Recent progress in the electrochemical ammonia synthesis under ambient conditions

Saved in:
Bibliographic Details
Published inEnergyChem Vol. 1; no. 2; p. 100011
Main Authors Zhao, Runbo, Xie, Hongtao, Chang, Le, Zhang, Xiaoxue, Zhu, Xiaojuan, Tong, Xin, Wang, Ting, Luo, Yonglan, Wei, Peipei, Wang, Zhiming, Sun, Xuping
Format Journal Article
LanguageEnglish
Published 01.09.2019
Online AccessGet full text

Cover

Loading…
ArticleNumber 100011
Author Zhang, Xiaoxue
Xie, Hongtao
Wang, Ting
Chang, Le
Tong, Xin
Luo, Yonglan
Sun, Xuping
Zhu, Xiaojuan
Zhao, Runbo
Wei, Peipei
Wang, Zhiming
Author_xml – sequence: 1
  givenname: Runbo
  surname: Zhao
  fullname: Zhao, Runbo
– sequence: 2
  givenname: Hongtao
  surname: Xie
  fullname: Xie, Hongtao
– sequence: 3
  givenname: Le
  surname: Chang
  fullname: Chang, Le
– sequence: 4
  givenname: Xiaoxue
  surname: Zhang
  fullname: Zhang, Xiaoxue
– sequence: 5
  givenname: Xiaojuan
  surname: Zhu
  fullname: Zhu, Xiaojuan
– sequence: 6
  givenname: Xin
  surname: Tong
  fullname: Tong, Xin
– sequence: 7
  givenname: Ting
  surname: Wang
  fullname: Wang, Ting
– sequence: 8
  givenname: Yonglan
  surname: Luo
  fullname: Luo, Yonglan
– sequence: 9
  givenname: Peipei
  surname: Wei
  fullname: Wei, Peipei
– sequence: 10
  givenname: Zhiming
  surname: Wang
  fullname: Wang, Zhiming
– sequence: 11
  givenname: Xuping
  surname: Sun
  fullname: Sun, Xuping
BookMark eNp9kM1OwzAQhC1UJErpG3DwC6R4nThOuKGKP6kSAsHZcu0NdZXYlW0OfXsSlQPiwGlHszuj1XdJZj54JOQa2AoY1Df7FXqzw2HFGbSjxRjAGZlz0bSFlA2b_dIXZJnSfjzhbV21pZyT1zc06DM9xPAZMSXqPM07pNijyTFMxc7onuphCN5pmo5-XCeX6Je3GEd_66a8Cd667IJPV-S8033C5c9ckI-H-_f1U7F5eXxe320KAw3kQopacr5l1oDumk5UQiBaiXVptmAs1qwEjRa45VyKUo6iNY0sG4PAO1GXC3J76jUxpBSxU8ZlPb2Qo3a9AqYmPmqvTnzUxEed-Izh6k_4EN2g4_H_2DdPAW-h
CitedBy_id crossref_primary_10_1016_j_jcis_2021_08_099
crossref_primary_10_1149_1945_7111_ac3aba
crossref_primary_10_1016_j_combustflame_2020_12_021
crossref_primary_10_1002_elsa_70001
crossref_primary_10_1021_acssuschemeng_9b06272
crossref_primary_10_1021_acs_jpcc_1c05893
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1002_cplu_202300129
crossref_primary_10_1016_j_apsusc_2024_159781
crossref_primary_10_34133_energymatadv_0039
crossref_primary_10_1038_s41598_021_04640_7
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1039_D1QM01620B
crossref_primary_10_1039_C9QI01133A
crossref_primary_10_1039_C9TA06523G
crossref_primary_10_1039_C9CC05309C
crossref_primary_10_1016_j_jallcom_2020_156149
crossref_primary_10_1016_j_jphotochem_2024_116159
crossref_primary_10_1002_adma_202007650
crossref_primary_10_1021_acsami_1c06368
crossref_primary_10_3390_membranes14030071
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1002_adma_202000299
crossref_primary_10_1039_D0RE00116C
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1021_acs_iecr_2c00631
crossref_primary_10_1002_smll_202004809
crossref_primary_10_1016_j_cej_2021_131421
crossref_primary_10_3389_fchem_2020_00330
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1021_acsanm_1c01761
crossref_primary_10_1016_j_nanoen_2020_104469
crossref_primary_10_1039_C9CY02500F
crossref_primary_10_1039_D4TA04873C
crossref_primary_10_1002_anie_201911153
crossref_primary_10_1016_j_apcatb_2024_123980
crossref_primary_10_1021_acscatal_9b03903
crossref_primary_10_1016_j_cej_2020_128079
crossref_primary_10_1039_C7CS00614D
crossref_primary_10_1016_j_cep_2024_109962
crossref_primary_10_1002_ente_202300410
crossref_primary_10_1039_D3RE00123G
crossref_primary_10_1016_j_mcat_2024_113921
crossref_primary_10_1007_s12274_019_2600_8
crossref_primary_10_1039_C9TA09910G
crossref_primary_10_1007_s11705_024_2463_8
crossref_primary_10_1021_acssuschemeng_2c05885
crossref_primary_10_1016_j_jssc_2020_121377
crossref_primary_10_1039_D2NJ02478K
crossref_primary_10_1016_j_fuproc_2022_107380
crossref_primary_10_1002_adfm_202009449
crossref_primary_10_3390_en17122963
crossref_primary_10_1093_ce_zkae002
crossref_primary_10_1016_j_energy_2022_123814
crossref_primary_10_1021_acssuschemeng_2c00914
crossref_primary_10_1016_j_jechem_2020_07_042
crossref_primary_10_1016_j_colsurfa_2024_133997
crossref_primary_10_1016_j_jechem_2020_01_011
crossref_primary_10_1021_acs_iecr_4c01915
crossref_primary_10_1016_j_scib_2019_12_019
crossref_primary_10_1002_smll_202400538
crossref_primary_10_1039_D0QI01511C
crossref_primary_10_1039_D3TA05857C
crossref_primary_10_1002_ange_201911153
crossref_primary_10_1039_D0TA08810B
crossref_primary_10_1080_21663831_2023_2209156
crossref_primary_10_1002_smll_202302295
crossref_primary_10_1016_j_ijhydene_2024_05_189
crossref_primary_10_1016_j_jechem_2020_12_012
crossref_primary_10_1039_D4EE06100D
crossref_primary_10_1021_acsami_9b18263
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1039_C9CC08352A
crossref_primary_10_1595_205651321X16043240667033
crossref_primary_10_1002_smsc_202000069
crossref_primary_10_1039_D0CC02489A
crossref_primary_10_1016_j_ijhydene_2024_04_300
crossref_primary_10_1021_acs_energyfuels_9b03076
crossref_primary_10_1021_acsami_9b12675
crossref_primary_10_1016_j_apcatb_2023_123580
crossref_primary_10_1039_C9TA10346E
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1039_D3TA01548C
crossref_primary_10_1002_cey2_708
crossref_primary_10_1002_qua_26548
crossref_primary_10_1016_j_jallcom_2021_159172
crossref_primary_10_1016_j_enchem_2020_100039
crossref_primary_10_1002_cssc_202300947
crossref_primary_10_1039_C9TA09439C
crossref_primary_10_1039_D0MA00590H
crossref_primary_10_1002_tcr_202400259
crossref_primary_10_1021_acssuschemeng_3c07455
crossref_primary_10_1039_D0TA08089F
crossref_primary_10_1002_aesr_202400083
crossref_primary_10_1016_j_jechem_2021_03_001
crossref_primary_10_1002_asia_201901624
crossref_primary_10_1002_celc_201901967
crossref_primary_10_1016_S1872_2067_23_64464_X
crossref_primary_10_1021_jacs_2c01245
crossref_primary_10_1039_D0CS00013B
crossref_primary_10_1021_acsmaterialslett_1c00673
crossref_primary_10_1039_D2CP04619A
crossref_primary_10_1016_j_jelechem_2021_115677
crossref_primary_10_1016_j_apcatb_2021_119956
crossref_primary_10_1016_j_arabjc_2020_04_025
crossref_primary_10_1016_j_jechem_2023_07_006
crossref_primary_10_1016_j_mattod_2020_03_022
crossref_primary_10_1002_cctc_201901818
crossref_primary_10_1016_j_mcat_2022_112327
crossref_primary_10_1039_C9QI00968J
crossref_primary_10_1021_acsami_2c02329
crossref_primary_10_1021_acsami_1c15324
crossref_primary_10_1039_C9TA13044F
crossref_primary_10_1002_celc_201901970
crossref_primary_10_1021_acscatal_2c00188
crossref_primary_10_1039_D3TA08086B
crossref_primary_10_1021_acssuschemeng_9b03890
crossref_primary_10_1016_j_enchem_2020_100040
crossref_primary_10_1016_j_ijhydene_2020_10_153
crossref_primary_10_1021_acsanm_2c00467
crossref_primary_10_1021_acsanm_3c02948
crossref_primary_10_1039_D2TA01669A
crossref_primary_10_1039_D0EE03808C
crossref_primary_10_1016_j_jechem_2024_07_033
crossref_primary_10_1039_C9TA07096F
crossref_primary_10_1039_D0SE00841A
crossref_primary_10_1016_j_apsusc_2024_161648
crossref_primary_10_1016_j_jece_2024_114454
crossref_primary_10_1039_D4CY00171K
crossref_primary_10_1039_D1TA08877G
crossref_primary_10_1039_D4CP00076E
crossref_primary_10_1016_j_cej_2021_129435
crossref_primary_10_1016_j_ica_2021_120700
crossref_primary_10_1039_D1SE00644D
crossref_primary_10_1002_cssc_202002098
crossref_primary_10_1021_acssuschemeng_9b03141
crossref_primary_10_1002_chem_202302734
crossref_primary_10_1002_cphc_202300723
crossref_primary_10_1016_j_apsusc_2024_161522
crossref_primary_10_1007_s12274_021_3937_3
crossref_primary_10_1021_acsami_1c20807
crossref_primary_10_1039_D1TA05327B
crossref_primary_10_1002_cssc_202301105
crossref_primary_10_1016_j_pmatsci_2022_101044
crossref_primary_10_1016_j_apsusc_2022_155916
crossref_primary_10_1021_acs_inorgchem_0c01596
crossref_primary_10_1039_D1SE01932E
crossref_primary_10_3389_fchem_2021_682979
crossref_primary_10_1016_j_jtice_2020_10_028
crossref_primary_10_1016_j_ijhydene_2021_01_203
crossref_primary_10_1016_j_ceramint_2022_03_282
crossref_primary_10_1016_j_electacta_2024_145278
crossref_primary_10_1016_j_matre_2021_100076
crossref_primary_10_1039_D0CC04374E
crossref_primary_10_1039_C9CC07232B
crossref_primary_10_1016_j_cej_2023_143533
crossref_primary_10_1021_acs_jpcc_0c04247
crossref_primary_10_1016_j_coco_2020_100551
crossref_primary_10_1002_celc_202400033
crossref_primary_10_1016_j_ccr_2022_214981
crossref_primary_10_1021_acsami_1c04619
crossref_primary_10_1016_j_apenergy_2023_121960
crossref_primary_10_1016_j_apcatb_2021_120874
crossref_primary_10_1016_j_ccr_2023_215609
crossref_primary_10_1021_acssuschemeng_0c00330
crossref_primary_10_1016_j_ijhydene_2021_01_214
crossref_primary_10_1039_D0QI00620C
crossref_primary_10_1002_admi_202202147
Cites_doi 10.1126/science.aaq1684
10.1039/C4CP04838E
10.1038/ncomms6848
10.1002/anie.201404161
10.1021/acscatal.5b01918
10.1002/anie.201802675
10.1021/jacs.8b13165
10.1002/aenm.201801357
10.1149/2.0091708jes
10.1021/acssuschemeng.7b02379
10.1038/srep01145
10.1038/nenergy.2016.130
10.1039/C4CS00085D
10.1016/S0926-860X(99)00341-5
10.1021/jz100533t
10.1016/j.cattod.2016.05.008
10.1149/1.1393239
10.1039/C3CS60468C
10.1126/sciadv.aar3208
10.1002/anie.201609533
10.1039/C5CP07363D
10.1016/j.joule.2018.06.007
10.1007/s12274-019-2352-5
10.1021/cr9500545
10.1039/C8CP01396A
10.1021/acscentsci.8b00734
10.1039/C8CP07064D
10.1021/acssuschemeng.8b01261
10.1002/anie.201610776
10.1002/smll.201803111
10.1021/acssuschemeng.8b05007
10.1016/j.cattod.2016.11.047
10.1038/ncomms4783
10.1002/cssc.201500322
10.1021/acscatal.8b02585
10.1021/acscatal.5b02577
10.1039/C8CC00459E
10.1039/C9CC00602H
10.1021/jacs.7b12101
10.1149/2.0231607jes
10.1021/ja5044243
10.1021/acscatal.8b03802
10.1039/C8CC06524A
10.1021/acscatal.8b02311
10.1039/C5RA09876A
10.1126/science.282.5386.98
10.1039/C8CC09256G
10.1021/jacs.6b00124
10.1016/j.ssi.2015.01.002
10.1021/ja028891t
10.1039/C8CC09867K
10.1039/C4CC01950D
10.1021/acsami.8b06647
10.1039/C8TA03989E
10.1039/C7EE02716H
10.1039/C1CP22271F
10.1039/C8CC07186A
10.1002/smll.201805029
10.1021/jp5114416
10.1021/cr8003696
10.1039/C8CC08045C
10.1039/C6EE01800A
10.1016/j.electacta.2005.03.023
10.1021/acs.inorgchem.8b03143
10.1126/sciadv.1700336
10.1039/C7EE01126A
10.1021/acssuschemeng.9b00983
10.1007/s12274-019-2323-x
10.1021/ic5020048
10.1039/C9CC00461K
10.1021/acs.jpcc.7b10522
10.1080/03602458008067533
10.1021/acscatal.8b00905
10.1021/ar500375j
10.1039/C8CC06365F
10.1039/C8TA03481H
10.1016/j.ssi.2005.07.018
10.1038/s41929-019-0241-7
10.1039/C8CC06366D
10.1038/s41467-018-05758-5
10.1039/C8TA03974G
10.1016/S0021-9517(03)00156-8
10.1149/2.0741614jes
10.1126/science.1159639
10.1002/smtd.201700286
10.1021/ja902980j
10.1039/C8QI01145A
10.1021/acscatal.6b03035
10.1016/j.electacta.2018.07.168
10.1021/jacs.7b08891
10.1016/j.cattod.2016.06.014
10.1002/anie.201703244
10.1016/j.scib.2018.07.005
10.1016/j.cattod.2016.09.006
10.1149/1.1870633
10.1021/acsenergylett.9b00699
10.1039/C9CC00936A
10.1039/C6SC03911A
10.1039/C8CC03627F
10.1021/acscatal.8b05061
10.1021/jacs.6b04778
10.1038/nature11475
10.1149/1.2437674
10.1021/jacs.6b01706
10.1016/j.ccr.2012.10.005
10.1016/j.apcatb.2005.08.006
10.1016/j.apcatb.2017.03.008
10.1126/science.1254234
10.1038/nature12435
10.1039/C4CP04308A
10.1021/acssuschemeng.7b02890
10.1021/acsenergylett.8b02138
10.1039/C9TA05016G
10.1021/acscatal.7b02165
10.1039/C4CP05501B
10.1039/C8NR10398D
10.1016/S1872-2067(14)60118-2
10.1021/ja201269b
10.1002/anie.201811728
10.1021/acs.inorgchem.8b02436
10.1039/C7TA08748A
10.1039/c2jm14847a
10.1021/jp002236v
10.1021/acs.jpclett.8b02188
10.1002/adma.201606550
10.2134/jeq2014.03.0102
10.1039/C9CC01920K
10.1006/jcat.2000.2877
10.3389/fenrg.2014.00001
10.1021/ar300361m
10.1021/acs.jpcc.8b10021
10.1039/b004885m
10.1039/C8NR09564G
10.1021/acscatal.8b00398
10.1021/acsami.8b20692
10.1021/acsenergylett.8b02257
10.1002/adma.201604799
10.1038/nchem.2595
10.1002/cssc.201701975
10.1002/anie.200301553
10.1039/C8NA00300A
10.1039/C8CY02316F
10.1021/acsami.5b09766
10.1126/science.aar6611
10.1002/adma.201104634
10.1016/j.nanoen.2018.03.059
10.1002/ange.201813174
10.1039/c3cp54559h
10.1016/j.electacta.2010.08.065
10.1039/C8NR04524K
10.1002/anie.201801538
10.1039/C8TA09840A
10.1039/C9CC01999E
10.1039/C9CC00647H
10.1126/science.1238663
10.1021/acscatal.6b02754
10.1016/0022-0728(93)03025-K
10.1021/acssuschemeng.7b01742
10.1002/anie.200703336
10.1021/jacs.5b02579
10.1039/C8TA05627G
10.1038/s41467-018-04213-9
10.1016/0013-4686(80)87009-5
10.1021/cr400641x
10.1039/C7TA06139K
10.1021/jacs.7b05213
10.1016/j.nanoen.2018.07.045
10.1126/science.345.6197.610
10.1038/nature06592
10.1016/j.jallcom.2015.09.170
10.1002/aenm.201800124
10.1021/acscatal.9b00366
10.1002/smtd.201800202
10.1039/C8CP01215F
10.1002/tcr.201100012
10.1016/j.ijhydene.2015.11.102
10.1021/acs.jpcc.8b05257
10.1002/adma.201102306
10.1039/C8TA10433F
10.1021/jacs.8b08379
10.1039/C8TA10497B
10.1039/C8CC06000B
10.1016/j.nanoen.2018.04.039
10.1016/j.ssi.2009.08.001
10.1038/s41467-018-08120-x
10.1021/jp503756g
10.1016/j.memsci.2010.05.038
10.1021/acs.inorgchem.9b00622
10.1016/j.electacta.2018.12.084
10.1021/acssuschemeng.8b01438
10.1016/j.ijhydene.2013.09.054
10.1021/acssuschemeng.8b05332
10.1016/j.cattod.2005.02.010
10.1021/acs.nanolett.5b05292
10.1002/smtd.201900356
10.1002/chem.201805523
10.1039/C8CP01643G
10.1039/C9CC02310K
10.1002/chem.201800535
10.1016/j.apcatb.2014.01.037
10.1002/smtd.201800204
10.1039/c2ra20393f
10.1021/acs.jpcc.7b00196
10.1021/cr300367d
10.1039/C8QI01049H
10.1021/acs.jpcc.5b06811
10.1021/acscatal.8b05134
10.1039/C9CC01703H
10.1038/ncomms4737
10.1103/PhysRevLett.102.126807
10.1039/C8NR10401H
10.1021/ja010963d
10.1016/j.jct.2012.11.010
10.1002/smtd.201800333
10.1002/cssc.201801444
10.1039/C9CC00726A
10.1002/anie.201806386
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.enchem.2019.100011
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2589-7780
ExternalDocumentID 10_1016_j_enchem_2019_100011
GroupedDBID 0R~
AABXZ
AAEDW
AAHCO
AAKOC
AALRI
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ACDAQ
ACRLP
ACVFH
ADCNI
AEBSH
AEIPS
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFXIZ
AFZHZ
AGCQF
AGRNS
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BNPGV
CITATION
EBS
EFJIC
EJD
FDB
FYGXN
KOM
M41
ROL
SPC
SPCBC
SSG
SSH
SSK
SSM
SSR
T5K
~G-
ID FETCH-LOGICAL-c181t-756722b0dc1af8f5455eed7e63cb1cde6031aed12d22753712d9c8738ce12f563
ISSN 2589-7780
IngestDate Tue Jul 01 04:25:44 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c181t-756722b0dc1af8f5455eed7e63cb1cde6031aed12d22753712d9c8738ce12f563
ParticipantIDs crossref_citationtrail_10_1016_j_enchem_2019_100011
crossref_primary_10_1016_j_enchem_2019_100011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-00
PublicationDecade 2010
PublicationTitle EnergyChem
PublicationYear 2019
References Lan (10.1016/j.enchem.2019.100011_bib0031) 2014; 152–153
Suryanto (10.1016/j.enchem.2019.100011_bib0093) 2018; 4
Ma (10.1016/j.enchem.2019.100011_bib0169) 2016; 16
Chen (10.1016/j.enchem.2019.100011_bib0211) 2018; 6
Wu (10.1016/j.enchem.2019.100011_bib0145) 2018; 14
Tanaka (10.1016/j.enchem.2019.100011_bib0199) 2014; 5
Zhang (10.1016/j.enchem.2019.100011_bib0097) 2018; 6
Su (10.1016/j.enchem.2019.100011_bib0161) 2013; 113
Back (10.1016/j.enchem.2019.100011_bib0083) 2016; 18
Zhang (10.1016/j.enchem.2019.100011_bib0154) 2018; 54
Ren (10.1016/j.enchem.2019.100011_bib0148) 2019; 5
Zhu (10.1016/j.enchem.2019.100011_bib0117) 2018; 54
Huang (10.1016/j.enchem.2019.100011_bib0185) 2019; 25
Zhang (10.1016/j.enchem.2019.100011_bib0155) 2018; 54
Back (10.1016/j.enchem.2019.100011_bib0193) 2017; 8
Zhang (10.1016/j.enchem.2019.100011_bib0134) 2018; 6
Kordali (10.1016/j.enchem.2019.100011_bib0015) 2000; 17
Kobayashi (10.1016/j.enchem.2019.100011_bib0078) 2017; 139
Zhou (10.1016/j.enchem.2019.100011_bib0058) 2017; 10
Shi (10.1016/j.enchem.2019.100011_bib0080) 2018; 8
Qin (10.1016/j.enchem.2019.100011_bib0219) 2018; 2
Wang (10.1016/j.enchem.2019.100011_bib0047) 2018; 9
Abghoui (10.1016/j.enchem.2019.100011_bib0086) 2015; 17
Kuriyama (10.1016/j.enchem.2019.100011_bib0200) 2014; 136
Wang (10.1016/j.enchem.2019.100011_bib0125) 2018; 9
Huang (10.1016/j.enchem.2019.100011_bib0232) 2019; 12
Bicer (10.1016/j.enchem.2019.100011_bib0006) 2017; 164
Wei (10.1016/j.enchem.2019.100011_bib0187) 2018; 6
Yang (10.1016/j.enchem.2019.100011_bib0103) 2019; 11
Jiao (10.1016/j.enchem.2019.100011_bib0159) 2016; 1
Hao (10.1016/j.enchem.2019.100011_bib0056a) 2019; 2
Lan (10.1016/j.enchem.2019.100011_bib0046) 2013; 3
Liu (10.1016/j.enchem.2019.100011_bib0007) 2014; 35
Wang (10.1016/j.enchem.2019.100011_bib0071) 2018; 11
Han (10.1016/j.enchem.2019.100011_bib0227) 2018; 6
Song (10.1016/j.enchem.2019.100011_bib0231) 2019; 55
Xu (10.1016/j.enchem.2019.100011_bib0225) 2019; 298
Shi (10.1016/j.enchem.2019.100011_bib0073) 2017; 29
Xie (10.1016/j.enchem.2019.100011_bib0142) 2019; 58
Singh (10.1016/j.enchem.2019.100011_bib0151) 2017; 7
Chang (10.1016/j.enchem.2019.100011_bib0229) 2019
Logadottir (10.1016/j.enchem.2019.100011_bib0068) 2003; 220
Yang (10.1016/j.enchem.2019.100011_bib0085) 2017; 5
Mališ (10.1016/j.enchem.2019.100011_bib0048) 2016; 41
Kyriakou (10.1016/j.enchem.2019.100011_bib0021) 2017; 286
Li (10.1016/j.enchem.2019.100011_bib0094) 2018; 8
Li (10.1016/j.enchem.2019.100011_bib0110) 2014; 53
Zhang (10.1016/j.enchem.2019.100011_bib0153) 2019; 55
Zhao (10.1016/j.enchem.2019.100011_bib0127) 2018; 54
Le (10.1016/j.enchem.2019.100011_bib0053) 2014; 50
Yao (10.1016/j.enchem.2019.100011_bib0222) 2019; 3
Garagounis (10.1016/j.enchem.2019.100011_bib0023) 2014; 2
Nagai (10.1016/j.enchem.2019.100011_bib0131) 2000; 192
Azadmanjiri (10.1016/j.enchem.2019.100011_bib0191) 2018; 6
Matanovic (10.1016/j.enchem.2019.100011_bib0087) 2014; 16
Stevanovic (10.1016/j.enchem.2019.100011_bib0059) 2013; 59
Vasileiou (10.1016/j.enchem.2019.100011_bib0033) 2015; 275
Ertl (10.1016/j.enchem.2019.100011_bib0213) 1980; 21
Sheng (10.1016/j.enchem.2019.100011_bib0112) 2015; 6
Geng (10.1016/j.enchem.2019.100011_bib0205) 2018; 30
Wang (10.1016/j.enchem.2019.100011_bib0239) 2019; 55
Chen (10.1016/j.enchem.2019.100011_bib0004) 2018; 360
Lu (10.1016/j.enchem.2019.100011_bib0016) 2016; 138
Yu (10.1016/j.enchem.2019.100011_bib0158) 2010; 1
Huang (10.1016/j.enchem.2019.100011_bib0214) 2018
Yu (10.1016/j.enchem.2019.100011_bib0170) 2018; 2
Liu (10.1016/j.enchem.2019.100011_bib0124) 2018; 122
Deng (10.1016/j.enchem.2019.100011_bib0195) 2015; 119
Chen (10.1016/j.enchem.2019.100011_bib0113) 2017; 56
Zhang (10.1016/j.enchem.2019.100011_bib0072) 2019; 7
Giddey (10.1016/j.enchem.2019.100011_bib0020) 2013; 38
Zhang (10.1016/j.enchem.2019.100011_bib0102) 2018; 10
Rossetti (10.1016/j.enchem.2019.100011_bib0009) 2005; 102
Zhu (10.1016/j.enchem.2019.100011_bib0240) 2019; 7
Rao (10.1016/j.enchem.2019.100011_bib0014) 2016; 6
Cao (10.1016/j.enchem.2019.100011_bib0163) 2018; 1
Herlem (10.1016/j.enchem.2019.100011_bib0063) 2000; 147
Han (10.1016/j.enchem.2019.100011_bib0203) 2018; 58
Tsuneto (10.1016/j.enchem.2019.100011_bib0037) 1994; 367
Skodra (10.1016/j.enchem.2019.100011_bib0030) 2009; 180
Hoskuldsson (10.1016/j.enchem.2019.100011_bib0025) 2017; 5
Xia (10.1016/j.enchem.2019.100011_bib0183) 2019; 55
Wu (10.1016/j.enchem.2019.100011_bib0186) 2019; 55
Service (10.1016/j.enchem.2019.100011_bib0003) 2014; 345
Nazemi (10.1016/j.enchem.2019.100011_bib0070) 2018; 49
Cheng (10.1016/j.enchem.2019.100011_bib0090) 2018; 30
Murakami (10.1016/j.enchem.2019.100011_bib0064) 2003; 125
Du (10.1016/j.enchem.2019.100011_bib0141) 2018; 54
Liu (10.1016/j.enchem.2019.100011_bib0005) 2018; 8
Xia (10.1016/j.enchem.2019.100011_bib0184) 2018; 14
Nazemi (10.1016/j.enchem.2019.100011_bib0055) 2018; 9
Hargreaves (10.1016/j.enchem.2019.100011_bib0210) 2013; 257
Skύlason (10.1016/j.enchem.2019.100011_bib0050) 2012; 14
Kavan (10.1016/j.enchem.2019.100011_bib0105) 2012; 12
Zhang (10.1016/j.enchem.2019.100011_bib0233) 2019; 55
Han (10.1016/j.enchem.2019.100011_bib0204) 2018; 58
Liu (10.1016/j.enchem.2019.100011_bib0126) 2018; 10
McEnaney (10.1016/j.enchem.2019.100011_bib0042) 2017; 10
Yao (10.1016/j.enchem.2019.100011_bib0052) 2018; 140
Mukherjee (10.1016/j.enchem.2019.100011_bib0167a) 2018; 48
Kim (10.1016/j.enchem.2019.100011_bib0060) 2016; 163
Cui (10.1016/j.enchem.2019.100011_bib0116) 2018; 24
Shima (10.1016/j.enchem.2019.100011_bib0077) 2013; 340
Chen (10.1016/j.enchem.2019.100011_bib0175) 2019; 15
Légaré (10.1016/j.enchem.2019.100011_bib0150) 2018; 359
Morales-Guio (10.1016/j.enchem.2019.100011_bib0075) 2014; 43
Zhang (10.1016/j.enchem.2019.100011_bib0139) 2018; 6
Xia (10.1016/j.enchem.2019.100011_bib0143) 2019; 58
Krasheninnikov (10.1016/j.enchem.2019.100011_bib0209) 2009; 102
Hang (10.1016/j.enchem.2019.100011_bib0115) 2016; 655
Yang (10.1016/j.enchem.2019.100011_bib0135) 2018; 140
Shipman (10.1016/j.enchem.2019.100011_bib0008) 2017; 286
Hu (10.1016/j.enchem.2019.100011_bib0122) 2018; 8
Zhao (10.1016/j.enchem.2019.100011_bib0149) 2018; 6
Zhao (10.1016/j.enchem.2019.100011_bib0019) 2017; 139
Howard (10.1016/j.enchem.2019.100011_bib0091) 1996; 96
Qin (10.1016/j.enchem.2019.100011_bib0017) 2018; 2
Li (10.1016/j.enchem.2019.100011_bib0160) 2018; 54
Tawfik (10.1016/j.enchem.2019.100011_bib0198) 2015; 5
Wang (10.1016/j.enchem.2019.100011_bib0081) 2019; 11
Huang (10.1016/j.enchem.2019.100011_bib0221) 2018; 54
Marnellos (10.1016/j.enchem.2019.100011_bib0026) 1998; 282
Li (10.1016/j.enchem.2019.100011_bib0196) 2011; 133
Liu (10.1016/j.enchem.2019.100011_bib0172) 2019; 141
Zhao (10.1016/j.enchem.2019.100011_bib0237) 2019; 55
Yiokari (10.1016/j.enchem.2019.100011_bib0027) 2000; 104
Song (10.1016/j.enchem.2019.100011_bib0157) 2018; 4
Zhang (10.1016/j.enchem.2019.100011_bib0173) 2019; 9
Hering-Junghans (10.1016/j.enchem.2019.100011_bib0171) 2018; 57
Zhang (10.1016/j.enchem.2019.100011_bib0088) 2018; 6
Xiang (10.1016/j.enchem.2019.100011_bib0120) 2018; 10
Ji (10.1016/j.enchem.2019.100011_bib0178) 2019; 7
Liu (10.1016/j.enchem.2019.100011_bib0034) 2006; 177
Kong (10.1016/j.enchem.2019.100011_bib0216) 2019; 6
Kim (10.1016/j.enchem.2019.100011_bib0054) 2016; 163
Arashiba (10.1016/j.enchem.2019.100011_bib0201) 2015; 137
Qie (10.1016/j.enchem.2019.100011_bib0162) 2012; 24
Ogura (10.1016/j.enchem.2019.100011_bib0118) 2010; 56
Ling (10.1016/j.enchem.2019.100011_bib0174) 2018; 122
Zhao (10.1016/j.enchem.2019.100011_bib0177) 2019; 11
Wang (10.1016/j.enchem.2019.100011_bib0212) 2017; 9
J Jia (10.1016/j.enchem.2019.100011_bib0099) 2019; 1
Naguib (10.1016/j.enchem.2019.100011_bib0129) 2011; 23
Lv (10.1016/j.enchem.2019.100011_bib0168) 2018; 57
Tang (10.1016/j.enchem.2019.100011_bib0121) 2015; 7
Zhu (10.1016/j.enchem.2019.100011_bib0119) 2019; 55
Lv (10.1016/j.enchem.2019.100011_bib0223) 2018; 57
Zeinalipour-Yazdi (10.1016/j.enchem.2019.100011_bib0132) 2015; 119
Herzing (10.1016/j.enchem.2019.100011_bib0194) 2008; 321
Gruber (10.1016/j.enchem.2019.100011_bib0012) 2008; 451
Qiu (10.1016/j.enchem.2019.100011_bib0179a) 2018; 9
Guo (10.1016/j.enchem.2019.100011_bib0230) 2018; 2
Li (10.1016/j.enchem.2019.100011_bib0096) 2012; 22
Abghoui (10.1016/j.enchem.2019.100011_bib0133) 2017; 121
Akagi (10.1016/j.enchem.2019.100011_bib0076) 2007; 46
Liu (10.1016/j.enchem.2019.100011_bib0197) 2014; 53
Nguyen (10.1016/j.enchem.2019.100011_bib0109) 2015; 17
Yang (10.1016/j.enchem.2019.100011_bib0192) 2013; 46
Tao (10.1016/j.enchem.2019.100011_bib0206) 2018; 5
Manjunatha (10.1016/j.enchem.2019.100011_bib0104) 2019; 11
Zhao (10.1016/j.enchem.2019.100011_bib0166) 2019; 4
Roy (10.1016/j.enchem.2019.100011_bib0036) 2009; 131
Zhao (10.1016/j.enchem.2019.100011_bib0238) 2019; 55
Sock (10.1016/j.enchem.2019.100011_bib0062) 1980; 25
Shao (10.1016/j.enchem.2019.100011_bib0065) 2018; 20
Chen (10.1016/j.enchem.2019.100011_bib0182) 2019; 55
Li (10.1016/j.enchem.2019.100011_bib0018) 2017; 121
Acobsen (10.1016/j.enchem.2019.100011_bib0079) 2001; 123
Yu (10.1016/j.enchem.2019.100011_bib0234) 2019; 55
Li (10.1016/j.enchem.2019.100011_bib0024) 2018; 1800388
Ling (10.1016/j.enchem.2019.100011_bib0217) 2018
Ren (10.1016/j.enchem.2019.100011_bib0228) 2018; 54
Wu (10.1016/j.enchem.2019.100011_bib0235) 2019
Chu (10.1016/j.enchem.2019.100011_bib0001) 2012; 488
Murakami (10.1016/j.enchem.2019.100011_bib0040) 2005; 50
Li (10.1016/j.enchem.2019.100011_bib0152) 2019; 9
Shao (10.1016/j.enchem.2019.100011_bib0098) 2017; 209
Wang (10.1016/j.enchem.2019.100011_bib0144) 2019; 6
Lee (10.1016/j.enchem.2019.100011_bib0057) 2018; 4
Wang (10.1016/j.enchem.2019.100011_bib0207) 2019; 10
Chen (10.1016/j.enchem.2019.100011_bib0045) 2017; 5
Montoya (10.1016/j.enchem.2019.100011_bib0067) 2015; 8
Amar (10.1016/j.enchem.2019.100011_bib0101) 2017; 286
Yao (10.1016/j.enchem.2019.100011_bib0137) 2018
Zhang (10.1016/j.enchem.2019.100011_bib0188) 2018; 131
Kong (10.1016/j.enchem.2019.100011_bib0111) 2017; 5
Azofra (10.1016/j.enchem.2019.100011_bib0147) 2016; 9
Xu (10.1016/j.enchem.2019.100011_bib0224) 2019; 7
Murakami (10.1016/j.enchem.2019.100011_bib0039) 2005; 8
Abghoui (10.1016/j.enchem.2019.100011_bib0051
References_xml – volume: 15
  year: 1845
  ident: 10.1016/j.enchem.2019.100011_bib0022
  article-title: Solid-state electrochemical synthesis of ammonia: a review
  publication-title: J. Solid State Electrochem.
– volume: 6
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0144
  article-title: Electrocatalytic hydrogenation of N2 to NH3 by MnO: experimental and theoretical investigations
  publication-title: Adv. Sci.
– year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0217
  article-title: A general two-step strategy–based high-throughput screening of single atom catalysts for nitrogen fixation
  publication-title: Small Methods
– volume: 359
  start-page: 896
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0150
  article-title: Nitrogen fixation and reduction at boron
  publication-title: Science
  doi: 10.1126/science.aaq1684
– volume: 17
  start-page: 4909
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0086
  article-title: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04838E
– volume: 6
  start-page: 5848
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0112
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 53
  start-page: 6710
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0197
  article-title: Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201404161
– volume: 6
  start-page: 635
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0051
  article-title: Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01918
– volume: 57
  start-page: 6738
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0171
  article-title: Metal-Free nitrogen fixation at boron
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802675
– volume: 141
  start-page: 2884
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0172
  article-title: Single-Boron catalysts for nitrogen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13165
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0094
  article-title: Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801357
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0090
  article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions
  publication-title: Adv. Mater.
– volume: 164
  start-page: H5036
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0006
  article-title: Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0091708jes
– volume: 5
  start-page: 10327
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0025
  article-title: Computational screening of rutile oxides for electrochemical ammonia formation
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02379
– volume: 3
  start-page: 1145
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0046
  article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure
  publication-title: Sci. Rep.
  doi: 10.1038/srep01145
– volume: 1
  start-page: 16130
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0159
  article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.130
– volume: 43
  start-page: 5183
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0010
  article-title: Challenges in reduction of dinitrogen by proton and electron transfer
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– volume: 192
  start-page: 189
  year: 2000
  ident: 10.1016/j.enchem.2019.100011_bib0131
  article-title: XPS and TPSR study of nitrided molybdena–alumina catalyst for the hydrodesulfurization of dibenzothiophene
  publication-title: Appl. Catal., A
  doi: 10.1016/S0926-860X(99)00341-5
– volume: 1
  start-page: 2165
  year: 2010
  ident: 10.1016/j.enchem.2019.100011_bib0158
  article-title: Metal-Free carbon nanomaterials become more active than metal catalysts and last longer
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100533t
– volume: 286
  start-page: 57
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0008
  article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.008
– volume: 147
  start-page: 597
  year: 2000
  ident: 10.1016/j.enchem.2019.100011_bib0063
  article-title: Electrochemical oxidation of Ethylenediamine: new way to make polyethyleneimine-like coatings on metallic or semiconducting materials
  publication-title: J. Electrochem. Society
  doi: 10.1149/1.1393239
– volume: 43
  start-page: 6555
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0075
  article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60468C
– volume: 4
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0057
  article-title: Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar3208
– volume: 56
  start-page: 2699
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0113
  article-title: Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201609533
– volume: 18
  start-page: 9161
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0083
  article-title: On the mechanism of electrochemical ammonia synthesis on the Ru catalyst.
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07363D
– volume: 2
  start-page: 1610
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0170
  article-title: Boron-Doped graphene for electrocatalytic N2 reduction
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.007
– volume: 12
  start-page: 1093
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0232
  article-title: Mn3O4 nanoparticles@reduced graphene oxide composite: an efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2352-5
– volume: 96
  start-page: 2965
  year: 1996
  ident: 10.1016/j.enchem.2019.100011_bib0091
  article-title: Structural basis of biological nitrogen fixation
  publication-title: Chem. Rev.
  doi: 10.1021/cr9500545
– volume: 20
  start-page: 14504
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0065
  article-title: Efficient nitrogen fixation to ammonia on MXenes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01396A
– volume: 5
  start-page: 116
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0148
  article-title: High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00734
– volume: 21
  start-page: 1110
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0176
  article-title: A single boron atom doped boron nitride edge as a metal-free catalyst for N2 fixation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP07064D
– volume: 6
  start-page: 9545
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0134
  article-title: High-Efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array
  publication-title: ACS Sustainiable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01261
– volume: 56
  start-page: 1064
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0114
  article-title: High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610776
– volume: 14
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0145
  article-title: MnO nanocube: an efficient electrocatalyst toward artificial N2 fixation to NH3
  publication-title: Small
  doi: 10.1002/smll.201803111
– year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0214
  article-title: NbO2 electrocatalyst toward 32% faradaic efficiency for N2 fixation
  publication-title: Small Methods
– volume: 7
  start-page: 2889
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0224
  article-title: Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies
  publication-title: ACS Sustainiable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05007
– volume: 286
  start-page: 69
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0044
  article-title: Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.11.047
– volume: 5
  start-page: 3783
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0156
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4783
– volume: 8
  start-page: 2180
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0067
  article-title: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201500322
– volume: 8
  start-page: 9312
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0122
  article-title: Ambient electrochemical aammonia synthesis with high selectivity on Fe/Fe oxide catalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02585
– volume: 6
  start-page: 1567
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0014
  article-title: Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02577
– volume: 54
  start-page: 5323
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0136
  article-title: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00459E
– volume: 55
  start-page: 3371
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0183
  article-title: Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00602H
– volume: 140
  start-page: 1496
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0052
  article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– volume: 163
  start-page: F610
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0060
  article-title: Communication—electrochemical reduction of nitrogen to ammonia in 2-Propanol under ambient temperature and pressure
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0231607jes
– volume: 136
  start-page: 9719
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0200
  article-title: Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5044243
– volume: 9
  start-page: 336
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0125
  article-title: Rational design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03802
– volume: 54
  start-page: 12966
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0155
  article-title: Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06524A
– volume: 8
  start-page: 8540
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0140
  article-title: High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02311
– volume: 5
  start-page: 50975
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0198
  article-title: Multiple CO2 capture in stable metal-doped graphene: a theoretical trend study
  publication-title: RSC Adv.
  doi: 10.1039/C5RA09876A
– volume: 282
  start-page: 98
  year: 1998
  ident: 10.1016/j.enchem.2019.100011_bib0026
  article-title: Ammonia synthesis at atmospheric pressure
  publication-title: Science
  doi: 10.1126/science.282.5386.98
– volume: 55
  start-page: 687
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0231
  article-title: Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09256G
– volume: 138
  start-page: 3970
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0016
  article-title: Water durable electride YSi: electronic structure and catalytic activity for ammonia synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00124
– volume: 275
  start-page: 110
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0033
  article-title: Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2015.01.002
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0206
  article-title: Nitrogen fixation by Ru single-atom electrocatalytic reduction
  publication-title: Chem
– volume: 125
  start-page: 334
  year: 2003
  ident: 10.1016/j.enchem.2019.100011_bib0064
  article-title: Electrolytic synthesis of ammonia in molten salts under atmospheric pressure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028891t
– volume: 55
  start-page: 2684
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0186
  article-title: Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09867K
– volume: 50
  start-page: 13319
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0053
  article-title: Nitrogen-fixation catalyst based on graphene: every part counts
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01950D
– volume: 10
  start-page: 28251
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0102
  article-title: Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06647
– volume: 6
  start-page: 13790
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0187
  article-title: Fe-doped phosphorene for the nitrogen reduction reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03989E
– volume: 10
  start-page: 2516
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0058
  article-title: Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02716H
– volume: 14
  start-page: 1235
  year: 2012
  ident: 10.1016/j.enchem.2019.100011_bib0050
  article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 54
  start-page: 12848
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0141
  article-title: CrO nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07186A
– volume: 15
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0175
  article-title: BN pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency
  publication-title: Small
  doi: 10.1002/smll.201805029
– volume: 6
  start-page: 1014
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0139
  article-title: Electrocatalytic N2 fixation over VO2 hollow microsphere at ambient conditions
  publication-title: Chem. Electro. Chem.
– volume: 119
  start-page: 3132
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0195
  article-title: Discerning the role of Ag-O-Al entities on Ag/γ-Al2O3 surface in NOx selective reduction by ethanol
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5114416
– volume: 109
  start-page: 2209
  year: 2009
  ident: 10.1016/j.enchem.2019.100011_bib0002
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 54
  start-page: 13010
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0127
  article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08045C
– volume: 9
  start-page: 2545
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0147
  article-title: Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01800A
– volume: 50
  start-page: 5423
  year: 2005
  ident: 10.1016/j.enchem.2019.100011_bib0040
  article-title: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.03.023
– volume: 58
  start-page: 2257
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0143
  article-title: CrO nanoparticle-reduced graphene oxide hybrid: a highly active electrocatalyst for N2 reduction at aambient conditions
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b03143
– volume: 4
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0157
  article-title: A physical catalyst for the electrolysis of nitrogen to ammonia
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700336
– volume: 10
  start-page: 1621
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0042
  article-title: Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01126A
– volume: 7
  start-page: 10214
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0072
  article-title: Low-Coordinated gold atoms boost electrochemical nitrogen reduction reaction under ambient conditions
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00983
– volume: 12
  start-page: 919
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0236
  article-title: Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2323-x
– volume: 53
  start-page: 10042
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0110
  article-title: Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3
  publication-title: Inorg. Chem.
  doi: 10.1021/ic5020048
– volume: 55
  start-page: 3152
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0182
  article-title: Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00461K
– volume: 121
  start-page: 27563
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0018
  article-title: Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b10522
– volume: 21
  start-page: 201
  year: 1980
  ident: 10.1016/j.enchem.2019.100011_bib0213
  article-title: Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P. H. Emmett award aAddress
  publication-title: Catal. Rev.
  doi: 10.1080/03602458008067533
– volume: 8
  start-page: 7517
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0190
  article-title: Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 48
  start-page: 306
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0165
  article-title: Frustrated lewis pairs: from concept to catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500375j
– volume: 54
  start-page: 11427
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0221
  article-title: Ag nanosheet for efficient electrocatalytic N2 fixation to NH3 at ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06365F
– volume: 6
  start-page: 9623
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0211
  article-title: Discovery of cobweb-like MoC6 and its application for nitrogen fixation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03481H
– volume: 177
  start-page: 73
  year: 2006
  ident: 10.1016/j.enchem.2019.100011_bib0034
  article-title: Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2005.07.018
– volume: 2
  start-page: 448
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0056a
  article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 54
  start-page: 11332
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0117
  article-title: Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-nobl-metal catalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06366D
– volume: 9
  start-page: 3485
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0179a
  article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05758-5
– volume: 6
  start-page: 12974
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0227
  article-title: MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03974G
– volume: 220
  start-page: 273
  year: 2003
  ident: 10.1016/j.enchem.2019.100011_bib0068
  article-title: Ammonia synthesis over a Ru(0001) surface studied by density functional calculations
  publication-title: J. Catal.
  doi: 10.1016/S0021-9517(03)00156-8
– volume: 163
  start-page: F1523
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0054
  article-title: Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0741614jes
– volume: 321
  start-page: 1331
  year: 2008
  ident: 10.1016/j.enchem.2019.100011_bib0194
  article-title: Identification of active gold nanoclusters on iron oxide supports for CO oxidation
  publication-title: Science
  doi: 10.1126/science.1159639
– volume: 2
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0017
  article-title: Strategies for stabilizing atomically dispersed metal catalysts
  publication-title: Small Methods
  doi: 10.1002/smtd.201700286
– volume: 14
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0184
  article-title: S-doped carbon nanospheres: an efficient electrocatalyst toward artificial N2 fixation to NH3
  publication-title: Small Methods
– volume: 131
  start-page: 13045
  year: 2009
  ident: 10.1016/j.enchem.2019.100011_bib0036
  article-title: Modeling dinitrogen activation by Lithium: a mechanistic investigation of the cleavage of N2 by stepwise insertion into small lithium clusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902980j
– volume: 6
  start-page: 391
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0138
  article-title: Metal–organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions
  publication-title: Inorg. Chem. Front
  doi: 10.1039/C8QI01145A
– volume: 7
  start-page: 706
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0151
  article-title: Electrochemical ammonia synthesis-the selectivity challenge
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03035
– volume: 284
  start-page: 392
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0208a
  article-title: Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: a computational study of single Fe atom supported on defective graphene
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.07.168
– volume: 139
  start-page: 18240
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0078
  article-title: Titanium-based hydrides as heterogeneous catalysts for ammonia synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08891
– volume: 286
  start-page: 2
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0021
  article-title: Progress in the electrochemical synthesis of ammonia
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.06.014
– volume: 56
  start-page: 6921
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0108
  article-title: N2-to-NH3 conversion by a triphos-Iron catalyst and enhanced turnover under photolysis
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703244
– volume: 63
  start-page: 1246
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0218
  article-title: Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.07.005
– volume: 286
  start-page: 51
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0101
  article-title: Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3-d Ce0.8Gd0.18Ca0.02O2-d composite cathode
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.09.006
– volume: 8
  start-page: D12
  year: 2005
  ident: 10.1016/j.enchem.2019.100011_bib0039
  article-title: Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1870633
– volume: 4
  start-page: 1336
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0084
  article-title: Electrochemical nitrogen reduction reaction on ruthenium
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00699
– volume: 55
  start-page: 4627
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0233
  article-title: Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00936A
– volume: 8
  start-page: 1090
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0193
  article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03911A
– volume: 54
  start-page: 8474
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0228
  article-title: Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03627F
– volume: 9
  start-page: 3419
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0202
  article-title: Single Mo(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05061
– volume: 138
  start-page: 8706
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0123
  article-title: Conversion of dinitrogen to ammonia by Fen3-embedded graphene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04778
– volume: 488
  start-page: 294
  year: 2012
  ident: 10.1016/j.enchem.2019.100011_bib0001
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 10
  start-page: E4
  year: 2007
  ident: 10.1016/j.enchem.2019.100011_bib0041
  article-title: Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a nonconsumable anode
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2437674
– volume: 138
  start-page: 5341
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0106
  article-title: A synthetic single-site Fe nitrogenase: high turnover, freeze-quench (57) Fe mossbauer data, and a hydride resting state
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01706
– volume: 257
  start-page: 2015
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0210
  article-title: Heterogeneous catalysis with metal nitrides
  publication-title: Coordin. Chem. Rev.
  doi: 10.1016/j.ccr.2012.10.005
– volume: 62
  start-page: 306
  year: 2006
  ident: 10.1016/j.enchem.2019.100011_bib0061
  article-title: Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2005.08.006
– volume: 209
  start-page: 311
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0098
  article-title: In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.03.008
– volume: 26
  start-page: 637
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0043
  article-title: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
  publication-title: Science
  doi: 10.1126/science.1254234
– volume: 501
  start-page: 84
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0107
  article-title: Catalytic conversion of nitrogen to ammonia by an iron model complex
  publication-title: Nature
  doi: 10.1038/nature12435
– volume: 17
  start-page: 14317
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0109
  article-title: Nitrogen electrochemically reduced to ammonia with hematite: density-functional insights
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04308A
– volume: 5
  start-page: 10986
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0111
  article-title: Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst
  publication-title: ACS Sustainiable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02890
– volume: 4
  start-page: 377
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0166
  article-title: Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02138
– volume: 7
  start-page: 16117
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0240
  article-title: Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: the critical role of P to boost the catalytic activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05016G
– volume: 8
  start-page: 1186
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0005
  article-title: Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-Doped porous carbon
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02165
– volume: 17
  start-page: 3768
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0074
  article-title: Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05501B
– volume: 11
  start-page: 5499
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0081
  article-title: Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis
  publication-title: Nanoscale
  doi: 10.1039/C8NR10398D
– volume: 35
  start-page: 1619
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0007
  article-title: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60118-2
– volume: 133
  start-page: 7296
  year: 2011
  ident: 10.1016/j.enchem.2019.100011_bib0196
  article-title: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 54
  start-page: 12966
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0154
  article-title: Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06524A
– volume: 58
  start-page: 2321
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0203
  article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811728
– volume: 57
  start-page: 14692
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0220
  article-title: Nanostructured bromide-derived Ag film: an efficient electrocatalyst for N2 reduction to NH3 under ambient conditions
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02436
– volume: 6
  start-page: 702
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0191
  article-title: Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08748A
– volume: 22
  start-page: 4025
  year: 2012
  ident: 10.1016/j.enchem.2019.100011_bib0096
  article-title: Core–shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm14847a
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0205
  article-title: Achieving a record-high yield rate of 120.9 µgNH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts
  publication-title: Adv. Mater.
– volume: 104
  start-page: 10600
  year: 2000
  ident: 10.1016/j.enchem.2019.100011_bib0027
  article-title: High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp002236v
– volume: 9
  start-page: 5160
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0055
  article-title: Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02188
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0073
  article-title: Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 44
  start-page: 356
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0013
  article-title: Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2014.03.0102
– volume: 55
  start-page: 4266
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0237
  article-title: Defect-rich fluorographene nanosheet for artificial N2 fixation under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01920K
– volume: 193
  start-page: 80
  year: 2000
  ident: 10.1016/j.enchem.2019.100011_bib0028
  article-title: Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2877
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0023
  article-title: Electrochemical synthesis of ammonia in solid electrolyte cells
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2014.00001
– volume: 46
  start-page: 1740
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0192
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 122
  start-page: 25268
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0124
  article-title: Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b10021
– volume: 17
  start-page: 1673
  year: 2000
  ident: 10.1016/j.enchem.2019.100011_bib0015
  article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell
  publication-title: Chem. Commun.
  doi: 10.1039/b004885m
– volume: 11
  start-page: 1555
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0103
  article-title: Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies
  publication-title: Nanoscale
  doi: 10.1039/C8NR09564G
– volume: 8
  start-page: 3116
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0164
  article-title: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00398
– volume: 11
  start-page: 7981
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0104
  article-title: Electrochemical ammonia generation directly from nitrogen and air using an iron-oxide/titania-based catalyst at ambient conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20692
– volume: 4
  start-page: 430
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0093
  article-title: MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02257
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0066
  article-title: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– volume: 9
  start-page: 64
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0212
  article-title: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2595
– volume: 11
  start-page: 120
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0035
  article-title: Electrochemical synthesis of ammonia from water and nitrogen: a lithium-mediated approach using lithium-ion conducting glass ceramics
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201701975
– volume: 42
  start-page: 2004
  year: 2003
  ident: 10.1016/j.enchem.2019.100011_bib0082
  article-title: Catalytic synthesis of Ammonia—A “Never-Ending Story”? Angew
  publication-title: Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200301553
– volume: 1
  start-page: 961
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0099
  article-title: Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00300A
– volume: 9
  start-page: 1208
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0226
  article-title: Electrochemical synthesis of ammonia from N2 and H2O using a typical nonnoble metal carbon-based catalyst under ambient conditions
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02316F
– volume: 7
  start-page: 27518
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0121
  article-title: Hierarchical Fe3O4@Fe2O3 Core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09766
– volume: 360
  start-page: 873
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0004
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 24
  start-page: 2047
  year: 2012
  ident: 10.1016/j.enchem.2019.100011_bib0162
  article-title: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104634
– volume: 48
  start-page: 217
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0167a
  article-title: Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.059
– volume: 131
  start-page: 2638
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0188
  article-title: Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201813174
– volume: 16
  start-page: 3014
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0087
  article-title: Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54559h
– volume: 56
  start-page: 381
  year: 2010
  ident: 10.1016/j.enchem.2019.100011_bib0118
  article-title: CO attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.08.065
– volume: 10
  start-page: 14386
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0126
  article-title: Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod
  publication-title: Nanoscale
  doi: 10.1039/C8NR04524K
– volume: 57
  start-page: 6073
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0223
  article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801538
– volume: 6
  start-page: 24031
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0149
  article-title: (T=F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09840A
– volume: 55
  start-page: 7502
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0239
  article-title: Electrocatalytic N2-to-NH3 conversion by oxygen-doped graphene: experimental and theoretical studies
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01999E
– volume: 55
  start-page: 3987
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0119
  article-title: Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00647H
– volume: 340
  start-page: 1549
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0077
  article-title: Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex
  publication-title: Science
  doi: 10.1126/science.1238663
– volume: 7
  start-page: 494
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0128
  article-title: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02754
– volume: 367
  start-page: 183
  year: 1994
  ident: 10.1016/j.enchem.2019.100011_bib0037
  article-title: Lithium-mediated electrochemical reduction of high pressure N2 to NH3
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(93)03025-K
– volume: 5
  start-page: 7393
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0045
  article-title: Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01742
– volume: 46
  start-page: 8778
  year: 2007
  ident: 10.1016/j.enchem.2019.100011_bib0076
  article-title: Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200703336
– volume: 137
  start-page: 5666
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0201
  article-title: Catalytic reduction of dinitrogen to ammonia by use of molybdenum-nitride complexes bearing a tridentate triphosphine as catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02579
– volume: 6
  start-page: 17303
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0097
  article-title: Nanoparticles–reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05627G
– volume: 9
  start-page: 1795
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0047
  article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04213-9
– volume: 25
  start-page: 1025
  year: 1980
  ident: 10.1016/j.enchem.2019.100011_bib0062
  article-title: Accessible potential range in ethylenediamine used as solvent in electrochemistry
  publication-title: Electrochimica. Acta
  doi: 10.1016/0013-4686(80)87009-5
– volume: 114
  start-page: 4041
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0180
  article-title: Mechanism of nitrogen fixation by nitrogenase: the next stage
  publication-title: Chem. Rev.
  doi: 10.1021/cr400641x
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0092
  article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies
  publication-title: Adv. Mater.
– volume: 5
  start-page: 18967
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0085
  article-title: Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06139K
– volume: 139
  start-page: 12480
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0019
  article-title: Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05213
– volume: 52
  start-page: 264
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0215a
  article-title: Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.045
– volume: 345
  start-page: 610
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0003
  article-title: Chemistry. New recipe produces ammonia from air, water, and sunlight
  publication-title: Science
  doi: 10.1126/science.345.6197.610
– volume: 451
  start-page: 293
  year: 2008
  ident: 10.1016/j.enchem.2019.100011_bib0012
  article-title: An Earth-system perspective of the global nitrogen cycle
  publication-title: Nature
  doi: 10.1038/nature06592
– volume: 655
  start-page: 44
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0115
  article-title: Electrochemical properties of Fe2O3 microparticles and their application in Fe/air battery anodes
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2015.09.170
– start-page: 57
  year: 1996
  ident: 10.1016/j.enchem.2019.100011_bib0029
– volume: 125
  start-page: 334
  year: 2003
  ident: 10.1016/j.enchem.2019.100011_bib0038
  article-title: Electrolytic synthesis of ammonia in molten salts under atmospheric pressure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028891t
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0080
  article-title: Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201800124
– volume: 9
  start-page: 2902
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0152
  article-title: Two-dimensional mosaic Bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00366
– volume: 2
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0219
  article-title: Single‐site gold catalysts on hierarchical N-Doped porous noble carbon for enhanced electrochemical reduction of nitrogen
  publication-title: Small Methods
  doi: 10.1002/smtd.201800202
– volume: 20
  start-page: 12835
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0189
  article-title: Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis
  publication-title: Phys. Chem. Chem. Phys
  doi: 10.1039/C8CP01215F
– volume: 12
  start-page: 131
  year: 2012
  ident: 10.1016/j.enchem.2019.100011_bib0105
  article-title: Electrochemistry of titanium dioxide: some aspects and highlights
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201100012
– volume: 41
  start-page: 2177
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0048
  article-title: Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.11.102
– volume: 10
  start-page: 4530
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0120
  article-title: Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods
  publication-title: Chem. Cat. Chem.
– volume: 122
  start-page: 16842
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0174
  article-title: Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05257
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.enchem.2019.100011_bib0129
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 7
  start-page: 2524
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0095
  article-title: A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10433F
– volume: 140
  start-page: 13387
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0135
  article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08379
– year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0137
  article-title: Chromium oxynitride electrocatalysts for electrochemical synthesis of ammonia under ambient conditions
  publication-title: Small Methods
– volume: 7
  start-page: 2392
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0178
  article-title: A boron-interstitial doped C2N layer as a metal-free electrocatalyst for N2 fixation: a computational study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10497B
– volume: 54
  start-page: 11188
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0160
  article-title: Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06000B
– volume: 49
  start-page: 316
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0070
  article-title: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.039
– volume: 180
  start-page: 1332
  year: 2009
  ident: 10.1016/j.enchem.2019.100011_bib0030
  article-title: Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2009.08.001
– volume: 10
  start-page: 341
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0207
  article-title: Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08120-x
– volume: 1800388
  start-page: 1
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0024
  article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction
  publication-title: Small Methods
– volume: 118
  start-page: 13026
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0146
  article-title: Departures from the adsorption energy scaling relations for metal carbide catalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503756g
– volume: 360
  start-page: 397
  year: 2010
  ident: 10.1016/j.enchem.2019.100011_bib0032
  article-title: Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3-α membrane
  publication-title: J. Membrane Sci.
  doi: 10.1016/j.memsci.2010.05.038
– volume: 58
  start-page: 5423
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0142
  article-title: Oxygen vacancies of Cr-doped CeO2 vanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b00622
– volume: 298
  start-page: 106
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0225
  article-title: LaO nanoplate: an efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.084
– volume: 6
  start-page: 9550
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0088
  article-title: Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions
  publication-title: ACS. Sustainiable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01438
– volume: 38
  start-page: 14576
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0020
  article-title: Review of electrochemical ammonia production technologies and materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.054
– volume: 7
  start-page: 117
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0100
  article-title: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions
  publication-title: ACS Sustainiable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05332
– volume: 58
  start-page: 2321
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0204
  article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811728
– volume: 102
  start-page: 219
  year: 2005
  ident: 10.1016/j.enchem.2019.100011_bib0009
  article-title: Graphitised carbon as support for Ru/C ammonia synthesis catalyst
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.02.010
– volume: 16
  start-page: 3022
  year: 2016
  ident: 10.1016/j.enchem.2019.100011_bib0169
  article-title: Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05292
– year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0235
  article-title: Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping
  publication-title: Small Methods
  doi: 10.1002/smtd.201900356
– volume: 25
  start-page: 1914
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0185
  article-title: A biomass-derived carbon-based electrocatalyst for efficient N2 fixation to NH3 under ambient conditions
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201805523
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0011
  article-title: Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5848
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0049
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
  publication-title: Nat. Commun
  doi: 10.1038/ncomms6848
– volume: 20
  start-page: 14679
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0089
  article-title: Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01643G
– volume: 55
  start-page: 6401
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0234
  article-title: A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02310K
– volume: 24
  start-page: 18494
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0116
  article-title: Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201800535
– volume: 152–153
  start-page: 212
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0031
  article-title: Synthesis of ammonia directly from wet air at intermediate temperature
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2014.01.037
– volume: 2
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0230
  article-title: Hierarchical cobalt phosphide hollow nanocages toward ectrocatalytic amonia snthesis under abient pessure ad room temperature
  publication-title: Small Methods
  doi: 10.1002/smtd.201800204
– volume: 2
  start-page: 5927
  year: 2012
  ident: 10.1016/j.enchem.2019.100011_bib0181
  article-title: Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20393f
– volume: 15
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0069
  article-title: Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia
  publication-title: Small
– volume: 121
  start-page: 6141
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0133
  article-title: Computational predictions of catalytic activity of Zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b00196
– volume: 113
  start-page: 5782
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0161
  article-title: Nanocarbons for the development of advanced catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/cr300367d
– volume: 1
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0163
  article-title: Highly efficient ammonia synthesis electrocatalyst: single Ru atom on naturally nanoporous carbon materials
  publication-title: Adv. Theory Simul.
– year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0229
  article-title: A flower-like bismuth oxide as an efficient, durable and selective electrocatalyst for artificial N2 fixation in ambient condition
  publication-title: Chem. Cat. Chem.
– volume: 6
  start-page: 423
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0216
  article-title: Ambient electrochemical N2-to-NH3 fixation enabled by Nb2O5 nanowire array
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI01049H
– volume: 119
  start-page: 28368
  year: 2015
  ident: 10.1016/j.enchem.2019.100011_bib0132
  article-title: Nitrogen activation in a mars–van krevelen mechanism for ammonia synthesis on Co3Mo3N
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06811
– volume: 9
  start-page: 4609
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0173
  article-title: Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05134
– volume: 55
  start-page: 5263
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0153
  article-title: Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01703H
– volume: 5
  start-page: 3737
  year: 2014
  ident: 10.1016/j.enchem.2019.100011_bib0199
  article-title: Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4737
– volume: 102
  year: 2009
  ident: 10.1016/j.enchem.2019.100011_bib0209
  article-title: Embedding transition-metal atoms in graphene: structure, bonding, and magnetism
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.126807
– volume: 11
  start-page: 4231
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0177
  article-title: High-performance N2-to-NH3 fixation by metal-free electrocatalyst
  publication-title: Nanoscale
  doi: 10.1039/C8NR10401H
– volume: 123
  start-page: 8404
  year: 2001
  ident: 10.1016/j.enchem.2019.100011_bib0079
  article-title: Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010963d
– volume: 59
  start-page: 65
  year: 2013
  ident: 10.1016/j.enchem.2019.100011_bib0059
  article-title: Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2012.11.010
– volume: 3
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0222
  article-title: Tailoring oxygen vacancies of BiVO4 toward highly efficient noble‐metal‐free electrocatalyst for artificial N2 fixation under ambient conditions
  publication-title: Small Methods
  doi: 10.1002/smtd.201800333
– volume: 11
  start-page: 3480
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0071
  article-title: Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-Like gold microstructures
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201801444
– volume: 55
  start-page: 4997
  year: 2019
  ident: 10.1016/j.enchem.2019.100011_bib0238
  article-title: Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotube under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00726A
– volume: 57
  start-page: 10246
  year: 2018
  ident: 10.1016/j.enchem.2019.100011_bib0168
  article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806386
– volume: 286
  start-page: 69
  year: 2017
  ident: 10.1016/j.enchem.2019.100011_bib0130
  article-title: Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.11.047
SSID ssj0002964937
Score 2.5134556
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 100011
Title Recent progress in the electrochemical ammonia synthesis under ambient conditions
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1xR68pjSb5x5LUYpU0dJCbyHZTKRFUikJiL_e2ezmYS3FeglhslmSfB-TmdmZWULumO0kYAkwgDMwbCthBnf6kRFy4HjF9VyQxclPz-5oZj_OnXmrlTSylvIs6omvrXUl_0EVZYirrJLdA9lqUhTgOeKLR0QYj3_CGG0-uZRf5FhJjaVzFvXWNqLqBSCfaBHK7gR4WXYgkZVja5RHshpSZp7HizpwV8bpi6pA2VCgEVwuAquTPI1WpXCuFjhGq_QtCyvpsIxDj6FxtxLNF-HqM4dmvMGsE6q0WmKOz9EmV_sv9WCLrNSrDfqwho40Czt0q_pWkYRlD6HEt5OJd7xXD__ZLXvjL1blFpZpa8tAzRLIWQI1ywHpMHQnUB92BsPJ-KWKxsnFZ140WK1epayzLJIBfz9Qw45pGCTTY3KkPQk6ULQ4IS1IT8mrogQtKUEXKUXM6QYlqKYErShBC0pQTQlaU-KMzB7up8ORoXfNMARaa5nhOa7HWNSPhRkmfoIWsoN2kAeuJSJTxCC3FQ8hNlnMGPqqHp5w4XuWL8BkieNa56SdrlK4IDS2Ew_98X6coJNgxzwStm0x37QgNF3hiC6xym8QCN1SXu5s8h7sAqFLjOquD9VSZef4yz3HX5HDmrfXpJ2tc7hByzGLbjXs3_7VcAw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+the+electrochemical+ammonia+synthesis+under+ambient+conditions&rft.jtitle=EnergyChem&rft.au=Zhao%2C+Runbo&rft.au=Xie%2C+Hongtao&rft.au=Chang%2C+Le&rft.au=Zhang%2C+Xiaoxue&rft.date=2019-09-01&rft.issn=2589-7780&rft.eissn=2589-7780&rft.volume=1&rft.issue=2&rft.spage=100011&rft_id=info:doi/10.1016%2Fj.enchem.2019.100011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enchem_2019_100011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-7780&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-7780&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-7780&client=summon