Efficient GPU-accelerated parallel cross-correlation
Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a highly optimized GPU-accelerated implementation that will speed up the applications and also improve energy efficiency since GPUs are more efficie...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 199; p. 105054 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7315 |
DOI | 10.1016/j.jpdc.2025.105054 |
Cover
Loading…
Abstract | Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a highly optimized GPU-accelerated implementation that will speed up the applications and also improve energy efficiency since GPUs are more efficient than CPUs in data-parallel tasks. There are two rudimentary ways to compute cross-correlation — a definition-based algorithm that tries all possible overlaps and an algorithm based on the Fourier transform, which is much more complex but has better asymptotical time complexity. We have focused mainly on the definition-based approach which is better suited for smaller input data and we have implemented multiple CUDA-enabled algorithms with multiple optimization options. The algorithms were evaluated on various scenarios, including the most typical types of multi-signal correlations, and we provide empirically verified optimal solutions for each of the studied scenarios.
•Novel GPU-accelerated cross-correlation that uses warp-shuffles and speeds up the computation by an order of magnitude.•Several caching optimizations improve the algorithm further in specific cases.•Detailed analysis of data access patterns and thorough discussion about possible registry caching opportunities.•Empirical evaluation of individual optimizations, complete solutions (various scenarios), and comparison with baselines.•Guidelines for selecting the best combination of algorithms and optimizations based on problem configuration and input size. |
---|---|
AbstractList | Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a highly optimized GPU-accelerated implementation that will speed up the applications and also improve energy efficiency since GPUs are more efficient than CPUs in data-parallel tasks. There are two rudimentary ways to compute cross-correlation — a definition-based algorithm that tries all possible overlaps and an algorithm based on the Fourier transform, which is much more complex but has better asymptotical time complexity. We have focused mainly on the definition-based approach which is better suited for smaller input data and we have implemented multiple CUDA-enabled algorithms with multiple optimization options. The algorithms were evaluated on various scenarios, including the most typical types of multi-signal correlations, and we provide empirically verified optimal solutions for each of the studied scenarios.
•Novel GPU-accelerated cross-correlation that uses warp-shuffles and speeds up the computation by an order of magnitude.•Several caching optimizations improve the algorithm further in specific cases.•Detailed analysis of data access patterns and thorough discussion about possible registry caching opportunities.•Empirical evaluation of individual optimizations, complete solutions (various scenarios), and comparison with baselines.•Guidelines for selecting the best combination of algorithms and optimizations based on problem configuration and input size. |
ArticleNumber | 105054 |
Author | Maděra, Karel Kruliš, Martin Šmelko, Adam |
Author_xml | – sequence: 1 givenname: Karel surname: Maděra fullname: Maděra, Karel email: karelmad@email.cz – sequence: 2 givenname: Adam orcidid: 0000-0001-8334-2783 surname: Šmelko fullname: Šmelko, Adam email: smelko@d3s.mff.cuni.cz – sequence: 3 givenname: Martin orcidid: 0000-0002-0985-8949 surname: Kruliš fullname: Kruliš, Martin email: krulis@d3s.mff.cuni.cz |
BookMark | eNp9j81KxDAURrMYwZnRF3DVF2i9-WtacCPDOA4M6MJZhyS9hZTYlqQIvr2tde3qwoXzcc6ObPqhR0IeKBQUaPnYFd3YuIIBk_NDghQbsgUleK44lbdkl1IHQKlU1ZaIY9t657GfstP7NTfOYcBoJmyy0UQTAobMxSGl3A0xYjCTH_o7ctOakPD-7-7J9eX4cXjNL2-n8-H5kjta0SmvaGVphUwpAUxJbrmooSw5xdmtVAZmXSckcC65sMqCtKK2dV0LZCUTlu8JW3d_DSK2eoz-08RvTUEvrbrTS6teWvXaOkNPK4Sz2ZfHqNPS57DxEd2km8H_h_8ASyteOw |
Cites_doi | 10.1007/s11554-017-0737-9 10.1088/1361-6501/aac163 10.1016/j.sysarc.2021.102366 10.1016/j.ascom.2020.100407 10.1002/bies.10118 10.1785/0220170181 10.1016/j.optlaseng.2015.01.012 10.1119/1.1973431 10.1017/pasa.2015.5 10.1109/LSP.2019.2951305 10.1016/j.eswa.2015.02.056 10.1109/TPDS.2021.3084813 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpdc.2025.105054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_jpdc_2025_105054 S0743731525000218 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c181t-818b18e277402753b34906631e20267a0101c45033534b7b05b49b9994e2624b3 |
IEDL.DBID | .~1 |
ISSN | 0743-7315 |
IngestDate | Tue Jul 01 05:21:20 EDT 2025 Sat Mar 08 15:42:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CUDA Caching Parallel GPU Algorithm Cross-correlation Optimizations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c181t-818b18e277402753b34906631e20267a0101c45033534b7b05b49b9994e2624b3 |
ORCID | 0000-0001-8334-2783 0000-0002-0985-8949 |
ParticipantIDs | crossref_primary_10_1016_j_jpdc_2025_105054 elsevier_sciencedirect_doi_10_1016_j_jpdc_2025_105054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yan, Wang, Chu (br0210) 2020 Yamaguchi, Ichimura, Fujita, Kato, Nakagawa (br0250) 2019; 26 Bednárek, Brabec, Kruliš (br0230) 2017; 64 Medina, Schwille (br0050) 2002; 24 Syed, Datar, Patkar (br0160) 2021 Clark, Plante, Greenhill (br0030) Jul. 2011 Šmelko, Kruliš, Maděra (br0080) 2024 Cui, Dahnoun (br0200) 2019 Ventosa, Schimmel, Stutzmann (br0130) 2019; 90 Honzátko, Kruliš (br0190) 2017; 16 Fan, Dahnoun (br0010) 2017 Fan, Dahnoun (br0150) 2018; 29 Zhou, Wei, Wu, Sun (br0040) 2021 Belloch, Gonzalez, Vidal, Cobos (br0020) 2015; 42 Zhang, Wang, Jiang, Kemao, Liu, Liu, Tang, Dong (br0090) 2015; 69 S. Tomov, R. Nath, P. Du, J. Dongarra, Magma users' guide, ICL, UTK (November 2009) 2011. Beaucé, Frank, Romanenko (br0140) 2017; 89 Lu, Zhang, Wang (br0220) 2021; 33 Jiao, Lin, Balaji, Feng (br0070) 2010 Chang, Zha, Wang, Liu, Onishi, Lei, Er, Maruyama (br0170) 2022; 123 Ord, Crosse, Emrich, Pallot, Wayth, Clark, Tremblay, Arcus, Barnes, Bell (br0110) 2015; 32 Kapinchev, Bradu, Barnes, Podoleanu (br0060) 2015 Kikuchi, Fujita, Ichimura, Hori, Maddegedara (br0240) 2022 Bracewell, Kahn (br0100) 1966; 34 Ragoomundun, Beeharry (br0120) 2020; 32 Fan (10.1016/j.jpdc.2025.105054_br0150) 2018; 29 Honzátko (10.1016/j.jpdc.2025.105054_br0190) 2017; 16 Beaucé (10.1016/j.jpdc.2025.105054_br0140) 2017; 89 Lu (10.1016/j.jpdc.2025.105054_br0220) 2021; 33 Jiao (10.1016/j.jpdc.2025.105054_br0070) 2010 Ragoomundun (10.1016/j.jpdc.2025.105054_br0120) 2020; 32 Zhang (10.1016/j.jpdc.2025.105054_br0090) 2015; 69 Ventosa (10.1016/j.jpdc.2025.105054_br0130) 2019; 90 Belloch (10.1016/j.jpdc.2025.105054_br0020) 2015; 42 Clark (10.1016/j.jpdc.2025.105054_br0030) Ord (10.1016/j.jpdc.2025.105054_br0110) 2015; 32 10.1016/j.jpdc.2025.105054_br0180 Kapinchev (10.1016/j.jpdc.2025.105054_br0060) 2015 Cui (10.1016/j.jpdc.2025.105054_br0200) 2019 Bednárek (10.1016/j.jpdc.2025.105054_br0230) 2017; 64 Šmelko (10.1016/j.jpdc.2025.105054_br0080) Yamaguchi (10.1016/j.jpdc.2025.105054_br0250) 2019; 26 Zhou (10.1016/j.jpdc.2025.105054_br0040) 2021 Bracewell (10.1016/j.jpdc.2025.105054_br0100) 1966; 34 Chang (10.1016/j.jpdc.2025.105054_br0170) 2022; 123 Syed (10.1016/j.jpdc.2025.105054_br0160) 2021 Medina (10.1016/j.jpdc.2025.105054_br0050) 2002; 24 Kikuchi (10.1016/j.jpdc.2025.105054_br0240) 2022 Yan (10.1016/j.jpdc.2025.105054_br0210) 2020 Fan (10.1016/j.jpdc.2025.105054_br0010) 2017 |
References_xml | – volume: 16 start-page: 2273 year: 2017 end-page: 2287 ident: br0190 article-title: Accelerating block-matching and 3d filtering method for image denoising on GPUs publication-title: J. Real-Time Image Process. – volume: 24 start-page: 758 year: 2002 end-page: 764 ident: br0050 article-title: Fluorescence correlation spectroscopy for the detection and study of single molecules in biology publication-title: BioEssays – volume: 26 start-page: 1857 year: 2019 end-page: 1861 ident: br0250 article-title: Matched filtering accelerated by tensor cores on volta gpus with improved accuracy using half-precision variables publication-title: IEEE Signal Process. Lett. – volume: 42 start-page: 5607 year: 2015 end-page: 5620 ident: br0020 article-title: On the performance of multi-gpu-based expert systems for acoustic localization involving massive microphone arrays publication-title: Expert Syst. Appl. – start-page: 1 year: 2019 end-page: 5 ident: br0200 article-title: Real-time stereo vision implementation on nvidia jetson tx2 publication-title: 2019 8th Mediterranean Conference on Embedded Computing (MECO) – volume: 90 start-page: 1663 year: 2019 end-page: 1669 ident: br0130 article-title: Towards the processing of large data volumes with phase cross-correlation publication-title: Seismol. Res. Lett. – year: 2024 ident: br0080 article-title: Associated GitHub repository with source code and experimental data – volume: 32 year: 2020 ident: br0120 article-title: A cublas-based gpu correlation engine for a low-frequency radio telescope publication-title: Astron. Comput. – volume: 89 start-page: 165 year: 2017 end-page: 172 ident: br0140 article-title: Fast matched filter (FMF): an efficient seismic matched-filter search for both CPU and GPU architectures publication-title: Seismol. Res. Lett. – volume: 64 start-page: 175 year: 2017 end-page: 193 ident: br0230 article-title: Improving matrix-based dynamic programming on massively parallel accelerators publication-title: Inf. Sci. – start-page: 32 year: 2020 end-page: 44 ident: br0210 article-title: Optimizing batched winograd convolution on gpus publication-title: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming – start-page: 1179 year: 2021 end-page: 1182 ident: br0040 article-title: A high performance computing method for noise cross-correlation functions of seismic data publication-title: 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) – volume: 69 start-page: 7 year: 2015 end-page: 12 ident: br0090 article-title: High accuracy digital image correlation powered by gpu-based parallel computing publication-title: Opt. Lasers Eng. – year: Jul. 2011 ident: br0030 article-title: Accelerating radio astronomy cross-correlation with graphics processing units – volume: 33 start-page: 70 year: 2021 end-page: 87 ident: br0220 article-title: Optimizing depthwise separable convolution operations on gpus publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 34 start-page: 712 year: 1966 ident: br0100 article-title: The Fourier transform and its applications publication-title: Am. J. Phys. – volume: 32 start-page: e006 year: 2015 ident: br0110 article-title: The Murchison widefield array correlator publication-title: Publ. Astron. Soc. Aust. – volume: 123 year: 2022 ident: br0170 article-title: Efficient stereo matching on embedded gpus with zero-means cross correlation publication-title: J. Syst. Archit. – start-page: 277 year: 2022 end-page: 290 ident: br0240 article-title: Calculation of cross-correlation function accelerated by tensor cores with tensorfloat-32 precision on ampere gpu publication-title: International Conference on Computational Science – start-page: 1 year: 2017 end-page: 6 ident: br0010 article-title: Real-time implementation of stereo vision based on optimised normalised cross-correlation and propagated search range on a gpu publication-title: 2017 IEEE International Conference on Imaging Systems and Techniques (IST) – volume: 29 year: 2018 ident: br0150 article-title: Real-time stereo vision-based lane detection system publication-title: Meas. Sci. Technol. – start-page: 1 year: 2015 end-page: 6 ident: br0060 article-title: Gpu Implementation of Cross-Correlation for Image Generation in Real Time – start-page: 221 year: 2010 end-page: 228 ident: br0070 article-title: Power and performance characterization of computational kernels on the gpu publication-title: 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing – start-page: 137 year: 2021 end-page: 148 ident: br0160 article-title: Accelerated stereo vision using nvidia jetson and intel avx publication-title: Computer Vision and Image Processing: 5th International Conference – reference: S. Tomov, R. Nath, P. Du, J. Dongarra, Magma users' guide, ICL, UTK (November 2009) 2011. – volume: 90 start-page: 1663 issue: 4 year: 2019 ident: 10.1016/j.jpdc.2025.105054_br0130 article-title: Towards the processing of large data volumes with phase cross-correlation publication-title: Seismol. Res. Lett. – start-page: 137 year: 2021 ident: 10.1016/j.jpdc.2025.105054_br0160 article-title: Accelerated stereo vision using nvidia jetson and intel avx – ident: 10.1016/j.jpdc.2025.105054_br0080 – volume: 16 start-page: 2273 issue: 6 year: 2017 ident: 10.1016/j.jpdc.2025.105054_br0190 article-title: Accelerating block-matching and 3d filtering method for image denoising on GPUs publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-017-0737-9 – volume: 29 issue: 7 year: 2018 ident: 10.1016/j.jpdc.2025.105054_br0150 article-title: Real-time stereo vision-based lane detection system publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aac163 – ident: 10.1016/j.jpdc.2025.105054_br0030 – start-page: 1 year: 2019 ident: 10.1016/j.jpdc.2025.105054_br0200 article-title: Real-time stereo vision implementation on nvidia jetson tx2 – volume: 123 year: 2022 ident: 10.1016/j.jpdc.2025.105054_br0170 article-title: Efficient stereo matching on embedded gpus with zero-means cross correlation publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2021.102366 – volume: 32 year: 2020 ident: 10.1016/j.jpdc.2025.105054_br0120 article-title: A cublas-based gpu correlation engine for a low-frequency radio telescope publication-title: Astron. Comput. doi: 10.1016/j.ascom.2020.100407 – volume: 24 start-page: 758 issue: 8 year: 2002 ident: 10.1016/j.jpdc.2025.105054_br0050 article-title: Fluorescence correlation spectroscopy for the detection and study of single molecules in biology publication-title: BioEssays doi: 10.1002/bies.10118 – start-page: 32 year: 2020 ident: 10.1016/j.jpdc.2025.105054_br0210 article-title: Optimizing batched winograd convolution on gpus – volume: 89 start-page: 165 issue: 1 year: 2017 ident: 10.1016/j.jpdc.2025.105054_br0140 article-title: Fast matched filter (FMF): an efficient seismic matched-filter search for both CPU and GPU architectures publication-title: Seismol. Res. Lett. doi: 10.1785/0220170181 – volume: 69 start-page: 7 year: 2015 ident: 10.1016/j.jpdc.2025.105054_br0090 article-title: High accuracy digital image correlation powered by gpu-based parallel computing publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2015.01.012 – volume: 34 start-page: 712 issue: 8 year: 1966 ident: 10.1016/j.jpdc.2025.105054_br0100 article-title: The Fourier transform and its applications publication-title: Am. J. Phys. doi: 10.1119/1.1973431 – volume: 32 start-page: e006 year: 2015 ident: 10.1016/j.jpdc.2025.105054_br0110 article-title: The Murchison widefield array correlator publication-title: Publ. Astron. Soc. Aust. doi: 10.1017/pasa.2015.5 – start-page: 1 year: 2015 ident: 10.1016/j.jpdc.2025.105054_br0060 – start-page: 1179 year: 2021 ident: 10.1016/j.jpdc.2025.105054_br0040 article-title: A high performance computing method for noise cross-correlation functions of seismic data – start-page: 221 year: 2010 ident: 10.1016/j.jpdc.2025.105054_br0070 article-title: Power and performance characterization of computational kernels on the gpu – volume: 26 start-page: 1857 issue: 12 year: 2019 ident: 10.1016/j.jpdc.2025.105054_br0250 article-title: Matched filtering accelerated by tensor cores on volta gpus with improved accuracy using half-precision variables publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2951305 – volume: 42 start-page: 5607 issue: 13 year: 2015 ident: 10.1016/j.jpdc.2025.105054_br0020 article-title: On the performance of multi-gpu-based expert systems for acoustic localization involving massive microphone arrays publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.02.056 – volume: 64 start-page: 175 year: 2017 ident: 10.1016/j.jpdc.2025.105054_br0230 article-title: Improving matrix-based dynamic programming on massively parallel accelerators publication-title: Inf. Sci. – start-page: 1 year: 2017 ident: 10.1016/j.jpdc.2025.105054_br0010 article-title: Real-time implementation of stereo vision based on optimised normalised cross-correlation and propagated search range on a gpu – volume: 33 start-page: 70 issue: 1 year: 2021 ident: 10.1016/j.jpdc.2025.105054_br0220 article-title: Optimizing depthwise separable convolution operations on gpus publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2021.3084813 – ident: 10.1016/j.jpdc.2025.105054_br0180 – start-page: 277 year: 2022 ident: 10.1016/j.jpdc.2025.105054_br0240 article-title: Calculation of cross-correlation function accelerated by tensor cores with tensorfloat-32 precision on ampere gpu |
SSID | ssj0011578 |
Score | 2.4115632 |
Snippet | Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105054 |
SubjectTerms | Algorithm Caching Cross-correlation CUDA GPU Optimizations Parallel |
Title | Efficient GPU-accelerated parallel cross-correlation |
URI | https://dx.doi.org/10.1016/j.jpdc.2025.105054 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGP0Y8-LF3-L8MXrwJnFpmrTdcYzNqjgELewWmjSFjbEVmVf_dvM1qSiIB48tDS0v7fce9PveA7gWBReVKhWJdWEIjs0SpdmQhJa6Y6NLIVKcd36axVnOH-Zi3oFxOwuDbZW-9rua3lRrf2bg0RzUi8XgBckviTC_hzZMhRPsPMG3_Pbjq80DvWTS1ooTr_aDM67Ha1mXaGPIBMbdUsF_J6dvhDM9gD2vFIORe5hD6Jj1Eey3KQyB_yiPgU8aFwhLHsHdc04KrS2ToAFEGaCv92plVkFzO6IxicP1vp1APp28jjPisxCIthy8JZZXVZgaZtUa_miMVMSHqBZCwzBDqkCrOM3xn6SIuEoUFYoPlVV_3LCYcRWdQne9WZszCJIipYZWVcgY5WUlisjiV5rYajcaa5H04KYFQdbO8kK2vWBLiZBJhEw6yHogWpzkj42Ttib_se78n-suYBePXM_hJXS3b-_myuqCreo3G9-HndH9Yzb7BOVys3M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe9CL32L9zMGbLN1sdpP2WEpraj8QbKG3JbvZQEupRer_dye7EQXx4DVhSHjZzBuYmfcAHkTGRaFyRWKdGYJrs0Rp1iGhpe7Y6FyINu47T6ZxOufPC7GoQa_ahcGxSp_7XU4vs7W_0vJotrbLZesVyS-J0L-Hlky1Bw1UpxJ1aHSHo3T61UwIhUvIqMaJAX53xo15rbY5KhkygY63VPDf-ekb5wyO4dAXi0HXvc8J1MzmFI4qI4bA_5dnwPulEITlj-DpZU4yrS2ZoAZEHqC093pt1kH5OKLRjMONv53DfNCf9VLi7RCItjS8I5ZaVdg2zBZs2GuMVMQ7WDCEhqGNVIZqcZpjW1JEXCWKCsU7yhaA3LCYcRVdQH3ztjGXECRZmxpaFCFjlOeFyCILYW5iW77RWIukCY8VCHLrVC9kNQ62kgiZRMikg6wJosJJ_vh20qblP-Ku_hl3D_vpbDKW4-F0dA0HeMeNIN5Afff-YW5tmbBTd_4YfAI0LbYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+GPU-accelerated+parallel+cross-correlation&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Mad%C4%9Bra%2C+Karel&rft.au=%C5%A0melko%2C+Adam&rft.au=Kruli%C5%A1%2C+Martin&rft.date=2025-05-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.volume=199&rft_id=info:doi/10.1016%2Fj.jpdc.2025.105054&rft.externalDocID=S0743731525000218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |