Recent progress in the electrochemical ammonia synthesis under ambient conditions
Saved in:
Published in | EnergyChem Vol. 1; no. 2; p. 100011 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2019
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 100011 |
---|---|
Author | Zhang, Xiaoxue Xie, Hongtao Wang, Ting Chang, Le Tong, Xin Luo, Yonglan Sun, Xuping Zhu, Xiaojuan Zhao, Runbo Wei, Peipei Wang, Zhiming |
Author_xml | – sequence: 1 givenname: Runbo surname: Zhao fullname: Zhao, Runbo – sequence: 2 givenname: Hongtao surname: Xie fullname: Xie, Hongtao – sequence: 3 givenname: Le surname: Chang fullname: Chang, Le – sequence: 4 givenname: Xiaoxue surname: Zhang fullname: Zhang, Xiaoxue – sequence: 5 givenname: Xiaojuan surname: Zhu fullname: Zhu, Xiaojuan – sequence: 6 givenname: Xin surname: Tong fullname: Tong, Xin – sequence: 7 givenname: Ting surname: Wang fullname: Wang, Ting – sequence: 8 givenname: Yonglan surname: Luo fullname: Luo, Yonglan – sequence: 9 givenname: Peipei surname: Wei fullname: Wei, Peipei – sequence: 10 givenname: Zhiming surname: Wang fullname: Wang, Zhiming – sequence: 11 givenname: Xuping surname: Sun fullname: Sun, Xuping |
BookMark | eNp9kM1OwzAQhC1UJErpG3DwC6R4nThOuKGKP6kSAsHZcu0NdZXYlW0OfXsSlQPiwGlHszuj1XdJZj54JOQa2AoY1Df7FXqzw2HFGbSjxRjAGZlz0bSFlA2b_dIXZJnSfjzhbV21pZyT1zc06DM9xPAZMSXqPM07pNijyTFMxc7onuphCN5pmo5-XCeX6Je3GEd_66a8Cd667IJPV-S8033C5c9ckI-H-_f1U7F5eXxe320KAw3kQopacr5l1oDumk5UQiBaiXVptmAs1qwEjRa45VyKUo6iNY0sG4PAO1GXC3J76jUxpBSxU8ZlPb2Qo3a9AqYmPmqvTnzUxEed-Izh6k_4EN2g4_H_2DdPAW-h |
CitedBy_id | crossref_primary_10_1016_j_jcis_2021_08_099 crossref_primary_10_1149_1945_7111_ac3aba crossref_primary_10_1016_j_combustflame_2020_12_021 crossref_primary_10_1002_elsa_70001 crossref_primary_10_1021_acssuschemeng_9b06272 crossref_primary_10_1021_acs_jpcc_1c05893 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1002_cplu_202300129 crossref_primary_10_1016_j_apsusc_2024_159781 crossref_primary_10_34133_energymatadv_0039 crossref_primary_10_1038_s41598_021_04640_7 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1039_D1QM01620B crossref_primary_10_1039_C9QI01133A crossref_primary_10_1039_C9TA06523G crossref_primary_10_1039_C9CC05309C crossref_primary_10_1016_j_jallcom_2020_156149 crossref_primary_10_1016_j_jphotochem_2024_116159 crossref_primary_10_1002_adma_202007650 crossref_primary_10_1021_acsami_1c06368 crossref_primary_10_3390_membranes14030071 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1002_adma_202000299 crossref_primary_10_1039_D0RE00116C crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1021_acs_iecr_2c00631 crossref_primary_10_1002_smll_202004809 crossref_primary_10_1016_j_cej_2021_131421 crossref_primary_10_3389_fchem_2020_00330 crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1021_acsanm_1c01761 crossref_primary_10_1016_j_nanoen_2020_104469 crossref_primary_10_1039_C9CY02500F crossref_primary_10_1039_D4TA04873C crossref_primary_10_1002_anie_201911153 crossref_primary_10_1016_j_apcatb_2024_123980 crossref_primary_10_1021_acscatal_9b03903 crossref_primary_10_1016_j_cej_2020_128079 crossref_primary_10_1039_C7CS00614D crossref_primary_10_1016_j_cep_2024_109962 crossref_primary_10_1002_ente_202300410 crossref_primary_10_1039_D3RE00123G crossref_primary_10_1016_j_mcat_2024_113921 crossref_primary_10_1007_s12274_019_2600_8 crossref_primary_10_1039_C9TA09910G crossref_primary_10_1007_s11705_024_2463_8 crossref_primary_10_1021_acssuschemeng_2c05885 crossref_primary_10_1016_j_jssc_2020_121377 crossref_primary_10_1039_D2NJ02478K crossref_primary_10_1016_j_fuproc_2022_107380 crossref_primary_10_1002_adfm_202009449 crossref_primary_10_3390_en17122963 crossref_primary_10_1093_ce_zkae002 crossref_primary_10_1016_j_energy_2022_123814 crossref_primary_10_1021_acssuschemeng_2c00914 crossref_primary_10_1016_j_jechem_2020_07_042 crossref_primary_10_1016_j_colsurfa_2024_133997 crossref_primary_10_1016_j_jechem_2020_01_011 crossref_primary_10_1021_acs_iecr_4c01915 crossref_primary_10_1016_j_scib_2019_12_019 crossref_primary_10_1002_smll_202400538 crossref_primary_10_1039_D0QI01511C crossref_primary_10_1039_D3TA05857C crossref_primary_10_1002_ange_201911153 crossref_primary_10_1039_D0TA08810B crossref_primary_10_1080_21663831_2023_2209156 crossref_primary_10_1002_smll_202302295 crossref_primary_10_1016_j_ijhydene_2024_05_189 crossref_primary_10_1016_j_jechem_2020_12_012 crossref_primary_10_1039_D4EE06100D crossref_primary_10_1021_acsami_9b18263 crossref_primary_10_1039_D0EE03756G crossref_primary_10_1039_C9CC08352A crossref_primary_10_1595_205651321X16043240667033 crossref_primary_10_1002_smsc_202000069 crossref_primary_10_1039_D0CC02489A crossref_primary_10_1016_j_ijhydene_2024_04_300 crossref_primary_10_1021_acs_energyfuels_9b03076 crossref_primary_10_1021_acsami_9b12675 crossref_primary_10_1016_j_apcatb_2023_123580 crossref_primary_10_1039_C9TA10346E crossref_primary_10_1039_D1MA00814E crossref_primary_10_1039_D3TA01548C crossref_primary_10_1002_cey2_708 crossref_primary_10_1002_qua_26548 crossref_primary_10_1016_j_jallcom_2021_159172 crossref_primary_10_1016_j_enchem_2020_100039 crossref_primary_10_1002_cssc_202300947 crossref_primary_10_1039_C9TA09439C crossref_primary_10_1039_D0MA00590H crossref_primary_10_1002_tcr_202400259 crossref_primary_10_1021_acssuschemeng_3c07455 crossref_primary_10_1039_D0TA08089F crossref_primary_10_1002_aesr_202400083 crossref_primary_10_1016_j_jechem_2021_03_001 crossref_primary_10_1002_asia_201901624 crossref_primary_10_1002_celc_201901967 crossref_primary_10_1016_S1872_2067_23_64464_X crossref_primary_10_1021_jacs_2c01245 crossref_primary_10_1039_D0CS00013B crossref_primary_10_1021_acsmaterialslett_1c00673 crossref_primary_10_1039_D2CP04619A crossref_primary_10_1016_j_jelechem_2021_115677 crossref_primary_10_1016_j_apcatb_2021_119956 crossref_primary_10_1016_j_arabjc_2020_04_025 crossref_primary_10_1016_j_jechem_2023_07_006 crossref_primary_10_1016_j_mattod_2020_03_022 crossref_primary_10_1002_cctc_201901818 crossref_primary_10_1016_j_mcat_2022_112327 crossref_primary_10_1039_C9QI00968J crossref_primary_10_1021_acsami_2c02329 crossref_primary_10_1021_acsami_1c15324 crossref_primary_10_1039_C9TA13044F crossref_primary_10_1002_celc_201901970 crossref_primary_10_1021_acscatal_2c00188 crossref_primary_10_1039_D3TA08086B crossref_primary_10_1021_acssuschemeng_9b03890 crossref_primary_10_1016_j_enchem_2020_100040 crossref_primary_10_1016_j_ijhydene_2020_10_153 crossref_primary_10_1021_acsanm_2c00467 crossref_primary_10_1021_acsanm_3c02948 crossref_primary_10_1039_D2TA01669A crossref_primary_10_1039_D0EE03808C crossref_primary_10_1016_j_jechem_2024_07_033 crossref_primary_10_1039_C9TA07096F crossref_primary_10_1039_D0SE00841A crossref_primary_10_1016_j_apsusc_2024_161648 crossref_primary_10_1016_j_jece_2024_114454 crossref_primary_10_1039_D4CY00171K crossref_primary_10_1039_D1TA08877G crossref_primary_10_1039_D4CP00076E crossref_primary_10_1016_j_cej_2021_129435 crossref_primary_10_1016_j_ica_2021_120700 crossref_primary_10_1039_D1SE00644D crossref_primary_10_1002_cssc_202002098 crossref_primary_10_1021_acssuschemeng_9b03141 crossref_primary_10_1002_chem_202302734 crossref_primary_10_1002_cphc_202300723 crossref_primary_10_1016_j_apsusc_2024_161522 crossref_primary_10_1007_s12274_021_3937_3 crossref_primary_10_1021_acsami_1c20807 crossref_primary_10_1039_D1TA05327B crossref_primary_10_1002_cssc_202301105 crossref_primary_10_1016_j_pmatsci_2022_101044 crossref_primary_10_1016_j_apsusc_2022_155916 crossref_primary_10_1021_acs_inorgchem_0c01596 crossref_primary_10_1039_D1SE01932E crossref_primary_10_3389_fchem_2021_682979 crossref_primary_10_1016_j_jtice_2020_10_028 crossref_primary_10_1016_j_ijhydene_2021_01_203 crossref_primary_10_1016_j_ceramint_2022_03_282 crossref_primary_10_1016_j_electacta_2024_145278 crossref_primary_10_1016_j_matre_2021_100076 crossref_primary_10_1039_D0CC04374E crossref_primary_10_1039_C9CC07232B crossref_primary_10_1016_j_cej_2023_143533 crossref_primary_10_1021_acs_jpcc_0c04247 crossref_primary_10_1016_j_coco_2020_100551 crossref_primary_10_1002_celc_202400033 crossref_primary_10_1016_j_ccr_2022_214981 crossref_primary_10_1021_acsami_1c04619 crossref_primary_10_1016_j_apenergy_2023_121960 crossref_primary_10_1016_j_apcatb_2021_120874 crossref_primary_10_1016_j_ccr_2023_215609 crossref_primary_10_1021_acssuschemeng_0c00330 crossref_primary_10_1016_j_ijhydene_2021_01_214 crossref_primary_10_1039_D0QI00620C crossref_primary_10_1002_admi_202202147 |
Cites_doi | 10.1126/science.aaq1684 10.1039/C4CP04838E 10.1038/ncomms6848 10.1002/anie.201404161 10.1021/acscatal.5b01918 10.1002/anie.201802675 10.1021/jacs.8b13165 10.1002/aenm.201801357 10.1149/2.0091708jes 10.1021/acssuschemeng.7b02379 10.1038/srep01145 10.1038/nenergy.2016.130 10.1039/C4CS00085D 10.1016/S0926-860X(99)00341-5 10.1021/jz100533t 10.1016/j.cattod.2016.05.008 10.1149/1.1393239 10.1039/C3CS60468C 10.1126/sciadv.aar3208 10.1002/anie.201609533 10.1039/C5CP07363D 10.1016/j.joule.2018.06.007 10.1007/s12274-019-2352-5 10.1021/cr9500545 10.1039/C8CP01396A 10.1021/acscentsci.8b00734 10.1039/C8CP07064D 10.1021/acssuschemeng.8b01261 10.1002/anie.201610776 10.1002/smll.201803111 10.1021/acssuschemeng.8b05007 10.1016/j.cattod.2016.11.047 10.1038/ncomms4783 10.1002/cssc.201500322 10.1021/acscatal.8b02585 10.1021/acscatal.5b02577 10.1039/C8CC00459E 10.1039/C9CC00602H 10.1021/jacs.7b12101 10.1149/2.0231607jes 10.1021/ja5044243 10.1021/acscatal.8b03802 10.1039/C8CC06524A 10.1021/acscatal.8b02311 10.1039/C5RA09876A 10.1126/science.282.5386.98 10.1039/C8CC09256G 10.1021/jacs.6b00124 10.1016/j.ssi.2015.01.002 10.1021/ja028891t 10.1039/C8CC09867K 10.1039/C4CC01950D 10.1021/acsami.8b06647 10.1039/C8TA03989E 10.1039/C7EE02716H 10.1039/C1CP22271F 10.1039/C8CC07186A 10.1002/smll.201805029 10.1021/jp5114416 10.1021/cr8003696 10.1039/C8CC08045C 10.1039/C6EE01800A 10.1016/j.electacta.2005.03.023 10.1021/acs.inorgchem.8b03143 10.1126/sciadv.1700336 10.1039/C7EE01126A 10.1021/acssuschemeng.9b00983 10.1007/s12274-019-2323-x 10.1021/ic5020048 10.1039/C9CC00461K 10.1021/acs.jpcc.7b10522 10.1080/03602458008067533 10.1021/acscatal.8b00905 10.1021/ar500375j 10.1039/C8CC06365F 10.1039/C8TA03481H 10.1016/j.ssi.2005.07.018 10.1038/s41929-019-0241-7 10.1039/C8CC06366D 10.1038/s41467-018-05758-5 10.1039/C8TA03974G 10.1016/S0021-9517(03)00156-8 10.1149/2.0741614jes 10.1126/science.1159639 10.1002/smtd.201700286 10.1021/ja902980j 10.1039/C8QI01145A 10.1021/acscatal.6b03035 10.1016/j.electacta.2018.07.168 10.1021/jacs.7b08891 10.1016/j.cattod.2016.06.014 10.1002/anie.201703244 10.1016/j.scib.2018.07.005 10.1016/j.cattod.2016.09.006 10.1149/1.1870633 10.1021/acsenergylett.9b00699 10.1039/C9CC00936A 10.1039/C6SC03911A 10.1039/C8CC03627F 10.1021/acscatal.8b05061 10.1021/jacs.6b04778 10.1038/nature11475 10.1149/1.2437674 10.1021/jacs.6b01706 10.1016/j.ccr.2012.10.005 10.1016/j.apcatb.2005.08.006 10.1016/j.apcatb.2017.03.008 10.1126/science.1254234 10.1038/nature12435 10.1039/C4CP04308A 10.1021/acssuschemeng.7b02890 10.1021/acsenergylett.8b02138 10.1039/C9TA05016G 10.1021/acscatal.7b02165 10.1039/C4CP05501B 10.1039/C8NR10398D 10.1016/S1872-2067(14)60118-2 10.1021/ja201269b 10.1002/anie.201811728 10.1021/acs.inorgchem.8b02436 10.1039/C7TA08748A 10.1039/c2jm14847a 10.1021/jp002236v 10.1021/acs.jpclett.8b02188 10.1002/adma.201606550 10.2134/jeq2014.03.0102 10.1039/C9CC01920K 10.1006/jcat.2000.2877 10.3389/fenrg.2014.00001 10.1021/ar300361m 10.1021/acs.jpcc.8b10021 10.1039/b004885m 10.1039/C8NR09564G 10.1021/acscatal.8b00398 10.1021/acsami.8b20692 10.1021/acsenergylett.8b02257 10.1002/adma.201604799 10.1038/nchem.2595 10.1002/cssc.201701975 10.1002/anie.200301553 10.1039/C8NA00300A 10.1039/C8CY02316F 10.1021/acsami.5b09766 10.1126/science.aar6611 10.1002/adma.201104634 10.1016/j.nanoen.2018.03.059 10.1002/ange.201813174 10.1039/c3cp54559h 10.1016/j.electacta.2010.08.065 10.1039/C8NR04524K 10.1002/anie.201801538 10.1039/C8TA09840A 10.1039/C9CC01999E 10.1039/C9CC00647H 10.1126/science.1238663 10.1021/acscatal.6b02754 10.1016/0022-0728(93)03025-K 10.1021/acssuschemeng.7b01742 10.1002/anie.200703336 10.1021/jacs.5b02579 10.1039/C8TA05627G 10.1038/s41467-018-04213-9 10.1016/0013-4686(80)87009-5 10.1021/cr400641x 10.1039/C7TA06139K 10.1021/jacs.7b05213 10.1016/j.nanoen.2018.07.045 10.1126/science.345.6197.610 10.1038/nature06592 10.1016/j.jallcom.2015.09.170 10.1002/aenm.201800124 10.1021/acscatal.9b00366 10.1002/smtd.201800202 10.1039/C8CP01215F 10.1002/tcr.201100012 10.1016/j.ijhydene.2015.11.102 10.1021/acs.jpcc.8b05257 10.1002/adma.201102306 10.1039/C8TA10433F 10.1021/jacs.8b08379 10.1039/C8TA10497B 10.1039/C8CC06000B 10.1016/j.nanoen.2018.04.039 10.1016/j.ssi.2009.08.001 10.1038/s41467-018-08120-x 10.1021/jp503756g 10.1016/j.memsci.2010.05.038 10.1021/acs.inorgchem.9b00622 10.1016/j.electacta.2018.12.084 10.1021/acssuschemeng.8b01438 10.1016/j.ijhydene.2013.09.054 10.1021/acssuschemeng.8b05332 10.1016/j.cattod.2005.02.010 10.1021/acs.nanolett.5b05292 10.1002/smtd.201900356 10.1002/chem.201805523 10.1039/C8CP01643G 10.1039/C9CC02310K 10.1002/chem.201800535 10.1016/j.apcatb.2014.01.037 10.1002/smtd.201800204 10.1039/c2ra20393f 10.1021/acs.jpcc.7b00196 10.1021/cr300367d 10.1039/C8QI01049H 10.1021/acs.jpcc.5b06811 10.1021/acscatal.8b05134 10.1039/C9CC01703H 10.1038/ncomms4737 10.1103/PhysRevLett.102.126807 10.1039/C8NR10401H 10.1021/ja010963d 10.1016/j.jct.2012.11.010 10.1002/smtd.201800333 10.1002/cssc.201801444 10.1039/C9CC00726A 10.1002/anie.201806386 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.enchem.2019.100011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-7780 |
ExternalDocumentID | 10_1016_j_enchem_2019_100011 |
GroupedDBID | 0R~ AABXZ AAEDW AAHCO AAKOC AALRI AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ACDAQ ACRLP ACVFH ADCNI AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFXIZ AFZHZ AGCQF AGRNS AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BNPGV CITATION EBS EFJIC EJD FDB FYGXN KOM M41 ROL SPC SPCBC SSG SSH SSK SSM SSR T5K ~G- |
ID | FETCH-LOGICAL-c181t-756722b0dc1af8f5455eed7e63cb1cde6031aed12d22753712d9c8738ce12f563 |
ISSN | 2589-7780 |
IngestDate | Tue Jul 01 04:25:44 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c181t-756722b0dc1af8f5455eed7e63cb1cde6031aed12d22753712d9c8738ce12f563 |
ParticipantIDs | crossref_citationtrail_10_1016_j_enchem_2019_100011 crossref_primary_10_1016_j_enchem_2019_100011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-00 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-00 |
PublicationDecade | 2010 |
PublicationTitle | EnergyChem |
PublicationYear | 2019 |
References | Lan (10.1016/j.enchem.2019.100011_bib0031) 2014; 152–153 Suryanto (10.1016/j.enchem.2019.100011_bib0093) 2018; 4 Ma (10.1016/j.enchem.2019.100011_bib0169) 2016; 16 Chen (10.1016/j.enchem.2019.100011_bib0211) 2018; 6 Wu (10.1016/j.enchem.2019.100011_bib0145) 2018; 14 Tanaka (10.1016/j.enchem.2019.100011_bib0199) 2014; 5 Zhang (10.1016/j.enchem.2019.100011_bib0097) 2018; 6 Su (10.1016/j.enchem.2019.100011_bib0161) 2013; 113 Back (10.1016/j.enchem.2019.100011_bib0083) 2016; 18 Zhang (10.1016/j.enchem.2019.100011_bib0154) 2018; 54 Ren (10.1016/j.enchem.2019.100011_bib0148) 2019; 5 Zhu (10.1016/j.enchem.2019.100011_bib0117) 2018; 54 Huang (10.1016/j.enchem.2019.100011_bib0185) 2019; 25 Zhang (10.1016/j.enchem.2019.100011_bib0155) 2018; 54 Back (10.1016/j.enchem.2019.100011_bib0193) 2017; 8 Zhang (10.1016/j.enchem.2019.100011_bib0134) 2018; 6 Kordali (10.1016/j.enchem.2019.100011_bib0015) 2000; 17 Kobayashi (10.1016/j.enchem.2019.100011_bib0078) 2017; 139 Zhou (10.1016/j.enchem.2019.100011_bib0058) 2017; 10 Shi (10.1016/j.enchem.2019.100011_bib0080) 2018; 8 Qin (10.1016/j.enchem.2019.100011_bib0219) 2018; 2 Wang (10.1016/j.enchem.2019.100011_bib0047) 2018; 9 Abghoui (10.1016/j.enchem.2019.100011_bib0086) 2015; 17 Kuriyama (10.1016/j.enchem.2019.100011_bib0200) 2014; 136 Wang (10.1016/j.enchem.2019.100011_bib0125) 2018; 9 Huang (10.1016/j.enchem.2019.100011_bib0232) 2019; 12 Bicer (10.1016/j.enchem.2019.100011_bib0006) 2017; 164 Wei (10.1016/j.enchem.2019.100011_bib0187) 2018; 6 Yang (10.1016/j.enchem.2019.100011_bib0103) 2019; 11 Jiao (10.1016/j.enchem.2019.100011_bib0159) 2016; 1 Hao (10.1016/j.enchem.2019.100011_bib0056a) 2019; 2 Lan (10.1016/j.enchem.2019.100011_bib0046) 2013; 3 Liu (10.1016/j.enchem.2019.100011_bib0007) 2014; 35 Wang (10.1016/j.enchem.2019.100011_bib0071) 2018; 11 Han (10.1016/j.enchem.2019.100011_bib0227) 2018; 6 Song (10.1016/j.enchem.2019.100011_bib0231) 2019; 55 Xu (10.1016/j.enchem.2019.100011_bib0225) 2019; 298 Shi (10.1016/j.enchem.2019.100011_bib0073) 2017; 29 Xie (10.1016/j.enchem.2019.100011_bib0142) 2019; 58 Singh (10.1016/j.enchem.2019.100011_bib0151) 2017; 7 Chang (10.1016/j.enchem.2019.100011_bib0229) 2019 Logadottir (10.1016/j.enchem.2019.100011_bib0068) 2003; 220 Yang (10.1016/j.enchem.2019.100011_bib0085) 2017; 5 Mališ (10.1016/j.enchem.2019.100011_bib0048) 2016; 41 Kyriakou (10.1016/j.enchem.2019.100011_bib0021) 2017; 286 Li (10.1016/j.enchem.2019.100011_bib0094) 2018; 8 Li (10.1016/j.enchem.2019.100011_bib0110) 2014; 53 Zhang (10.1016/j.enchem.2019.100011_bib0153) 2019; 55 Zhao (10.1016/j.enchem.2019.100011_bib0127) 2018; 54 Le (10.1016/j.enchem.2019.100011_bib0053) 2014; 50 Yao (10.1016/j.enchem.2019.100011_bib0222) 2019; 3 Garagounis (10.1016/j.enchem.2019.100011_bib0023) 2014; 2 Nagai (10.1016/j.enchem.2019.100011_bib0131) 2000; 192 Azadmanjiri (10.1016/j.enchem.2019.100011_bib0191) 2018; 6 Matanovic (10.1016/j.enchem.2019.100011_bib0087) 2014; 16 Stevanovic (10.1016/j.enchem.2019.100011_bib0059) 2013; 59 Vasileiou (10.1016/j.enchem.2019.100011_bib0033) 2015; 275 Ertl (10.1016/j.enchem.2019.100011_bib0213) 1980; 21 Sheng (10.1016/j.enchem.2019.100011_bib0112) 2015; 6 Geng (10.1016/j.enchem.2019.100011_bib0205) 2018; 30 Wang (10.1016/j.enchem.2019.100011_bib0239) 2019; 55 Chen (10.1016/j.enchem.2019.100011_bib0004) 2018; 360 Lu (10.1016/j.enchem.2019.100011_bib0016) 2016; 138 Yu (10.1016/j.enchem.2019.100011_bib0158) 2010; 1 Huang (10.1016/j.enchem.2019.100011_bib0214) 2018 Yu (10.1016/j.enchem.2019.100011_bib0170) 2018; 2 Liu (10.1016/j.enchem.2019.100011_bib0124) 2018; 122 Deng (10.1016/j.enchem.2019.100011_bib0195) 2015; 119 Chen (10.1016/j.enchem.2019.100011_bib0113) 2017; 56 Zhang (10.1016/j.enchem.2019.100011_bib0072) 2019; 7 Giddey (10.1016/j.enchem.2019.100011_bib0020) 2013; 38 Zhang (10.1016/j.enchem.2019.100011_bib0102) 2018; 10 Rossetti (10.1016/j.enchem.2019.100011_bib0009) 2005; 102 Zhu (10.1016/j.enchem.2019.100011_bib0240) 2019; 7 Rao (10.1016/j.enchem.2019.100011_bib0014) 2016; 6 Cao (10.1016/j.enchem.2019.100011_bib0163) 2018; 1 Herlem (10.1016/j.enchem.2019.100011_bib0063) 2000; 147 Han (10.1016/j.enchem.2019.100011_bib0203) 2018; 58 Tsuneto (10.1016/j.enchem.2019.100011_bib0037) 1994; 367 Skodra (10.1016/j.enchem.2019.100011_bib0030) 2009; 180 Hoskuldsson (10.1016/j.enchem.2019.100011_bib0025) 2017; 5 Xia (10.1016/j.enchem.2019.100011_bib0183) 2019; 55 Wu (10.1016/j.enchem.2019.100011_bib0186) 2019; 55 Service (10.1016/j.enchem.2019.100011_bib0003) 2014; 345 Nazemi (10.1016/j.enchem.2019.100011_bib0070) 2018; 49 Cheng (10.1016/j.enchem.2019.100011_bib0090) 2018; 30 Murakami (10.1016/j.enchem.2019.100011_bib0064) 2003; 125 Du (10.1016/j.enchem.2019.100011_bib0141) 2018; 54 Liu (10.1016/j.enchem.2019.100011_bib0005) 2018; 8 Xia (10.1016/j.enchem.2019.100011_bib0184) 2018; 14 Nazemi (10.1016/j.enchem.2019.100011_bib0055) 2018; 9 Hargreaves (10.1016/j.enchem.2019.100011_bib0210) 2013; 257 Skύlason (10.1016/j.enchem.2019.100011_bib0050) 2012; 14 Kavan (10.1016/j.enchem.2019.100011_bib0105) 2012; 12 Zhang (10.1016/j.enchem.2019.100011_bib0233) 2019; 55 Han (10.1016/j.enchem.2019.100011_bib0204) 2018; 58 Liu (10.1016/j.enchem.2019.100011_bib0126) 2018; 10 McEnaney (10.1016/j.enchem.2019.100011_bib0042) 2017; 10 Yao (10.1016/j.enchem.2019.100011_bib0052) 2018; 140 Mukherjee (10.1016/j.enchem.2019.100011_bib0167a) 2018; 48 Kim (10.1016/j.enchem.2019.100011_bib0060) 2016; 163 Cui (10.1016/j.enchem.2019.100011_bib0116) 2018; 24 Shima (10.1016/j.enchem.2019.100011_bib0077) 2013; 340 Chen (10.1016/j.enchem.2019.100011_bib0175) 2019; 15 Légaré (10.1016/j.enchem.2019.100011_bib0150) 2018; 359 Morales-Guio (10.1016/j.enchem.2019.100011_bib0075) 2014; 43 Zhang (10.1016/j.enchem.2019.100011_bib0139) 2018; 6 Xia (10.1016/j.enchem.2019.100011_bib0143) 2019; 58 Krasheninnikov (10.1016/j.enchem.2019.100011_bib0209) 2009; 102 Hang (10.1016/j.enchem.2019.100011_bib0115) 2016; 655 Yang (10.1016/j.enchem.2019.100011_bib0135) 2018; 140 Shipman (10.1016/j.enchem.2019.100011_bib0008) 2017; 286 Hu (10.1016/j.enchem.2019.100011_bib0122) 2018; 8 Zhao (10.1016/j.enchem.2019.100011_bib0149) 2018; 6 Zhao (10.1016/j.enchem.2019.100011_bib0019) 2017; 139 Howard (10.1016/j.enchem.2019.100011_bib0091) 1996; 96 Qin (10.1016/j.enchem.2019.100011_bib0017) 2018; 2 Li (10.1016/j.enchem.2019.100011_bib0160) 2018; 54 Tawfik (10.1016/j.enchem.2019.100011_bib0198) 2015; 5 Wang (10.1016/j.enchem.2019.100011_bib0081) 2019; 11 Huang (10.1016/j.enchem.2019.100011_bib0221) 2018; 54 Marnellos (10.1016/j.enchem.2019.100011_bib0026) 1998; 282 Li (10.1016/j.enchem.2019.100011_bib0196) 2011; 133 Liu (10.1016/j.enchem.2019.100011_bib0172) 2019; 141 Zhao (10.1016/j.enchem.2019.100011_bib0237) 2019; 55 Yiokari (10.1016/j.enchem.2019.100011_bib0027) 2000; 104 Song (10.1016/j.enchem.2019.100011_bib0157) 2018; 4 Zhang (10.1016/j.enchem.2019.100011_bib0173) 2019; 9 Hering-Junghans (10.1016/j.enchem.2019.100011_bib0171) 2018; 57 Zhang (10.1016/j.enchem.2019.100011_bib0088) 2018; 6 Xiang (10.1016/j.enchem.2019.100011_bib0120) 2018; 10 Ji (10.1016/j.enchem.2019.100011_bib0178) 2019; 7 Liu (10.1016/j.enchem.2019.100011_bib0034) 2006; 177 Kong (10.1016/j.enchem.2019.100011_bib0216) 2019; 6 Kim (10.1016/j.enchem.2019.100011_bib0054) 2016; 163 Arashiba (10.1016/j.enchem.2019.100011_bib0201) 2015; 137 Qie (10.1016/j.enchem.2019.100011_bib0162) 2012; 24 Ogura (10.1016/j.enchem.2019.100011_bib0118) 2010; 56 Ling (10.1016/j.enchem.2019.100011_bib0174) 2018; 122 Zhao (10.1016/j.enchem.2019.100011_bib0177) 2019; 11 Wang (10.1016/j.enchem.2019.100011_bib0212) 2017; 9 J Jia (10.1016/j.enchem.2019.100011_bib0099) 2019; 1 Naguib (10.1016/j.enchem.2019.100011_bib0129) 2011; 23 Lv (10.1016/j.enchem.2019.100011_bib0168) 2018; 57 Tang (10.1016/j.enchem.2019.100011_bib0121) 2015; 7 Zhu (10.1016/j.enchem.2019.100011_bib0119) 2019; 55 Lv (10.1016/j.enchem.2019.100011_bib0223) 2018; 57 Zeinalipour-Yazdi (10.1016/j.enchem.2019.100011_bib0132) 2015; 119 Herzing (10.1016/j.enchem.2019.100011_bib0194) 2008; 321 Gruber (10.1016/j.enchem.2019.100011_bib0012) 2008; 451 Qiu (10.1016/j.enchem.2019.100011_bib0179a) 2018; 9 Guo (10.1016/j.enchem.2019.100011_bib0230) 2018; 2 Li (10.1016/j.enchem.2019.100011_bib0096) 2012; 22 Abghoui (10.1016/j.enchem.2019.100011_bib0133) 2017; 121 Akagi (10.1016/j.enchem.2019.100011_bib0076) 2007; 46 Liu (10.1016/j.enchem.2019.100011_bib0197) 2014; 53 Nguyen (10.1016/j.enchem.2019.100011_bib0109) 2015; 17 Yang (10.1016/j.enchem.2019.100011_bib0192) 2013; 46 Tao (10.1016/j.enchem.2019.100011_bib0206) 2018; 5 Manjunatha (10.1016/j.enchem.2019.100011_bib0104) 2019; 11 Zhao (10.1016/j.enchem.2019.100011_bib0166) 2019; 4 Roy (10.1016/j.enchem.2019.100011_bib0036) 2009; 131 Zhao (10.1016/j.enchem.2019.100011_bib0238) 2019; 55 Sock (10.1016/j.enchem.2019.100011_bib0062) 1980; 25 Shao (10.1016/j.enchem.2019.100011_bib0065) 2018; 20 Chen (10.1016/j.enchem.2019.100011_bib0182) 2019; 55 Li (10.1016/j.enchem.2019.100011_bib0018) 2017; 121 Acobsen (10.1016/j.enchem.2019.100011_bib0079) 2001; 123 Yu (10.1016/j.enchem.2019.100011_bib0234) 2019; 55 Li (10.1016/j.enchem.2019.100011_bib0024) 2018; 1800388 Ling (10.1016/j.enchem.2019.100011_bib0217) 2018 Ren (10.1016/j.enchem.2019.100011_bib0228) 2018; 54 Wu (10.1016/j.enchem.2019.100011_bib0235) 2019 Chu (10.1016/j.enchem.2019.100011_bib0001) 2012; 488 Murakami (10.1016/j.enchem.2019.100011_bib0040) 2005; 50 Li (10.1016/j.enchem.2019.100011_bib0152) 2019; 9 Shao (10.1016/j.enchem.2019.100011_bib0098) 2017; 209 Wang (10.1016/j.enchem.2019.100011_bib0144) 2019; 6 Lee (10.1016/j.enchem.2019.100011_bib0057) 2018; 4 Wang (10.1016/j.enchem.2019.100011_bib0207) 2019; 10 Chen (10.1016/j.enchem.2019.100011_bib0045) 2017; 5 Montoya (10.1016/j.enchem.2019.100011_bib0067) 2015; 8 Amar (10.1016/j.enchem.2019.100011_bib0101) 2017; 286 Yao (10.1016/j.enchem.2019.100011_bib0137) 2018 Zhang (10.1016/j.enchem.2019.100011_bib0188) 2018; 131 Kong (10.1016/j.enchem.2019.100011_bib0111) 2017; 5 Azofra (10.1016/j.enchem.2019.100011_bib0147) 2016; 9 Xu (10.1016/j.enchem.2019.100011_bib0224) 2019; 7 Murakami (10.1016/j.enchem.2019.100011_bib0039) 2005; 8 Abghoui (10.1016/j.enchem.2019.100011_bib0051 |
References_xml | – volume: 15 year: 1845 ident: 10.1016/j.enchem.2019.100011_bib0022 article-title: Solid-state electrochemical synthesis of ammonia: a review publication-title: J. Solid State Electrochem. – volume: 6 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0144 article-title: Electrocatalytic hydrogenation of N2 to NH3 by MnO: experimental and theoretical investigations publication-title: Adv. Sci. – year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0217 article-title: A general two-step strategy–based high-throughput screening of single atom catalysts for nitrogen fixation publication-title: Small Methods – volume: 359 start-page: 896 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0150 article-title: Nitrogen fixation and reduction at boron publication-title: Science doi: 10.1126/science.aaq1684 – volume: 17 start-page: 4909 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0086 article-title: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04838E – volume: 6 start-page: 5848 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0112 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 53 start-page: 6710 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0197 article-title: Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404161 – volume: 6 start-page: 635 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0051 article-title: Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments publication-title: ACS Catal. doi: 10.1021/acscatal.5b01918 – volume: 57 start-page: 6738 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0171 article-title: Metal-Free nitrogen fixation at boron publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802675 – volume: 141 start-page: 2884 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0172 article-title: Single-Boron catalysts for nitrogen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13165 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0094 article-title: Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801357 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0090 article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions publication-title: Adv. Mater. – volume: 164 start-page: H5036 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0006 article-title: Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure publication-title: J. Electrochem. Soc. doi: 10.1149/2.0091708jes – volume: 5 start-page: 10327 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0025 article-title: Computational screening of rutile oxides for electrochemical ammonia formation publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02379 – volume: 3 start-page: 1145 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0046 article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure publication-title: Sci. Rep. doi: 10.1038/srep01145 – volume: 1 start-page: 16130 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0159 article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene publication-title: Nat. Energy doi: 10.1038/nenergy.2016.130 – volume: 43 start-page: 5183 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0010 article-title: Challenges in reduction of dinitrogen by proton and electron transfer publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – volume: 192 start-page: 189 year: 2000 ident: 10.1016/j.enchem.2019.100011_bib0131 article-title: XPS and TPSR study of nitrided molybdena–alumina catalyst for the hydrodesulfurization of dibenzothiophene publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(99)00341-5 – volume: 1 start-page: 2165 year: 2010 ident: 10.1016/j.enchem.2019.100011_bib0158 article-title: Metal-Free carbon nanomaterials become more active than metal catalysts and last longer publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100533t – volume: 286 start-page: 57 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0008 article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 147 start-page: 597 year: 2000 ident: 10.1016/j.enchem.2019.100011_bib0063 article-title: Electrochemical oxidation of Ethylenediamine: new way to make polyethyleneimine-like coatings on metallic or semiconducting materials publication-title: J. Electrochem. Society doi: 10.1149/1.1393239 – volume: 43 start-page: 6555 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0075 article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60468C – volume: 4 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0057 article-title: Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3208 – volume: 56 start-page: 2699 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0113 article-title: Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201609533 – volume: 18 start-page: 9161 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0083 article-title: On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07363D – volume: 2 start-page: 1610 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0170 article-title: Boron-Doped graphene for electrocatalytic N2 reduction publication-title: Joule doi: 10.1016/j.joule.2018.06.007 – volume: 12 start-page: 1093 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0232 article-title: Mn3O4 nanoparticles@reduced graphene oxide composite: an efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions publication-title: Nano Res. doi: 10.1007/s12274-019-2352-5 – volume: 96 start-page: 2965 year: 1996 ident: 10.1016/j.enchem.2019.100011_bib0091 article-title: Structural basis of biological nitrogen fixation publication-title: Chem. Rev. doi: 10.1021/cr9500545 – volume: 20 start-page: 14504 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0065 article-title: Efficient nitrogen fixation to ammonia on MXenes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01396A – volume: 5 start-page: 116 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0148 article-title: High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00734 – volume: 21 start-page: 1110 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0176 article-title: A single boron atom doped boron nitride edge as a metal-free catalyst for N2 fixation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP07064D – volume: 6 start-page: 9545 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0134 article-title: High-Efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array publication-title: ACS Sustainiable Chem. Eng. doi: 10.1021/acssuschemeng.8b01261 – volume: 56 start-page: 1064 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0114 article-title: High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610776 – volume: 14 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0145 article-title: MnO nanocube: an efficient electrocatalyst toward artificial N2 fixation to NH3 publication-title: Small doi: 10.1002/smll.201803111 – year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0214 article-title: NbO2 electrocatalyst toward 32% faradaic efficiency for N2 fixation publication-title: Small Methods – volume: 7 start-page: 2889 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0224 article-title: Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies publication-title: ACS Sustainiable Chem. Eng. doi: 10.1021/acssuschemeng.8b05007 – volume: 286 start-page: 69 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0044 article-title: Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2016.11.047 – volume: 5 start-page: 3783 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0156 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nat. Commun. doi: 10.1038/ncomms4783 – volume: 8 start-page: 2180 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0067 article-title: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201500322 – volume: 8 start-page: 9312 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0122 article-title: Ambient electrochemical aammonia synthesis with high selectivity on Fe/Fe oxide catalyst publication-title: ACS Catal. doi: 10.1021/acscatal.8b02585 – volume: 6 start-page: 1567 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0014 article-title: Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase publication-title: ACS Catal. doi: 10.1021/acscatal.5b02577 – volume: 54 start-page: 5323 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0136 article-title: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC00459E – volume: 55 start-page: 3371 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0183 article-title: Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation publication-title: Chem. Commun. doi: 10.1039/C9CC00602H – volume: 140 start-page: 1496 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0052 article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – volume: 163 start-page: F610 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0060 article-title: Communication—electrochemical reduction of nitrogen to ammonia in 2-Propanol under ambient temperature and pressure publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231607jes – volume: 136 start-page: 9719 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0200 article-title: Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5044243 – volume: 9 start-page: 336 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0125 article-title: Rational design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution publication-title: ACS Catal. doi: 10.1021/acscatal.8b03802 – volume: 54 start-page: 12966 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0155 article-title: Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles publication-title: Chem. Commun. doi: 10.1039/C8CC06524A – volume: 8 start-page: 8540 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0140 article-title: High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions publication-title: ACS Catal. doi: 10.1021/acscatal.8b02311 – volume: 5 start-page: 50975 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0198 article-title: Multiple CO2 capture in stable metal-doped graphene: a theoretical trend study publication-title: RSC Adv. doi: 10.1039/C5RA09876A – volume: 282 start-page: 98 year: 1998 ident: 10.1016/j.enchem.2019.100011_bib0026 article-title: Ammonia synthesis at atmospheric pressure publication-title: Science doi: 10.1126/science.282.5386.98 – volume: 55 start-page: 687 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0231 article-title: Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon publication-title: Chem. Commun. doi: 10.1039/C8CC09256G – volume: 138 start-page: 3970 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0016 article-title: Water durable electride YSi: electronic structure and catalytic activity for ammonia synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00124 – volume: 275 start-page: 110 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0033 article-title: Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell publication-title: Solid State Ion. doi: 10.1016/j.ssi.2015.01.002 – volume: 5 start-page: 1 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0206 article-title: Nitrogen fixation by Ru single-atom electrocatalytic reduction publication-title: Chem – volume: 125 start-page: 334 year: 2003 ident: 10.1016/j.enchem.2019.100011_bib0064 article-title: Electrolytic synthesis of ammonia in molten salts under atmospheric pressure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028891t – volume: 55 start-page: 2684 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0186 article-title: Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC09867K – volume: 50 start-page: 13319 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0053 article-title: Nitrogen-fixation catalyst based on graphene: every part counts publication-title: Chem. Commun. doi: 10.1039/C4CC01950D – volume: 10 start-page: 28251 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0102 article-title: Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06647 – volume: 6 start-page: 13790 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0187 article-title: Fe-doped phosphorene for the nitrogen reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03989E – volume: 10 start-page: 2516 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0058 article-title: Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02716H – volume: 14 start-page: 1235 year: 2012 ident: 10.1016/j.enchem.2019.100011_bib0050 article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 54 start-page: 12848 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0141 article-title: CrO nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC07186A – volume: 15 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0175 article-title: BN pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency publication-title: Small doi: 10.1002/smll.201805029 – volume: 6 start-page: 1014 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0139 article-title: Electrocatalytic N2 fixation over VO2 hollow microsphere at ambient conditions publication-title: Chem. Electro. Chem. – volume: 119 start-page: 3132 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0195 article-title: Discerning the role of Ag-O-Al entities on Ag/γ-Al2O3 surface in NOx selective reduction by ethanol publication-title: J. Phys. Chem. C doi: 10.1021/jp5114416 – volume: 109 start-page: 2209 year: 2009 ident: 10.1016/j.enchem.2019.100011_bib0002 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 54 start-page: 13010 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0127 article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC08045C – volume: 9 start-page: 2545 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0147 article-title: Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01800A – volume: 50 start-page: 5423 year: 2005 ident: 10.1016/j.enchem.2019.100011_bib0040 article-title: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.03.023 – volume: 58 start-page: 2257 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0143 article-title: CrO nanoparticle-reduced graphene oxide hybrid: a highly active electrocatalyst for N2 reduction at aambient conditions publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03143 – volume: 4 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0157 article-title: A physical catalyst for the electrolysis of nitrogen to ammonia publication-title: Sci. Adv. doi: 10.1126/sciadv.1700336 – volume: 10 start-page: 1621 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0042 article-title: Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01126A – volume: 7 start-page: 10214 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0072 article-title: Low-Coordinated gold atoms boost electrochemical nitrogen reduction reaction under ambient conditions publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00983 – volume: 12 start-page: 919 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0236 article-title: Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3 publication-title: Nano Res. doi: 10.1007/s12274-019-2323-x – volume: 53 start-page: 10042 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0110 article-title: Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3 publication-title: Inorg. Chem. doi: 10.1021/ic5020048 – volume: 55 start-page: 3152 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0182 article-title: Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C9CC00461K – volume: 121 start-page: 27563 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0018 article-title: Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10522 – volume: 21 start-page: 201 year: 1980 ident: 10.1016/j.enchem.2019.100011_bib0213 article-title: Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P. H. Emmett award aAddress publication-title: Catal. Rev. doi: 10.1080/03602458008067533 – volume: 8 start-page: 7517 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0190 article-title: Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 48 start-page: 306 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0165 article-title: Frustrated lewis pairs: from concept to catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar500375j – volume: 54 start-page: 11427 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0221 article-title: Ag nanosheet for efficient electrocatalytic N2 fixation to NH3 at ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC06365F – volume: 6 start-page: 9623 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0211 article-title: Discovery of cobweb-like MoC6 and its application for nitrogen fixation publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03481H – volume: 177 start-page: 73 year: 2006 ident: 10.1016/j.enchem.2019.100011_bib0034 article-title: Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature publication-title: Solid State Ion. doi: 10.1016/j.ssi.2005.07.018 – volume: 2 start-page: 448 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0056a article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 54 start-page: 11332 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0117 article-title: Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-nobl-metal catalyst publication-title: Chem. Commun. doi: 10.1039/C8CC06366D – volume: 9 start-page: 3485 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0179a article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst publication-title: Nat. Commun. doi: 10.1038/s41467-018-05758-5 – volume: 6 start-page: 12974 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0227 article-title: MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03974G – volume: 220 start-page: 273 year: 2003 ident: 10.1016/j.enchem.2019.100011_bib0068 article-title: Ammonia synthesis over a Ru(0001) surface studied by density functional calculations publication-title: J. Catal. doi: 10.1016/S0021-9517(03)00156-8 – volume: 163 start-page: F1523 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0054 article-title: Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure publication-title: J. Electrochem. Soc. doi: 10.1149/2.0741614jes – volume: 321 start-page: 1331 year: 2008 ident: 10.1016/j.enchem.2019.100011_bib0194 article-title: Identification of active gold nanoclusters on iron oxide supports for CO oxidation publication-title: Science doi: 10.1126/science.1159639 – volume: 2 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0017 article-title: Strategies for stabilizing atomically dispersed metal catalysts publication-title: Small Methods doi: 10.1002/smtd.201700286 – volume: 14 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0184 article-title: S-doped carbon nanospheres: an efficient electrocatalyst toward artificial N2 fixation to NH3 publication-title: Small Methods – volume: 131 start-page: 13045 year: 2009 ident: 10.1016/j.enchem.2019.100011_bib0036 article-title: Modeling dinitrogen activation by Lithium: a mechanistic investigation of the cleavage of N2 by stepwise insertion into small lithium clusters publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902980j – volume: 6 start-page: 391 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0138 article-title: Metal–organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions publication-title: Inorg. Chem. Front doi: 10.1039/C8QI01145A – volume: 7 start-page: 706 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0151 article-title: Electrochemical ammonia synthesis-the selectivity challenge publication-title: ACS Catal. doi: 10.1021/acscatal.6b03035 – volume: 284 start-page: 392 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0208a article-title: Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: a computational study of single Fe atom supported on defective graphene publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.07.168 – volume: 139 start-page: 18240 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0078 article-title: Titanium-based hydrides as heterogeneous catalysts for ammonia synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08891 – volume: 286 start-page: 2 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0021 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 56 start-page: 6921 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0108 article-title: N2-to-NH3 conversion by a triphos-Iron catalyst and enhanced turnover under photolysis publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703244 – volume: 63 start-page: 1246 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0218 article-title: Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.07.005 – volume: 286 start-page: 51 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0101 article-title: Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3-d Ce0.8Gd0.18Ca0.02O2-d composite cathode publication-title: Catal. Today doi: 10.1016/j.cattod.2016.09.006 – volume: 8 start-page: D12 year: 2005 ident: 10.1016/j.enchem.2019.100011_bib0039 article-title: Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1870633 – volume: 4 start-page: 1336 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0084 article-title: Electrochemical nitrogen reduction reaction on ruthenium publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00699 – volume: 55 start-page: 4627 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0233 article-title: Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies publication-title: Chem. Commun. doi: 10.1039/C9CC00936A – volume: 8 start-page: 1090 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0193 article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements publication-title: Chem. Sci. doi: 10.1039/C6SC03911A – volume: 54 start-page: 8474 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0228 article-title: Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst publication-title: Chem. Commun. doi: 10.1039/C8CC03627F – volume: 9 start-page: 3419 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0202 article-title: Single Mo(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia publication-title: ACS Catal. doi: 10.1021/acscatal.8b05061 – volume: 138 start-page: 8706 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0123 article-title: Conversion of dinitrogen to ammonia by Fen3-embedded graphene publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04778 – volume: 488 start-page: 294 year: 2012 ident: 10.1016/j.enchem.2019.100011_bib0001 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 10 start-page: E4 year: 2007 ident: 10.1016/j.enchem.2019.100011_bib0041 article-title: Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a nonconsumable anode publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2437674 – volume: 138 start-page: 5341 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0106 article-title: A synthetic single-site Fe nitrogenase: high turnover, freeze-quench (57) Fe mossbauer data, and a hydride resting state publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01706 – volume: 257 start-page: 2015 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0210 article-title: Heterogeneous catalysis with metal nitrides publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2012.10.005 – volume: 62 start-page: 306 year: 2006 ident: 10.1016/j.enchem.2019.100011_bib0061 article-title: Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2005.08.006 – volume: 209 start-page: 311 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0098 article-title: In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.03.008 – volume: 26 start-page: 637 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0043 article-title: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3 publication-title: Science doi: 10.1126/science.1254234 – volume: 501 start-page: 84 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0107 article-title: Catalytic conversion of nitrogen to ammonia by an iron model complex publication-title: Nature doi: 10.1038/nature12435 – volume: 17 start-page: 14317 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0109 article-title: Nitrogen electrochemically reduced to ammonia with hematite: density-functional insights publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04308A – volume: 5 start-page: 10986 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0111 article-title: Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst publication-title: ACS Sustainiable Chem. Eng. doi: 10.1021/acssuschemeng.7b02890 – volume: 4 start-page: 377 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0166 article-title: Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02138 – volume: 7 start-page: 16117 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0240 article-title: Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: the critical role of P to boost the catalytic activity publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05016G – volume: 8 start-page: 1186 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0005 article-title: Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-Doped porous carbon publication-title: ACS Catal. doi: 10.1021/acscatal.7b02165 – volume: 17 start-page: 3768 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0074 article-title: Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05501B – volume: 11 start-page: 5499 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0081 article-title: Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis publication-title: Nanoscale doi: 10.1039/C8NR10398D – volume: 35 start-page: 1619 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0007 article-title: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60118-2 – volume: 133 start-page: 7296 year: 2011 ident: 10.1016/j.enchem.2019.100011_bib0196 article-title: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 54 start-page: 12966 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0154 article-title: Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles publication-title: Chem. Commun. doi: 10.1039/C8CC06524A – volume: 58 start-page: 2321 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0203 article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811728 – volume: 57 start-page: 14692 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0220 article-title: Nanostructured bromide-derived Ag film: an efficient electrocatalyst for N2 reduction to NH3 under ambient conditions publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02436 – volume: 6 start-page: 702 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0191 article-title: Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08748A – volume: 22 start-page: 4025 year: 2012 ident: 10.1016/j.enchem.2019.100011_bib0096 article-title: Core–shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol publication-title: J. Mater. Chem. doi: 10.1039/c2jm14847a – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0205 article-title: Achieving a record-high yield rate of 120.9 µgNH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts publication-title: Adv. Mater. – volume: 104 start-page: 10600 year: 2000 ident: 10.1016/j.enchem.2019.100011_bib0027 article-title: High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst publication-title: J. Phys. Chem. A doi: 10.1021/jp002236v – volume: 9 start-page: 5160 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0055 article-title: Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02188 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0073 article-title: Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 44 start-page: 356 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0013 article-title: Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050 publication-title: J. Environ. Qual. doi: 10.2134/jeq2014.03.0102 – volume: 55 start-page: 4266 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0237 article-title: Defect-rich fluorographene nanosheet for artificial N2 fixation under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C9CC01920K – volume: 193 start-page: 80 year: 2000 ident: 10.1016/j.enchem.2019.100011_bib0028 article-title: Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors publication-title: J. Catal. doi: 10.1006/jcat.2000.2877 – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0023 article-title: Electrochemical synthesis of ammonia in solid electrolyte cells publication-title: Front. Energy Res. doi: 10.3389/fenrg.2014.00001 – volume: 46 start-page: 1740 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0192 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 122 start-page: 25268 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0124 article-title: Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b10021 – volume: 17 start-page: 1673 year: 2000 ident: 10.1016/j.enchem.2019.100011_bib0015 article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell publication-title: Chem. Commun. doi: 10.1039/b004885m – volume: 11 start-page: 1555 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0103 article-title: Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies publication-title: Nanoscale doi: 10.1039/C8NR09564G – volume: 8 start-page: 3116 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0164 article-title: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b00398 – volume: 11 start-page: 7981 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0104 article-title: Electrochemical ammonia generation directly from nitrogen and air using an iron-oxide/titania-based catalyst at ambient conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20692 – volume: 4 start-page: 430 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0093 article-title: MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02257 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0066 article-title: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 9 start-page: 64 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0212 article-title: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation publication-title: Nat. Chem. doi: 10.1038/nchem.2595 – volume: 11 start-page: 120 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0035 article-title: Electrochemical synthesis of ammonia from water and nitrogen: a lithium-mediated approach using lithium-ion conducting glass ceramics publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201701975 – volume: 42 start-page: 2004 year: 2003 ident: 10.1016/j.enchem.2019.100011_bib0082 article-title: Catalytic synthesis of Ammonia—A “Never-Ending Story”? Angew publication-title: Chem. Int. Ed. Engl. doi: 10.1002/anie.200301553 – volume: 1 start-page: 961 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0099 article-title: Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions publication-title: Nanoscale Adv. doi: 10.1039/C8NA00300A – volume: 9 start-page: 1208 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0226 article-title: Electrochemical synthesis of ammonia from N2 and H2O using a typical nonnoble metal carbon-based catalyst under ambient conditions publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02316F – volume: 7 start-page: 27518 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0121 article-title: Hierarchical Fe3O4@Fe2O3 Core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09766 – volume: 360 start-page: 873 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0004 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 24 start-page: 2047 year: 2012 ident: 10.1016/j.enchem.2019.100011_bib0162 article-title: Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability publication-title: Adv. Mater. doi: 10.1002/adma.201104634 – volume: 48 start-page: 217 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0167a article-title: Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.059 – volume: 131 start-page: 2638 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0188 article-title: Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201813174 – volume: 16 start-page: 3014 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0087 article-title: Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54559h – volume: 56 start-page: 381 year: 2010 ident: 10.1016/j.enchem.2019.100011_bib0118 article-title: CO attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.08.065 – volume: 10 start-page: 14386 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0126 article-title: Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod publication-title: Nanoscale doi: 10.1039/C8NR04524K – volume: 57 start-page: 6073 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0223 article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801538 – volume: 6 start-page: 24031 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0149 article-title: (T=F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09840A – volume: 55 start-page: 7502 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0239 article-title: Electrocatalytic N2-to-NH3 conversion by oxygen-doped graphene: experimental and theoretical studies publication-title: Chem. Commun. doi: 10.1039/C9CC01999E – volume: 55 start-page: 3987 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0119 article-title: Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping publication-title: Chem. Commun. doi: 10.1039/C9CC00647H – volume: 340 start-page: 1549 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0077 article-title: Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex publication-title: Science doi: 10.1126/science.1238663 – volume: 7 start-page: 494 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0128 article-title: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.6b02754 – volume: 367 start-page: 183 year: 1994 ident: 10.1016/j.enchem.2019.100011_bib0037 article-title: Lithium-mediated electrochemical reduction of high pressure N2 to NH3 publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(93)03025-K – volume: 5 start-page: 7393 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0045 article-title: Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b01742 – volume: 46 start-page: 8778 year: 2007 ident: 10.1016/j.enchem.2019.100011_bib0076 article-title: Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.200703336 – volume: 137 start-page: 5666 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0201 article-title: Catalytic reduction of dinitrogen to ammonia by use of molybdenum-nitride complexes bearing a tridentate triphosphine as catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02579 – volume: 6 start-page: 17303 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0097 article-title: Nanoparticles–reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05627G – volume: 9 start-page: 1795 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0047 article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential publication-title: Nat. Commun. doi: 10.1038/s41467-018-04213-9 – volume: 25 start-page: 1025 year: 1980 ident: 10.1016/j.enchem.2019.100011_bib0062 article-title: Accessible potential range in ethylenediamine used as solvent in electrochemistry publication-title: Electrochimica. Acta doi: 10.1016/0013-4686(80)87009-5 – volume: 114 start-page: 4041 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0180 article-title: Mechanism of nitrogen fixation by nitrogenase: the next stage publication-title: Chem. Rev. doi: 10.1021/cr400641x – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0092 article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies publication-title: Adv. Mater. – volume: 5 start-page: 18967 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0085 article-title: Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06139K – volume: 139 start-page: 12480 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0019 article-title: Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05213 – volume: 52 start-page: 264 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0215a article-title: Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.045 – volume: 345 start-page: 610 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0003 article-title: Chemistry. New recipe produces ammonia from air, water, and sunlight publication-title: Science doi: 10.1126/science.345.6197.610 – volume: 451 start-page: 293 year: 2008 ident: 10.1016/j.enchem.2019.100011_bib0012 article-title: An Earth-system perspective of the global nitrogen cycle publication-title: Nature doi: 10.1038/nature06592 – volume: 655 start-page: 44 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0115 article-title: Electrochemical properties of Fe2O3 microparticles and their application in Fe/air battery anodes publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2015.09.170 – start-page: 57 year: 1996 ident: 10.1016/j.enchem.2019.100011_bib0029 – volume: 125 start-page: 334 year: 2003 ident: 10.1016/j.enchem.2019.100011_bib0038 article-title: Electrolytic synthesis of ammonia in molten salts under atmospheric pressure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028891t – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0080 article-title: Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201800124 – volume: 9 start-page: 2902 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0152 article-title: Two-dimensional mosaic Bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction publication-title: ACS Catal. doi: 10.1021/acscatal.9b00366 – volume: 2 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0219 article-title: Single‐site gold catalysts on hierarchical N-Doped porous noble carbon for enhanced electrochemical reduction of nitrogen publication-title: Small Methods doi: 10.1002/smtd.201800202 – volume: 20 start-page: 12835 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0189 article-title: Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis publication-title: Phys. Chem. Chem. Phys doi: 10.1039/C8CP01215F – volume: 12 start-page: 131 year: 2012 ident: 10.1016/j.enchem.2019.100011_bib0105 article-title: Electrochemistry of titanium dioxide: some aspects and highlights publication-title: Chem. Rec. doi: 10.1002/tcr.201100012 – volume: 41 start-page: 2177 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0048 article-title: Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.11.102 – volume: 10 start-page: 4530 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0120 article-title: Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods publication-title: Chem. Cat. Chem. – volume: 122 start-page: 16842 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0174 article-title: Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05257 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.enchem.2019.100011_bib0129 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 7 start-page: 2524 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0095 article-title: A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10433F – volume: 140 start-page: 13387 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0135 article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08379 – year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0137 article-title: Chromium oxynitride electrocatalysts for electrochemical synthesis of ammonia under ambient conditions publication-title: Small Methods – volume: 7 start-page: 2392 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0178 article-title: A boron-interstitial doped C2N layer as a metal-free electrocatalyst for N2 fixation: a computational study publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10497B – volume: 54 start-page: 11188 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0160 article-title: Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC06000B – volume: 49 start-page: 316 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0070 article-title: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.039 – volume: 180 start-page: 1332 year: 2009 ident: 10.1016/j.enchem.2019.100011_bib0030 article-title: Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure publication-title: Solid State Ion. doi: 10.1016/j.ssi.2009.08.001 – volume: 10 start-page: 341 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0207 article-title: Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential publication-title: Nat. Commun. doi: 10.1038/s41467-018-08120-x – volume: 1800388 start-page: 1 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0024 article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction publication-title: Small Methods – volume: 118 start-page: 13026 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0146 article-title: Departures from the adsorption energy scaling relations for metal carbide catalysts publication-title: J. Phys. Chem. C doi: 10.1021/jp503756g – volume: 360 start-page: 397 year: 2010 ident: 10.1016/j.enchem.2019.100011_bib0032 article-title: Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3-α membrane publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2010.05.038 – volume: 58 start-page: 5423 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0142 article-title: Oxygen vacancies of Cr-doped CeO2 vanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00622 – volume: 298 start-page: 106 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0225 article-title: LaO nanoplate: an efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.084 – volume: 6 start-page: 9550 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0088 article-title: Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions publication-title: ACS. Sustainiable Chem. Eng. doi: 10.1021/acssuschemeng.8b01438 – volume: 38 start-page: 14576 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0020 article-title: Review of electrochemical ammonia production technologies and materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.054 – volume: 7 start-page: 117 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0100 article-title: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions publication-title: ACS Sustainiable Chem. Eng. doi: 10.1021/acssuschemeng.8b05332 – volume: 58 start-page: 2321 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0204 article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811728 – volume: 102 start-page: 219 year: 2005 ident: 10.1016/j.enchem.2019.100011_bib0009 article-title: Graphitised carbon as support for Ru/C ammonia synthesis catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2005.02.010 – volume: 16 start-page: 3022 year: 2016 ident: 10.1016/j.enchem.2019.100011_bib0169 article-title: Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05292 – year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0235 article-title: Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping publication-title: Small Methods doi: 10.1002/smtd.201900356 – volume: 25 start-page: 1914 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0185 article-title: A biomass-derived carbon-based electrocatalyst for efficient N2 fixation to NH3 under ambient conditions publication-title: Chem. Eur. J. doi: 10.1002/chem.201805523 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0011 article-title: Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions publication-title: Adv. Mater. – volume: 6 start-page: 5848 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0049 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy publication-title: Nat. Commun doi: 10.1038/ncomms6848 – volume: 20 start-page: 14679 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0089 article-title: Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01643G – volume: 55 start-page: 6401 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0234 article-title: A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media publication-title: Chem. Commun. doi: 10.1039/C9CC02310K – volume: 24 start-page: 18494 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0116 article-title: Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts publication-title: Chem. Eur. J. doi: 10.1002/chem.201800535 – volume: 152–153 start-page: 212 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0031 article-title: Synthesis of ammonia directly from wet air at intermediate temperature publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.01.037 – volume: 2 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0230 article-title: Hierarchical cobalt phosphide hollow nanocages toward ectrocatalytic amonia snthesis under abient pessure ad room temperature publication-title: Small Methods doi: 10.1002/smtd.201800204 – volume: 2 start-page: 5927 year: 2012 ident: 10.1016/j.enchem.2019.100011_bib0181 article-title: Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries publication-title: RSC Adv. doi: 10.1039/c2ra20393f – volume: 15 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0069 article-title: Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia publication-title: Small – volume: 121 start-page: 6141 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0133 article-title: Computational predictions of catalytic activity of Zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b00196 – volume: 113 start-page: 5782 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0161 article-title: Nanocarbons for the development of advanced catalysts publication-title: Chem. Rev. doi: 10.1021/cr300367d – volume: 1 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0163 article-title: Highly efficient ammonia synthesis electrocatalyst: single Ru atom on naturally nanoporous carbon materials publication-title: Adv. Theory Simul. – year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0229 article-title: A flower-like bismuth oxide as an efficient, durable and selective electrocatalyst for artificial N2 fixation in ambient condition publication-title: Chem. Cat. Chem. – volume: 6 start-page: 423 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0216 article-title: Ambient electrochemical N2-to-NH3 fixation enabled by Nb2O5 nanowire array publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI01049H – volume: 119 start-page: 28368 year: 2015 ident: 10.1016/j.enchem.2019.100011_bib0132 article-title: Nitrogen activation in a mars–van krevelen mechanism for ammonia synthesis on Co3Mo3N publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06811 – volume: 9 start-page: 4609 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0173 article-title: Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media publication-title: ACS Catal. doi: 10.1021/acscatal.8b05134 – volume: 55 start-page: 5263 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0153 article-title: Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array publication-title: Chem. Commun. doi: 10.1039/C9CC01703H – volume: 5 start-page: 3737 year: 2014 ident: 10.1016/j.enchem.2019.100011_bib0199 article-title: Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia publication-title: Nat. Commun. doi: 10.1038/ncomms4737 – volume: 102 year: 2009 ident: 10.1016/j.enchem.2019.100011_bib0209 article-title: Embedding transition-metal atoms in graphene: structure, bonding, and magnetism publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.126807 – volume: 11 start-page: 4231 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0177 article-title: High-performance N2-to-NH3 fixation by metal-free electrocatalyst publication-title: Nanoscale doi: 10.1039/C8NR10401H – volume: 123 start-page: 8404 year: 2001 ident: 10.1016/j.enchem.2019.100011_bib0079 article-title: Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010963d – volume: 59 start-page: 65 year: 2013 ident: 10.1016/j.enchem.2019.100011_bib0059 article-title: Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2012.11.010 – volume: 3 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0222 article-title: Tailoring oxygen vacancies of BiVO4 toward highly efficient noble‐metal‐free electrocatalyst for artificial N2 fixation under ambient conditions publication-title: Small Methods doi: 10.1002/smtd.201800333 – volume: 11 start-page: 3480 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0071 article-title: Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-Like gold microstructures publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201801444 – volume: 55 start-page: 4997 year: 2019 ident: 10.1016/j.enchem.2019.100011_bib0238 article-title: Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotube under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C9CC00726A – volume: 57 start-page: 10246 year: 2018 ident: 10.1016/j.enchem.2019.100011_bib0168 article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806386 – volume: 286 start-page: 69 year: 2017 ident: 10.1016/j.enchem.2019.100011_bib0130 article-title: Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2016.11.047 |
SSID | ssj0002964937 |
Score | 2.5134556 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 100011 |
Title | Recent progress in the electrochemical ammonia synthesis under ambient conditions |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1xR68pjSb5x5LUYpU0dJCbyHZTKRFUikJiL_e2ezmYS3FeglhslmSfB-TmdmZWULumO0kYAkwgDMwbCthBnf6kRFy4HjF9VyQxclPz-5oZj_OnXmrlTSylvIs6omvrXUl_0EVZYirrJLdA9lqUhTgOeKLR0QYj3_CGG0-uZRf5FhJjaVzFvXWNqLqBSCfaBHK7gR4WXYgkZVja5RHshpSZp7HizpwV8bpi6pA2VCgEVwuAquTPI1WpXCuFjhGq_QtCyvpsIxDj6FxtxLNF-HqM4dmvMGsE6q0WmKOz9EmV_sv9WCLrNSrDfqwho40Czt0q_pWkYRlD6HEt5OJd7xXD__ZLXvjL1blFpZpa8tAzRLIWQI1ywHpMHQnUB92BsPJ-KWKxsnFZ140WK1epayzLJIBfz9Qw45pGCTTY3KkPQk6ULQ4IS1IT8mrogQtKUEXKUXM6QYlqKYErShBC0pQTQlaU-KMzB7up8ORoXfNMARaa5nhOa7HWNSPhRkmfoIWsoN2kAeuJSJTxCC3FQ8hNlnMGPqqHp5w4XuWL8BkieNa56SdrlK4IDS2Ew_98X6coJNgxzwStm0x37QgNF3hiC6xym8QCN1SXu5s8h7sAqFLjOquD9VSZef4yz3HX5HDmrfXpJ2tc7hByzGLbjXs3_7VcAw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+the+electrochemical+ammonia+synthesis+under+ambient+conditions&rft.jtitle=EnergyChem&rft.au=Zhao%2C+Runbo&rft.au=Xie%2C+Hongtao&rft.au=Chang%2C+Le&rft.au=Zhang%2C+Xiaoxue&rft.date=2019-09-01&rft.issn=2589-7780&rft.eissn=2589-7780&rft.volume=1&rft.issue=2&rft.spage=100011&rft_id=info:doi/10.1016%2Fj.enchem.2019.100011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enchem_2019_100011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-7780&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-7780&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-7780&client=summon |