Efficient GPU-accelerated parallel cross-correlation

Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a highly optimized GPU-accelerated implementation that will speed up the applications and also improve energy efficiency since GPUs are more efficie...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 199; p. 105054
Main Authors Maděra, Karel, Šmelko, Adam, Kruliš, Martin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2025
Subjects
Online AccessGet full text
ISSN0743-7315
DOI10.1016/j.jpdc.2025.105054

Cover

Loading…
Abstract Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a highly optimized GPU-accelerated implementation that will speed up the applications and also improve energy efficiency since GPUs are more efficient than CPUs in data-parallel tasks. There are two rudimentary ways to compute cross-correlation — a definition-based algorithm that tries all possible overlaps and an algorithm based on the Fourier transform, which is much more complex but has better asymptotical time complexity. We have focused mainly on the definition-based approach which is better suited for smaller input data and we have implemented multiple CUDA-enabled algorithms with multiple optimization options. The algorithms were evaluated on various scenarios, including the most typical types of multi-signal correlations, and we provide empirically verified optimal solutions for each of the studied scenarios. •Novel GPU-accelerated cross-correlation that uses warp-shuffles and speeds up the computation by an order of magnitude.•Several caching optimizations improve the algorithm further in specific cases.•Detailed analysis of data access patterns and thorough discussion about possible registry caching opportunities.•Empirical evaluation of individual optimizations, complete solutions (various scenarios), and comparison with baselines.•Guidelines for selecting the best combination of algorithms and optimizations based on problem configuration and input size.
AbstractList Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a highly optimized GPU-accelerated implementation that will speed up the applications and also improve energy efficiency since GPUs are more efficient than CPUs in data-parallel tasks. There are two rudimentary ways to compute cross-correlation — a definition-based algorithm that tries all possible overlaps and an algorithm based on the Fourier transform, which is much more complex but has better asymptotical time complexity. We have focused mainly on the definition-based approach which is better suited for smaller input data and we have implemented multiple CUDA-enabled algorithms with multiple optimization options. The algorithms were evaluated on various scenarios, including the most typical types of multi-signal correlations, and we provide empirically verified optimal solutions for each of the studied scenarios. •Novel GPU-accelerated cross-correlation that uses warp-shuffles and speeds up the computation by an order of magnitude.•Several caching optimizations improve the algorithm further in specific cases.•Detailed analysis of data access patterns and thorough discussion about possible registry caching opportunities.•Empirical evaluation of individual optimizations, complete solutions (various scenarios), and comparison with baselines.•Guidelines for selecting the best combination of algorithms and optimizations based on problem configuration and input size.
ArticleNumber 105054
Author Maděra, Karel
Kruliš, Martin
Šmelko, Adam
Author_xml – sequence: 1
  givenname: Karel
  surname: Maděra
  fullname: Maděra, Karel
  email: karelmad@email.cz
– sequence: 2
  givenname: Adam
  orcidid: 0000-0001-8334-2783
  surname: Šmelko
  fullname: Šmelko, Adam
  email: smelko@d3s.mff.cuni.cz
– sequence: 3
  givenname: Martin
  orcidid: 0000-0002-0985-8949
  surname: Kruliš
  fullname: Kruliš, Martin
  email: krulis@d3s.mff.cuni.cz
BookMark eNp9j81KxDAURrMYwZnRF3DVF2i9-WtacCPDOA4M6MJZhyS9hZTYlqQIvr2tde3qwoXzcc6ObPqhR0IeKBQUaPnYFd3YuIIBk_NDghQbsgUleK44lbdkl1IHQKlU1ZaIY9t657GfstP7NTfOYcBoJmyy0UQTAobMxSGl3A0xYjCTH_o7ctOakPD-7-7J9eX4cXjNL2-n8-H5kjta0SmvaGVphUwpAUxJbrmooSw5xdmtVAZmXSckcC65sMqCtKK2dV0LZCUTlu8JW3d_DSK2eoz-08RvTUEvrbrTS6teWvXaOkNPK4Sz2ZfHqNPS57DxEd2km8H_h_8ASyteOw
Cites_doi 10.1007/s11554-017-0737-9
10.1088/1361-6501/aac163
10.1016/j.sysarc.2021.102366
10.1016/j.ascom.2020.100407
10.1002/bies.10118
10.1785/0220170181
10.1016/j.optlaseng.2015.01.012
10.1119/1.1973431
10.1017/pasa.2015.5
10.1109/LSP.2019.2951305
10.1016/j.eswa.2015.02.056
10.1109/TPDS.2021.3084813
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2025.105054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jpdc_2025_105054
S0743731525000218
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c181t-818b18e277402753b34906631e20267a0101c45033534b7b05b49b9994e2624b3
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Tue Jul 01 05:21:20 EDT 2025
Sat Mar 08 15:42:25 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords CUDA
Caching
Parallel
GPU
Algorithm
Cross-correlation
Optimizations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c181t-818b18e277402753b34906631e20267a0101c45033534b7b05b49b9994e2624b3
ORCID 0000-0001-8334-2783
0000-0002-0985-8949
ParticipantIDs crossref_primary_10_1016_j_jpdc_2025_105054
elsevier_sciencedirect_doi_10_1016_j_jpdc_2025_105054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yan, Wang, Chu (br0210) 2020
Yamaguchi, Ichimura, Fujita, Kato, Nakagawa (br0250) 2019; 26
Bednárek, Brabec, Kruliš (br0230) 2017; 64
Medina, Schwille (br0050) 2002; 24
Syed, Datar, Patkar (br0160) 2021
Clark, Plante, Greenhill (br0030) Jul. 2011
Šmelko, Kruliš, Maděra (br0080) 2024
Cui, Dahnoun (br0200) 2019
Ventosa, Schimmel, Stutzmann (br0130) 2019; 90
Honzátko, Kruliš (br0190) 2017; 16
Fan, Dahnoun (br0010) 2017
Fan, Dahnoun (br0150) 2018; 29
Zhou, Wei, Wu, Sun (br0040) 2021
Belloch, Gonzalez, Vidal, Cobos (br0020) 2015; 42
Zhang, Wang, Jiang, Kemao, Liu, Liu, Tang, Dong (br0090) 2015; 69
S. Tomov, R. Nath, P. Du, J. Dongarra, Magma users' guide, ICL, UTK (November 2009) 2011.
Beaucé, Frank, Romanenko (br0140) 2017; 89
Lu, Zhang, Wang (br0220) 2021; 33
Jiao, Lin, Balaji, Feng (br0070) 2010
Chang, Zha, Wang, Liu, Onishi, Lei, Er, Maruyama (br0170) 2022; 123
Ord, Crosse, Emrich, Pallot, Wayth, Clark, Tremblay, Arcus, Barnes, Bell (br0110) 2015; 32
Kapinchev, Bradu, Barnes, Podoleanu (br0060) 2015
Kikuchi, Fujita, Ichimura, Hori, Maddegedara (br0240) 2022
Bracewell, Kahn (br0100) 1966; 34
Ragoomundun, Beeharry (br0120) 2020; 32
Fan (10.1016/j.jpdc.2025.105054_br0150) 2018; 29
Honzátko (10.1016/j.jpdc.2025.105054_br0190) 2017; 16
Beaucé (10.1016/j.jpdc.2025.105054_br0140) 2017; 89
Lu (10.1016/j.jpdc.2025.105054_br0220) 2021; 33
Jiao (10.1016/j.jpdc.2025.105054_br0070) 2010
Ragoomundun (10.1016/j.jpdc.2025.105054_br0120) 2020; 32
Zhang (10.1016/j.jpdc.2025.105054_br0090) 2015; 69
Ventosa (10.1016/j.jpdc.2025.105054_br0130) 2019; 90
Belloch (10.1016/j.jpdc.2025.105054_br0020) 2015; 42
Clark (10.1016/j.jpdc.2025.105054_br0030)
Ord (10.1016/j.jpdc.2025.105054_br0110) 2015; 32
10.1016/j.jpdc.2025.105054_br0180
Kapinchev (10.1016/j.jpdc.2025.105054_br0060) 2015
Cui (10.1016/j.jpdc.2025.105054_br0200) 2019
Bednárek (10.1016/j.jpdc.2025.105054_br0230) 2017; 64
Šmelko (10.1016/j.jpdc.2025.105054_br0080)
Yamaguchi (10.1016/j.jpdc.2025.105054_br0250) 2019; 26
Zhou (10.1016/j.jpdc.2025.105054_br0040) 2021
Bracewell (10.1016/j.jpdc.2025.105054_br0100) 1966; 34
Chang (10.1016/j.jpdc.2025.105054_br0170) 2022; 123
Syed (10.1016/j.jpdc.2025.105054_br0160) 2021
Medina (10.1016/j.jpdc.2025.105054_br0050) 2002; 24
Kikuchi (10.1016/j.jpdc.2025.105054_br0240) 2022
Yan (10.1016/j.jpdc.2025.105054_br0210) 2020
Fan (10.1016/j.jpdc.2025.105054_br0010) 2017
References_xml – volume: 16
  start-page: 2273
  year: 2017
  end-page: 2287
  ident: br0190
  article-title: Accelerating block-matching and 3d filtering method for image denoising on GPUs
  publication-title: J. Real-Time Image Process.
– volume: 24
  start-page: 758
  year: 2002
  end-page: 764
  ident: br0050
  article-title: Fluorescence correlation spectroscopy for the detection and study of single molecules in biology
  publication-title: BioEssays
– volume: 26
  start-page: 1857
  year: 2019
  end-page: 1861
  ident: br0250
  article-title: Matched filtering accelerated by tensor cores on volta gpus with improved accuracy using half-precision variables
  publication-title: IEEE Signal Process. Lett.
– volume: 42
  start-page: 5607
  year: 2015
  end-page: 5620
  ident: br0020
  article-title: On the performance of multi-gpu-based expert systems for acoustic localization involving massive microphone arrays
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2019
  end-page: 5
  ident: br0200
  article-title: Real-time stereo vision implementation on nvidia jetson tx2
  publication-title: 2019 8th Mediterranean Conference on Embedded Computing (MECO)
– volume: 90
  start-page: 1663
  year: 2019
  end-page: 1669
  ident: br0130
  article-title: Towards the processing of large data volumes with phase cross-correlation
  publication-title: Seismol. Res. Lett.
– year: 2024
  ident: br0080
  article-title: Associated GitHub repository with source code and experimental data
– volume: 32
  year: 2020
  ident: br0120
  article-title: A cublas-based gpu correlation engine for a low-frequency radio telescope
  publication-title: Astron. Comput.
– volume: 89
  start-page: 165
  year: 2017
  end-page: 172
  ident: br0140
  article-title: Fast matched filter (FMF): an efficient seismic matched-filter search for both CPU and GPU architectures
  publication-title: Seismol. Res. Lett.
– volume: 64
  start-page: 175
  year: 2017
  end-page: 193
  ident: br0230
  article-title: Improving matrix-based dynamic programming on massively parallel accelerators
  publication-title: Inf. Sci.
– start-page: 32
  year: 2020
  end-page: 44
  ident: br0210
  article-title: Optimizing batched winograd convolution on gpus
  publication-title: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
– start-page: 1179
  year: 2021
  end-page: 1182
  ident: br0040
  article-title: A high performance computing method for noise cross-correlation functions of seismic data
  publication-title: 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)
– volume: 69
  start-page: 7
  year: 2015
  end-page: 12
  ident: br0090
  article-title: High accuracy digital image correlation powered by gpu-based parallel computing
  publication-title: Opt. Lasers Eng.
– year: Jul. 2011
  ident: br0030
  article-title: Accelerating radio astronomy cross-correlation with graphics processing units
– volume: 33
  start-page: 70
  year: 2021
  end-page: 87
  ident: br0220
  article-title: Optimizing depthwise separable convolution operations on gpus
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 34
  start-page: 712
  year: 1966
  ident: br0100
  article-title: The Fourier transform and its applications
  publication-title: Am. J. Phys.
– volume: 32
  start-page: e006
  year: 2015
  ident: br0110
  article-title: The Murchison widefield array correlator
  publication-title: Publ. Astron. Soc. Aust.
– volume: 123
  year: 2022
  ident: br0170
  article-title: Efficient stereo matching on embedded gpus with zero-means cross correlation
  publication-title: J. Syst. Archit.
– start-page: 277
  year: 2022
  end-page: 290
  ident: br0240
  article-title: Calculation of cross-correlation function accelerated by tensor cores with tensorfloat-32 precision on ampere gpu
  publication-title: International Conference on Computational Science
– start-page: 1
  year: 2017
  end-page: 6
  ident: br0010
  article-title: Real-time implementation of stereo vision based on optimised normalised cross-correlation and propagated search range on a gpu
  publication-title: 2017 IEEE International Conference on Imaging Systems and Techniques (IST)
– volume: 29
  year: 2018
  ident: br0150
  article-title: Real-time stereo vision-based lane detection system
  publication-title: Meas. Sci. Technol.
– start-page: 1
  year: 2015
  end-page: 6
  ident: br0060
  article-title: Gpu Implementation of Cross-Correlation for Image Generation in Real Time
– start-page: 221
  year: 2010
  end-page: 228
  ident: br0070
  article-title: Power and performance characterization of computational kernels on the gpu
  publication-title: 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing
– start-page: 137
  year: 2021
  end-page: 148
  ident: br0160
  article-title: Accelerated stereo vision using nvidia jetson and intel avx
  publication-title: Computer Vision and Image Processing: 5th International Conference
– reference: S. Tomov, R. Nath, P. Du, J. Dongarra, Magma users' guide, ICL, UTK (November 2009) 2011.
– volume: 90
  start-page: 1663
  issue: 4
  year: 2019
  ident: 10.1016/j.jpdc.2025.105054_br0130
  article-title: Towards the processing of large data volumes with phase cross-correlation
  publication-title: Seismol. Res. Lett.
– start-page: 137
  year: 2021
  ident: 10.1016/j.jpdc.2025.105054_br0160
  article-title: Accelerated stereo vision using nvidia jetson and intel avx
– ident: 10.1016/j.jpdc.2025.105054_br0080
– volume: 16
  start-page: 2273
  issue: 6
  year: 2017
  ident: 10.1016/j.jpdc.2025.105054_br0190
  article-title: Accelerating block-matching and 3d filtering method for image denoising on GPUs
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-017-0737-9
– volume: 29
  issue: 7
  year: 2018
  ident: 10.1016/j.jpdc.2025.105054_br0150
  article-title: Real-time stereo vision-based lane detection system
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aac163
– ident: 10.1016/j.jpdc.2025.105054_br0030
– start-page: 1
  year: 2019
  ident: 10.1016/j.jpdc.2025.105054_br0200
  article-title: Real-time stereo vision implementation on nvidia jetson tx2
– volume: 123
  year: 2022
  ident: 10.1016/j.jpdc.2025.105054_br0170
  article-title: Efficient stereo matching on embedded gpus with zero-means cross correlation
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2021.102366
– volume: 32
  year: 2020
  ident: 10.1016/j.jpdc.2025.105054_br0120
  article-title: A cublas-based gpu correlation engine for a low-frequency radio telescope
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2020.100407
– volume: 24
  start-page: 758
  issue: 8
  year: 2002
  ident: 10.1016/j.jpdc.2025.105054_br0050
  article-title: Fluorescence correlation spectroscopy for the detection and study of single molecules in biology
  publication-title: BioEssays
  doi: 10.1002/bies.10118
– start-page: 32
  year: 2020
  ident: 10.1016/j.jpdc.2025.105054_br0210
  article-title: Optimizing batched winograd convolution on gpus
– volume: 89
  start-page: 165
  issue: 1
  year: 2017
  ident: 10.1016/j.jpdc.2025.105054_br0140
  article-title: Fast matched filter (FMF): an efficient seismic matched-filter search for both CPU and GPU architectures
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220170181
– volume: 69
  start-page: 7
  year: 2015
  ident: 10.1016/j.jpdc.2025.105054_br0090
  article-title: High accuracy digital image correlation powered by gpu-based parallel computing
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2015.01.012
– volume: 34
  start-page: 712
  issue: 8
  year: 1966
  ident: 10.1016/j.jpdc.2025.105054_br0100
  article-title: The Fourier transform and its applications
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1973431
– volume: 32
  start-page: e006
  year: 2015
  ident: 10.1016/j.jpdc.2025.105054_br0110
  article-title: The Murchison widefield array correlator
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/pasa.2015.5
– start-page: 1
  year: 2015
  ident: 10.1016/j.jpdc.2025.105054_br0060
– start-page: 1179
  year: 2021
  ident: 10.1016/j.jpdc.2025.105054_br0040
  article-title: A high performance computing method for noise cross-correlation functions of seismic data
– start-page: 221
  year: 2010
  ident: 10.1016/j.jpdc.2025.105054_br0070
  article-title: Power and performance characterization of computational kernels on the gpu
– volume: 26
  start-page: 1857
  issue: 12
  year: 2019
  ident: 10.1016/j.jpdc.2025.105054_br0250
  article-title: Matched filtering accelerated by tensor cores on volta gpus with improved accuracy using half-precision variables
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2951305
– volume: 42
  start-page: 5607
  issue: 13
  year: 2015
  ident: 10.1016/j.jpdc.2025.105054_br0020
  article-title: On the performance of multi-gpu-based expert systems for acoustic localization involving massive microphone arrays
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.056
– volume: 64
  start-page: 175
  year: 2017
  ident: 10.1016/j.jpdc.2025.105054_br0230
  article-title: Improving matrix-based dynamic programming on massively parallel accelerators
  publication-title: Inf. Sci.
– start-page: 1
  year: 2017
  ident: 10.1016/j.jpdc.2025.105054_br0010
  article-title: Real-time implementation of stereo vision based on optimised normalised cross-correlation and propagated search range on a gpu
– volume: 33
  start-page: 70
  issue: 1
  year: 2021
  ident: 10.1016/j.jpdc.2025.105054_br0220
  article-title: Optimizing depthwise separable convolution operations on gpus
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2021.3084813
– ident: 10.1016/j.jpdc.2025.105054_br0180
– start-page: 277
  year: 2022
  ident: 10.1016/j.jpdc.2025.105054_br0240
  article-title: Calculation of cross-correlation function accelerated by tensor cores with tensorfloat-32 precision on ampere gpu
SSID ssj0011578
Score 2.4115632
Snippet Cross-correlation is a data analysis method widely employed in various signal processing and similarity-search applications. Our objective is to design a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105054
SubjectTerms Algorithm
Caching
Cross-correlation
CUDA
GPU
Optimizations
Parallel
Title Efficient GPU-accelerated parallel cross-correlation
URI https://dx.doi.org/10.1016/j.jpdc.2025.105054
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGP0Y8-LF3-L8MXrwJnFpmrTdcYzNqjgELewWmjSFjbEVmVf_dvM1qSiIB48tDS0v7fce9PveA7gWBReVKhWJdWEIjs0SpdmQhJa6Y6NLIVKcd36axVnOH-Zi3oFxOwuDbZW-9rua3lRrf2bg0RzUi8XgBckviTC_hzZMhRPsPMG3_Pbjq80DvWTS1ooTr_aDM67Ha1mXaGPIBMbdUsF_J6dvhDM9gD2vFIORe5hD6Jj1Eey3KQyB_yiPgU8aFwhLHsHdc04KrS2ToAFEGaCv92plVkFzO6IxicP1vp1APp28jjPisxCIthy8JZZXVZgaZtUa_miMVMSHqBZCwzBDqkCrOM3xn6SIuEoUFYoPlVV_3LCYcRWdQne9WZszCJIipYZWVcgY5WUlisjiV5rYajcaa5H04KYFQdbO8kK2vWBLiZBJhEw6yHogWpzkj42Ttib_se78n-suYBePXM_hJXS3b-_myuqCreo3G9-HndH9Yzb7BOVys3M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe9CL32L9zMGbLN1sdpP2WEpraj8QbKG3JbvZQEupRer_dye7EQXx4DVhSHjZzBuYmfcAHkTGRaFyRWKdGYJrs0Rp1iGhpe7Y6FyINu47T6ZxOufPC7GoQa_ahcGxSp_7XU4vs7W_0vJotrbLZesVyS-J0L-Hlky1Bw1UpxJ1aHSHo3T61UwIhUvIqMaJAX53xo15rbY5KhkygY63VPDf-ekb5wyO4dAXi0HXvc8J1MzmFI4qI4bA_5dnwPulEITlj-DpZU4yrS2ZoAZEHqC093pt1kH5OKLRjMONv53DfNCf9VLi7RCItjS8I5ZaVdg2zBZs2GuMVMQ7WDCEhqGNVIZqcZpjW1JEXCWKCsU7yhaA3LCYcRVdQH3ztjGXECRZmxpaFCFjlOeFyCILYW5iW77RWIukCY8VCHLrVC9kNQ62kgiZRMikg6wJosJJ_vh20qblP-Ku_hl3D_vpbDKW4-F0dA0HeMeNIN5Afff-YW5tmbBTd_4YfAI0LbYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+GPU-accelerated+parallel+cross-correlation&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Mad%C4%9Bra%2C+Karel&rft.au=%C5%A0melko%2C+Adam&rft.au=Kruli%C5%A1%2C+Martin&rft.date=2025-05-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.volume=199&rft_id=info:doi/10.1016%2Fj.jpdc.2025.105054&rft.externalDocID=S0743731525000218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon