and transformer publication-title: Sensors – volume: 2020 year: 2020 ident: 10.1016/j.asoc.2025.113104_bib19 article-title: Cross-subject seizure detection in EEGs using deep transfer learning publication-title: Comput. Math. Methods Med. doi: 10.1155/2020/7902072 – volume: 128 start-page: 529 year: 2019 ident: 10.1016/j.asoc.2025.113104_bib31 article-title: Epileptic seizure detection and prediction using stacked bidirectional long short term memory publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.10.034 – volume: 96 start-page: 252 year: 2023 ident: 10.1016/j.asoc.2025.113104_bib25 article-title: Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.03.022 – volume: 136 year: 2021 ident: 10.1016/j.asoc.2025.113104_bib28 article-title: HVD-LSTM based recognition of epileptic seizures and normal human activity publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104684 – ident: 10.1016/j.asoc.2025.113104_bib33 – volume: 19 issue: 6 year: 2024 ident: 10.1016/j.asoc.2025.113104_bib51 article-title: Epilepsy detection based on multi-head self-attention mechanism publication-title: Plos One doi: 10.1371/journal.pone.0305166 – ident: 10.1016/j.asoc.2025.113104_bib47 – volume: 26 start-page: 2147 issue: 5 year: 2022 ident: 10.1016/j.asoc.2025.113104_bib49 article-title: An automatic method for epileptic seizure detection based on deep metric learning publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3138852 – volume: 13 start-page: 820 issue: 5 year: 2023 ident: 10.1016/j.asoc.2025.113104_bib41 article-title: Automatic seizure detection and prediction based on brain connectivity features and a CNNs meet transformers classifier publication-title: Brain Sci. doi: 10.3390/brainsci13050820 – year: 2023 ident: 10.1016/j.asoc.2025.113104_bib39 article-title: A Real-time Cross-patient Seizure Detection Algorithm Based on Adaptive Template Matching publication-title: 2023 6th Int. Conf. Electron. Technol. (ICET) – ident: 10.1016/j.asoc.2025.113104_bib43 – year: 2017 ident: 10.1016/j.asoc.2025.113104_bib44 article-title: Focal loss for dense object detection publication-title: Proc. IEEE Int. Conf. Comput. Vis. – volume: 59 start-page: 42 year: 2018 ident: 10.1016/j.asoc.2025.113104_bib13 article-title: Multimodal seizure detection: a review publication-title: Epilepsia doi: 10.1111/epi.14047 – volume: 242 year: 2023 ident: 10.1016/j.asoc.2025.113104_bib35 article-title: Lightweight convolution transformer for cross-patient seizure detection in multi-channel EEG signals publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2023.107856 – volume: 29 start-page: 458 year: 2021 ident: 10.1016/j.asoc.2025.113104_bib7 article-title: Seizure onset detection using empirical mode decomposition and common spatial pattern publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3055276 – volume: 36 start-page: 294 issue: 4 year: 2019 ident: 10.1016/j.asoc.2025.113104_bib8 article-title: The role of EEG in the erroneous diagnosis of epilepsy publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0000000000000572 – ident: 10.1016/j.asoc.2025.113104_bib37 doi: 10.1109/CIBCB.2015.7300286 – volume: 48 start-page: 6 year: 2007 ident: 10.1016/j.asoc.2025.113104_bib4 article-title: Social stigma for adults and children with epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2007.01391.x – volume: 26 start-page: 5418 issue: 11 year: 2022 ident: 10.1016/j.asoc.2025.113104_bib34 article-title: Continuous seizure detection based on transformer and long-term iEEG publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3199206 – volume: 32 start-page: 04017070 issue: 1 year: 2018 ident: 10.1016/j.asoc.2025.113104_bib11 article-title: EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000719 – volume: 385 start-page: 884 issue: 9971 year: 2015 ident: 10.1016/j.asoc.2025.113104_bib3 article-title: Epilepsy: new advances publication-title: Lancet doi: 10.1016/S0140-6736(14)60456-6 – year: 2024 ident: 10.1016/j.asoc.2025.113104_bib15 article-title: Epileptic seizure detection with an end-to-end temporal convolutional network and bidirectional long short-term memory model publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065724500126 – volume: 35 start-page: 20605 issue: 28 year: 2023 ident: 10.1016/j.asoc.2025.113104_bib29 article-title: A CNN-LSTM hybrid network for automatic seizure detection in EEG signals publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08832-2 – volume: 35 start-page: 504 issue: 6 year: 2018 ident: 10.1016/j.asoc.2025.113104_bib6 article-title: Relationship between EEG electrode and functional cortex in the international 10 to 20 system publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0000000000000510 – volume: 53 start-page: 163 year: 2016 ident: 10.1016/j.asoc.2025.113104_bib23 article-title: A comparative study of feature ranking techniques for epileptic seizure detection using wavelet transform publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2016.05.016 – year: 2017 ident: 10.1016/j.asoc.2025.113104_bib18 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 24 year: 2024 ident: 10.1016/j.asoc.2025.113104_bib14 article-title: Automatic seizure detection based on stockwell transform and transformer publication-title: Sensors – ident: 10.1016/j.asoc.2025.113104_bib22 doi: 10.1109/WPMC48795.2019.9096119 – year: 2023 ident: 10.1016/j.asoc.2025.113104_bib10 article-title: Epileptic seizure prediction using attention augmented convolutional network publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065723500545 – year: 2022 ident: 10.1016/j.asoc.2025.113104_bib38 article-title: Unsupervised multivariate time-series transformers for seizure identification on EEG publication-title: 2022 21st IEEE Int. Conf. Mach. Learn. Appl. (ICMLA) doi: 10.1109/ICMLA55696.2022.00208 – volume: 7 start-page: 5 issue: 1 year: 2020 ident: 10.1016/j.asoc.2025.113104_bib12 article-title: A review of epileptic seizure detection using machine learning classifiers publication-title: Brain Inform. doi: 10.1186/s40708-020-00105-1 – volume: 20 start-page: 749 issue: 6 year: 2012 ident: 10.1016/j.asoc.2025.113104_bib21 article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2206054 – year: 2022 ident: 10.1016/j.asoc.2025.113104_bib17 article-title: Transfer Learning Based Seizure Detection: A Review – volume: 17 issue: 14 year: 2021 ident: 10.1016/j.asoc.2025.113104_bib24 article-title: Seizure detection in epileptic EEG using short-time fourier transform and support vector machine publication-title: Int. J. Online Biomed. Eng. – volume: 118 start-page: 228 year: 2017 ident: 10.1016/j.asoc.2025.113104_bib48 article-title: Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2016.11.023 – volume: 30 start-page: 1950024 issue: 04 year: 2020 ident: 10.1016/j.asoc.2025.113104_bib26 article-title: Automatic seizure detection based on S-transform and deep convolutional neural network publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065719500242 – ident: 10.1016/j.asoc.2025.113104_bib27 doi: 10.1109/EMBC.2018.8513617 – volume: 18 start-page: 5780 issue: 11 year: 2021 ident: 10.1016/j.asoc.2025.113104_bib16 article-title: Epileptic seizures detection using deep learning techniques: A review publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18115780 – start-page: 1 year: 2008 ident: 10.1016/j.asoc.2025.113104_bib1 article-title: Introduction: what is epilepsy – ident: 10.1016/j.asoc.2025.113104_bib36 doi: 10.1109/BIOCAS.2018.8584683 – volume: 45 start-page: 147 year: 2013 ident: 10.1016/j.asoc.2025.113104_bib5 article-title: Automated EEG analysis of epilepsy: a review publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2013.02.014 – volume: 393 start-page: 689 issue: 10172 year: 2019 ident: 10.1016/j.asoc.2025.113104_bib2 article-title: Epilepsy in adults publication-title: Lancet doi: 10.1016/S0140-6736(18)32596-0 – ident: 10.1016/j.asoc.2025.113104_bib30 doi: 10.1109/NEWCAS.2018.8585542 – ident: 10.1016/j.asoc.2025.113104_bib32 – volume: 30 start-page: 135 year: 2022 ident: 10.1016/j.asoc.2025.113104_bib9 article-title: Epileptic seizure detection based on bidirectional gated recurrent unit network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3143540 – volume: 89 year: 2024 ident: 10.1016/j.asoc.2025.113104_bib50 article-title: Cross-patient automatic epileptic seizure detection using patient-adversarial neural networks with spatio-temporal EEG augmentation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105664 – volume: 396 start-page: 569 year: 2020 ident: 10.1016/j.asoc.2025.113104_bib40 article-title: Scalp EEG epileptogenic zone recognition and localization based on long-term recurrent convolutional network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.108 – ident: 10.1016/j.asoc.2025.113104_bib42 doi: 10.1109/CVPR.2018.00508 – ident: 10.1016/j.asoc.2025.113104_bib46 – volume: 32 start-page: 2150051 issue: 06 year: 2022 ident: 10.1016/j.asoc.2025.113104_bib45 article-title: Patient-independent seizure detection based on channel-perturbation convolutional neural network and bidirectional long short-term memory publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065721500519 – volume: 6 start-page: 67277 year: 2018 ident: 10.1016/j.asoc.2025.113104_bib20 article-title: Hardware design of real time epileptic seizure detection based on STFT and SVM publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870883 |
SSID | ssj0016928 |
Score | 2.441415 |
Snippet | Automatic seizure detection aims to identify occurrences of epileptic seizures, enabling timely seizure intervention and protecting patients’ safety. In recent... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 113104 |
SubjectTerms | Cross-subject seizure detection Electroencephalogram (EEG) Epilepsy Mixed supervised learning Transformer encoder |
Title | Mixed supervised cross-subject seizure detection with transformer and reference learning |
URI | https://dx.doi.org/10.1016/j.asoc.2025.113104 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH6UevHiLtalzMGbjG2SyTLHUix1K6IWeguZJRIPsTQJiAd_u2-SSVEED56yMDOEL2_expv3AZyjRUk9wQWVPueUeVJSIbSiQ5ZoFrIUZaTu9jkLpnN2s_AXHRi3Z2FMWaXV_Y1Or7W1fTOwaA6WWTZ4wsgjYpyhA2-aRvmm7TbD5VGmLz_XZR5OwGt-VTOYmtH24ExT45UgAhgjur6hNnEsWdsv4_TN4Ex2YMt6imTUfMwudHS-B9stCwOxm3IfFvfZu1akqJZm2xd4Wy9Oi0qYHAspdPZRrTRRuqzLrnJicq-kbD1WXCvJFVnzjRBLJPFyAPPJ1fN4Si1fApVop0uKQXKIFl1GgXRcga6Cm6Ya4xXOVCp8LcJIcXSwvFBoD8MqJwndSJkkkCdNyxnfO4Ru_pbrIyA60KkIJVc8USx1eDJUgQxUGAkWSI-rHly0QMXLpi1G3NaLvcYG1tjAGjew9sBvsYx__NwY9fYf847_Oe8ENs1TU5d4Ct1yVekz9B1K0a-Fow8bo_Hj3YO5Xt9OZ18XjMZb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKO8DCjSinBzZktWmcw2NVUaX0WGilblZ8BIUhVE0iIX49z4lTgZAY2KIktqIvz-_y8_sQegCLkriCCSI9xgh1pSRCaEX6NNY0oAnISNXtc-FHK_q89tYtNGrOwpiySqv7a51eaWt7p2fR7G3StPcCkUdIGQUH3jSN8vw91DHdqUDYO8PJNFrsNhN8VlGsmveJGWDPztRlXjGAAGHiwDPsJo7la_tln77ZnPExOrTOIh7W33OCWjo7RUcNEQO26_IMrefph1Y4Lzdm5edwWU1O8lKYNAvOdfpZbjVWuqgqrzJs0q-4aJxWmCvOFN5RjmDLJfF6jlbjp-UoIpYygUgw1QWBODkAoy5DXzoDAd7CIEk0hCyMqkR4WgShYuBjuYHQLkRWThwMQmXyQK40XWc89wK1s_dMXyKsfZ2IQDLFYkUTh8V95UtfBaGgvnSZ6qLHBii-qTtj8KZk7I0bWLmBldewdpHXYMl__F8OqvuPcVf_HHeP9qPlfMZnk8X0Gh2YJ3WZ4g1qF9tS34IrUYg7KypfvaLHdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+supervised+cross-subject+seizure+detection+with+transformer+and+reference+learning&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Landi&rft.au=Ji%2C+Dezan&rft.au=Dong%2C+Xingchen&rft.au=Li%2C+Haotian&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=175&rft_id=info:doi/10.1016%2Fj.asoc.2025.113104&rft.externalDocID=S1568494625004156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |